Logo Passei Direto
Buscar
Jonas possui 15 bolas visualmente idênticas. Entretanto, uma delas é um pouco mais pesada do que as outras 14, que têm todas o mesmo peso. Utilizando uma balança de dois pratos, semelhante à da figura acima, o número mínimo de pesagens, com que é possível identificar a bola que destoa quanto ao peso, é
a) 5
b) 4
c) 3
d) 2
e) 1
User badge image
Questões para Estudantes

há 8 meses

Respostas

User badge image

Ed Verified user icon

há 8 meses

Para resolver essa questão, precisamos entender como usar a balança de dois pratos de forma eficiente para identificar a bola mais pesada entre as 15. 1. Primeira pesagem: Divida as 15 bolas em três grupos de 5 bolas cada. Coloque dois grupos de 5 bolas em cada prato da balança. Se um dos pratos descer, sabemos que a bola mais pesada está nesse grupo. Se a balança ficar equilibrada, a bola mais pesada está no grupo que não foi pesado. 2. Segunda pesagem: Agora, você terá 5 bolas (do grupo que desceu ou o grupo que não foi pesado). Divida essas 5 bolas em três grupos: dois grupos de 2 bolas e um grupo de 1 bola. Coloque os dois grupos de 2 bolas na balança. Se um dos pratos descer, a bola mais pesada está nesse grupo. Se a balança ficar equilibrada, a bola mais pesada é a que ficou de fora. 3. Terceira pesagem: Agora você terá 2 bolas (do grupo que desceu) ou 1 bola (se a balança ficou equilibrada na segunda pesagem). Se você tiver 2 bolas, coloque uma em cada prato da balança. A que descer é a mais pesada. Se você tiver apenas 1 bola, essa é a mais pesada. Portanto, o número mínimo de pesagens necessárias para identificar a bola mais pesada é 3. A resposta correta é: c) 3.

Essa resposta te ajudou?

0
Dislike0
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar essa resposta. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Mais perguntas desse material

Um quadrado é cortado em 17 quadrados menores. Todos esses quadrados têm as medidas de seus lados, em centímetros, expressas por números inteiros positivos. Há exatamente 16 quadrados com área igual a 1 cm2.
A área do quadrado original, em cm2, vale
(A) 81
(B) 64
(C) 49
(D) 36
(E) 25

Em uma disputa, há 34 pessoas: 20 homens e 14 mulheres. A cada etapa da competição, três concorrentes são eliminados, sendo sempre 2 homens e 1 mulher.
O número de homens igualar-se-á ao número de mulheres após a eliminação de número
a) 7
b) 6
c) 5
d) 4
e) 3

Considerando-se N um número inteiro e positivo, analise as afirmacoes seguintes, qualquer que seja o valor de N:
A quantidade de afirmações verdadeiras é
I - N2 + N + 1 é um número ímpar;
II - Nx (N + 1)x (N + 2) é um número múltiplo de 3;
III - N2 tem uma quantidade par de divisores;
IV - N + (N + 1) + (N + 2) é um número múltiplo de 6.
(A) 1
(B) 2
(C) 3
(D) 4
(E) 0

Analise as afirmativas abaixo.
Do ponto de vista da lógica, é(são) sempre verdadeira(s) somente a(s) afirmativa(s)
I - A parte sempre cabe no todo.
II - O inimigo do meu inimigo é meu amigo.
III - Um professor de matemática afirma que todos os professores de matemática são mentirosos.
(A) I.
(B) I e II.
(C) I e III.
(D) II.
(E) III.

Um homem entra numa livraria, compra um livro que custa 20 reais e paga com uma nota de 100 reais. Sem troco, o livreiro vai até a banca de jornais e troca a nota de 100 por 10 notas de 10 reais. O comprador leva o livro e 8 notas de 10 reais. Em seguida, entra o jornaleiro dizendo que a nota de 100 reais é falsa. O livreiro troca a nota falsa por outra de 100, verdadeira.
O prejuízo do livreiro, em reais, sem contar o valor do livro, foi
a) 200
b) 180
c) 100
d) 80
e) 20

Existe uma regra prática de divisibilidade por 7 com o seguinte procedimento: Separa-se o último algarismo da direita. Multiplica-se esse algarismo por 2 e tal resultado é subtraído do número que restou sem o algarismo à direita. Procede-se assim, sucessivamente, até se ficar com um número múltiplo de 7, mesmo que seja zero.
Seja a um algarismo no número a13.477.307. O valor de a para que este número seja divisível por 7 é
(A) 1
(B) 3
(C) 5
(D) 7
(E) 9

Na porta de um ônibus está escrito: "Está assegurada a entrada gratuita para pessoas portadoras de deficiência física e maiores de 65 anos". Do ponto de vista da lógica, têm direito à referida gratuidade pessoas com
(A) menos de 65 anos que apresentem deficiências físicas.
(B) menos de 65 anos que não apresentem deficiências físicas.
(C) mais de 65 anos que apresentem deficiências físicas.
(D) mais de 65 anos que não apresentem deficiências físicas.
(E) exatamente 65 anos e que apresentem deficiências físicas.

Considere verdadeira a seguinte proposição: "Se x = 3, então x é primo". Pode-se concluir que
(A) se x é primo, então x = 3
(B) se x não é primo, então x = 3
(C) se x não é primo, então x 3
(D) se x 3, então x é primo

Qual das proposições abaixo apresenta contradição?
a) Alguns homens são diabéticos e alguns homens não são diabéticos.
b) Algumas mulheres são diabéticas e alguns diabéticos são homens.
c) Todo diabético é homem e alguma mulher é diabética.
d) Todo homem é diabético e alguns diabéticos não são homens.
e) Nenhum diabético é homem e nenhum homem é diabético.

Em um time de futebol, o goleiro é mais alto que o centroavante, o zagueiro é mais alto que o lateral e o centroavante é mais alto que o zagueiro.
Logo, entre eles, o mais
a) alto é o centroavante.
b) alto é o goleiro.
c) alto é o zagueiro.
d) baixo é o goleiro.
e) baixo é o centroavante.

A negação da proposição “Se o candidato estuda, então passa no concurso” é
(A) o candidato não estuda e passa no concurso.
(B) o candidato estuda e não passa no concurso.
(C) se o candidato estuda, então não passa no concurso.
(D) se o candidato não estuda, então passa no concurso.
(E) se o candidato não estuda, então não passa no concurso.

Como o ano de 2009 não é bissexto, ou seja, tem 365 dias, houve um dia que caiu exatamente no “meio” do ano. Assim, as quantidades de dias do ano de 2009 antes e depois dessa data são iguais.
Esse data foi
(A) 30 de junho.
(B) 1 de julho.
(C) 2 de julho.
(D) 3 de julho.
(E) 4 de julho.

Mais conteúdos dessa disciplina