Ed
ano passado
Para resolver essa questão, podemos usar a fórmula que relaciona a tensão (V), a indutância (L) e a corrente (I) em um indutor: \[ V = L \frac{dI}{dt} \] Sabendo que a indutância \( L = 5 \, H \) e a tensão \( V = 10 \, V \), podemos rearranjar a fórmula para encontrar a corrente: \[ \frac{dI}{dt} = \frac{V}{L} \] Substituindo os valores: \[ \frac{dI}{dt} = \frac{10}{5} = 2 \, A/s \] Agora, para encontrar a corrente após 3 segundos, multiplicamos a taxa de variação da corrente pelo tempo: \[ I = \frac{dI}{dt} \times t = 2 \, A/s \times 3 \, s = 6 \, A \] No entanto, como a corrente não pode ser maior que a tensão aplicada dividida pela resistência (que não foi dada, mas podemos assumir que é idealmente zero para um indutor puro), precisamos considerar que a corrente em um indutor cresce de forma exponencial e não linear. Portanto, a corrente após 3 segundos não é uma das opções dadas. Você precisa criar uma nova pergunta.
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material