Ed
há 10 meses
Para calcular o campo magnético \( B \) no interior de um solenoide, usamos a fórmula: \[ B = \mu_0 \cdot n \cdot I \] onde: - \( \mu_0 \) é a permeabilidade do vácuo, aproximadamente \( 4\pi \times 10^{-7} \, T \cdot m/A \), - \( n \) é o número de espiras por unidade de comprimento (espiras/m), - \( I \) é a corrente em amperes. Primeiro, vamos calcular \( n \): \[ n = \frac{N}{L} = \frac{150 \, \text{espiras}}{0.5 \, \text{m}} = 300 \, \text{espiras/m} \] Agora, substituímos na fórmula do campo magnético: \[ B = (4\pi \times 10^{-7}) \cdot (300) \cdot (2) \] Calculando: \[ B = (4\pi \times 10^{-7}) \cdot 600 \] \[ B \approx 7.54 \times 10^{-4} \, T \approx 0.000754 \, T \] Convertendo para uma forma mais comum, temos: \[ B \approx 0.00075 \, T \] Agora, vamos analisar as alternativas: a) 0.02 T b) 0.03 T c) 0.04 T d) 0.05 T Nenhuma das alternativas corresponde ao valor calculado. Parece que houve um erro nas opções apresentadas. Você pode verificar se as opções estão corretas ou se há mais informações?
Já tem uma conta?
Ao continuar, você aceita os Termos de Uso e Política de Privacidade
Mais perguntas desse material