Logo Passei Direto
Buscar

Outros

Outros
Um jogo entre duas pessoas A e B consiste em ambos exporem em riste, simultaneamente, os dedos das duas mãos em quantidades escolhidas por cada jogador. Conta-se o número de dedos em riste e, se tal número for inferior a dez, vence o jogador A; caso contrário, vence o jogador B. É permitido a cada jogador expor as mãos fechadas, situação em que se contabiliza o número de dedos daquele jogador como zero.
O espaço amostral associado ao experimento aleatório correspondente a uma realização do jogo possui 20 elementos.
( ) CERTO
( ) ERRADO
User badge image
CuriosidadesGerais

semana passada

Respostas

User badge image

Ed Verified user icon

semana passada

Para resolver essa questão, precisamos entender como funciona o espaço amostral do jogo descrito. Cada jogador (A e B) pode escolher expor de 0 a 10 dedos em cada mão. Portanto, cada jogador tem 11 opções (0 a 10 dedos) para cada uma das duas mãos. Assim, o número total de combinações possíveis para cada jogador é: 11 (opções para a mão esquerda) x 11 (opções para a mão direita) = 121 combinações para cada jogador. Como são dois jogadores, o espaço amostral total é: 121 (com combinações do jogador A) x 121 (com combinações do jogador B) = 14641 combinações possíveis. Portanto, a afirmação de que o espaço amostral possui 20 elementos está ERRADA. A resposta correta é: ( ) ERRADO.

Essa resposta te ajudou?

0
Dislike0

Ainda com dúvidas?

Envie uma pergunta e tenha sua dúvida de estudo respondida!

Essa pergunta também está no material:

Mais perguntas desse material

Mais conteúdos dessa disciplina