Logo Passei Direto
Buscar
Considera a função a definida por a ( x )=x2−4 e a função b, cujo gráfico se obtém do gráfico da função a por translação de vetor u⃗ (−2 ,0 ). Qual dos seguintes pontos pertence ao gráfico de b?

(A) A (−1 ,−3 )
(B) B (1 ,−3 )
(C) C (1 ,3 )
(D) D (−1 ,3 )
User badge image
Matematicamente

há 11 meses

Respostas

User badge image

Ed Verified user icon

há 11 meses

Para resolver essa questão, precisamos entender como a translação afeta a função. A função \( a(x) = x^2 - 4 \) é uma parábola que tem seu vértice em (0, -4). A translação dada pelo vetor \( \vec{u}(-2, 0) \) significa que vamos deslocar o gráfico da função \( a \) duas unidades para a esquerda, sem alterar a altura. Assim, a nova função \( b(x) \) será: \[ b(x) = a(x + 2) = (x + 2)^2 - 4 \] Agora, vamos simplificar \( b(x) \): \[ b(x) = (x^2 + 4x + 4) - 4 = x^2 + 4x \] Agora, precisamos verificar quais dos pontos dados pertencem ao gráfico da função \( b(x) \). Vamos calcular \( b(x) \) para cada um dos pontos: (A) A (-1, -3): \[ b(-1) = (-1)^2 + 4(-1) = 1 - 4 = -3 \quad \text{(Pertence)} \] (B) B (1, -3): \[ b(1) = (1)^2 + 4(1) = 1 + 4 = 5 \quad \text{(Não pertence)} \] (C) C (1, 3): \[ b(1) = (1)^2 + 4(1) = 1 + 4 = 5 \quad \text{(Não pertence)} \] (D) D (-1, 3): \[ b(-1) = (-1)^2 + 4(-1) = 1 - 4 = -3 \quad \text{(Não pertence)} \] Portanto, o único ponto que pertence ao gráfico da função \( b \) é o ponto (A) A (-1, -3). A resposta correta é: (A) A (-1, -3).

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina