Buscar

3ª semana de desenvolvimento embrionário

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 16 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

3ª semana de desenvolvimento embrionário
· O rápido desenvolvimento do embrião a partir do disco embrionário trilaminar durante a terceira semana é caracterizado por: 
• Aparecimento da linha primitiva. 
• Desenvolvimento da notocorda. 
• Diferenciação das três camadas germinativas. A terceira semana do desenvolvimento coincide com a semana seguinte à primeira ausência do período menstrual, isto é, 5 semanas após o primeiro dia do último período menstrual normal. Frequentemente, a interrupção da menstruação é a primeira indicação de que uma mulher pode estar grávida. Aproximadamente 5 semanas após o último período menstrual normal, uma gravidez normal pode ser detectada por ultrassonografia.
Gastrulação - formação das camadas germinativas:
· A gastrulação é o processo pelo qual as três camadas germinativas – que são as precursoras de todos os tecidos embrionários e a orientação axial – são estabelecidos nos embriões. Durante a gastrulação, o disco embrionário bilaminar é convertido em um disco embrionário trilaminar. Grandes mudanças na forma celular, reorganização, movimento e alterações nas propriedades de adesão celulares contribuem para o processo de gastrulação.
· A gastrulação é o início da morfogênese (desenvolvimento da forma do corpo) e é o evento mais importante que ocorre durante a terceira semana. Durante essa semana, o embrião é referido como uma gástrula. Proteínas morfogenéticas ósseas e outras moléculas de sinalização como FGF, Shh (sonic hedgehog), Tgifs e Wnts possuem uma participação de extrema importância na gastrulação. 
Cada uma das três camadas germinativas (ectoderma, mesoderma e endoderma) dá origem a tecidos e órgãos específicos: 
• O ectoderma embrionário dá origem à epiderme, aos sistemas nervosos central e periférico, aos olhos e ouvidos internos, às células da crista neural e a muitos tecidos conjuntivos da cabeça. 
• O endoderma embrionário é a fonte dos revestimentos epiteliais dos sistemas respiratório e digestório, incluindo as glândulas que se abrem no trato digestório e as células glandulares de órgãos associados ao trato digestório, como o fígado e o pâncreas. 
• O mesoderma embrionário dá origem a todos os músculos esqueléticos, às células sanguíneas, ao revestimento dos vasos sanguíneos, à musculatura lisa das vísceras, ao revestimento seroso de todas as cavidades do corpo, aos ductos e órgãos dos sistemas genitais e excretor e à maior parte do sistema cardiovascular. No tronco, ele é a fonte de todos os tecidos conjuntivos, incluindo cartilagens, ossos, tendões, ligamentos, derme e estroma (tecido conjuntivo) dos órgãos internos.
· Sintomas da gravidez: 
Os sintomas frequentes da gravidez são náusea e vômito, que podem ocorrer no final da terceira semana; entretanto, o momento do início desses sintomas varia. O sangramento vaginal no período esperado da menstruação não exclui a possibilidade de gravidez, porque, às vezes, acontece uma pequena perda de sangue do local de implantação do blastocisto. O sangramento da implantação resulta do extravasamento de sangue a partir do tampão para a cavidade uterina proveniente das redes lacunares rompidas pelo blastocisto implantado. Quando o sangramento é interpretado como menstruação, ocorre um erro na determinação da data prevista para o nascimento do bebê.
· Linha primitiva: 
O primeiro sinal morfológico da gastrulação é a formação da linha primitiva na superfície do epiblasto do disco embrionário bilaminar. No começo da terceira semana, uma faixa linear espessada do epiblasto aparece caudalmente no plano mediano do aspecto dorsal do disco embrionário. A linha primitiva resulta da proliferação e do movimento das células do epiblasto para o plano mediano do disco embrionário. Tão logo a linha primitiva aparece, é possível identificar o eixo craniocaudal, as extremidades cranial e caudal, as superfícies dorsal e ventral do embrião. Conforme a linha primitiva se alonga pela adição de células à sua extremidade caudal, sua extremidade cranial prolifera para formar o nó primitivo.
· Simultaneamente, um sulco estreito, o sulco primitivo, se desenvolve na linha primitiva e é contínuo com uma pequena depressão no nó primitivo, a fosseta primitiva. O sulco primitivo e a fosseta primitiva resultam da invaginação (movimento para dentro) das células epiblásticas.
· Pouco tempo depois do aparecimento da linha primitiva, as células migram de sua superfície profunda para formar o mesênquima, um tecido conjuntivo embrionário formado por pequenas células fusiformes, frouxamente organizadas em uma matriz extracelular (substância intercelular de um tecido) de fibras colágenas (reticulares) esparsas. O mesênquima forma os tecidos de sustentação do embrião, assim como a maior parte dos tecidos conjuntivos do corpo e a trama de tecido conjuntivo das glândulas. Uma parte do mesênquima forma o mesoblasto (mesoderma indiferenciado), que forma o mesoderma intraembrionário.
· As células do epiblasto, bem como as do nó primitivo e de outras partes da linha primitiva, deslocam o hipoblasto, formando o endoderma embrionário no teto da vesícula umbilical. As células remanescentes do epiblasto formam o ectoderma embrionário. Dados de pesquisa sugerem que moléculas de sinalização (fatores nodais) da superfamília do fator transformador de crescimento β induzem a formação do mesoderma. A ação combinada de outras moléculas de sinalização (p. ex., Wnt3a, Wnt5a e FGFs) também participa especificando os destinos das células da camada germinativa. Entretanto, o fator transformador de crescimento β (nodal), um fator de transcrição T-box (veg T) e a via de sinalização Wnt parecem estar envolvidos na especificação do endoderma. As células mesenquimais derivam da ampla migração da linha primitiva. Essas células pluripotentes se diferenciam em diversos tipos celulares, como os fibroblastos, os condroblastos e os osteoblastos. Em resumo, as células do epiblasto, por meio do processo de gastrulação, dão origem a todas as três camadas germinativas no embrião, os primórdios de todos os seus tecidos e órgãos.
· O Destino da Linha Primitiva: A linha primitiva forma ativamente o mesoderma pelo ingresso (entrada) de células até o início da quarta semana; depois disso, a produção do mesoderma desacelera. A linha primitiva diminui em tamanho relativo e torna-se uma estrutura insignificante na região sacrococcígea do embrião. Normalmente, a linha primitiva sofre mudanças degenerativas e desaparece no final da quarta semana.
Processo notocordal e notocorda
· Algumas células mesenquimais migram através da linha primitiva e, como consequência, adquirem os destinos de célula mesodérmica. Essas células então migram cefalicamente do nó e da fosseta primitiva, formando um cordão celular mediano, o processo notocordal. Esse processo logo adquire um lúmen, o canal notocordal. O processo notocordal cresce cranialmente entre o ectoderma e o endoderma até alcançar a placa pré-cordal, uma pequena área circular de células endodérmicas cilíndricas no qual o ectoderma e o endoderma se fundem. O mesoderma pré-cordal é uma população mesenquimal que tem origem na crista neural, localizada rostralmente à notocorda. A placa pré-cordal dá origem ao endoderma da membrana bucofaríngea, localizada no futuro local da cavidade oral (Fig. 4-8C). A placa pré-cordal funciona como um centro sinalizador (Shh e PAX6) para o controle do desenvolvimento das estruturas cranianas, incluindo o prosencéfalo e os olhos. As células mesenquimais da linha primitiva e do processo notocordal migram lateral e cranialmente, se misturando com outras células mesodérmicas, entre o ectoderma e o endoderma, até alcançarem as margens do disco embrionário.
 
· Na região caudal à linha primitiva existe uma área circular, a membrana cloacal, que indica o futuro local do ânus. O disco embrionário permanece bilaminar nessa região e na membrana bucofaríngea devido à fusão do ectoderma e do endoderma embrionários nesses locais, impedindo, assim, a migração de células mesenquimais entre eles. Por volta da metade da terceirasemana, o mesoderma intraembrionário separa o ectoderma e o endoderma em todos os lugares, exceto: 
• Cranialmente, na membrana bucofaríngea. 
• No plano mediano da região cranial até o nó primitivo, onde o processo notocordal está localizado. 
• Caudalmente, na membrana cloacal. Os sinais instrutivos da região da linha primitiva induzem as células precursoras notocordais a formar a notocorda, uma estrutura celular semelhante a um bastão. O mecanismo molecular que induz essas células envolve (pelo menos) a sinalização Shh da placa ventral do tubo neural. A notocorda: • Define o eixo longitudinal primordial do embrião e dá a ele alguma rigidez. 
• Fornece sinais que são necessários para o desenvolvimento das estruturas musculoesqueléticas axiais e do sistema nervoso central (SNC). 
• Contribui para a formação dos discos intervertebrais localizados entre corpos vertebrais adjacentes. 
Inicialmente, o processo notocordal se alonga pela invaginação das células da fosseta primitiva. A fosseta primitiva é um aprofundamento que se desenvolve e se estende para dentro do processo notocordal formando o canal notocordal. O processo notocordal se torna um tubo celular que se estende cranialmente a partir do nó primitivo até a placa pré-cordal. Em seguida, o assoalho do processo notocordal se funde com o endoderma embrionário subjacente. Essas camadas fusionadas se degeneram gradualmente, resultando na formação de aberturas no assoalho do processo notocordal, o que coloca o canal notocordal em comunicação com a vesícula umbilical. Conforme essas aberturas se tornam confluentes, o assoalho do canal notocordal desaparece e o restante do processo notocordal forma a placa notocordal achatada e sulcada. Começando na extremidade cranial do embrião, as células da placa notocordal se proliferam e sofrem um dobramento, que forma a notocorda. A região proximal do canal notocordal persiste temporariamente como o canal neuroentérico, formando uma comunicação transitória entre a cavidade amniótica e a vesícula umbilical. Quando o desenvolvimento da notocorda está completo, o canal neuroentérico normalmente se fecha.
· A notocorda se destaca do endoderma da vesícula umbilical, que volta a ser uma camada contínua. A notocorda se estende da membrana bucofaríngea até o nó primitivo. A notocorda se degenera conforme os corpos vertebrais se formam, mas uma pequena porção dela persiste como o núcleo pulposo de cada disco intervertebral. A notocorda funciona como um indutor primário (centro de sinalização) no embrião inicial. O desenvolvimento da notocorda induz o ectoderma embrionário sobreposto a se espessar e formar a placa neural, o primórdio do SNC.
Restos do tecido notocordal:
· Tanto tumores benignos quanto malignos (cordomas) podem se formar de remanescentes vestigiais de tecido notocordal. Aproximadamente um terço dos cordomas ocorre na base do crânio e se estende até a nasofaringe. Os cordomas crescem lentamente e as formas malignas se infiltram no osso.
Alantoide
· O alantoide aparece aproximadamente no 16° dia como um pequeno divertículo (evaginação) da parede caudal da vesícula umbilical, que se estende para o pedículo de conexão. O alantoide permanece muito pequeno, mas o mesoderma do alantoide se expande para baixo do córion e forma os vasos sanguíneos que servirão à placenta. A porção proximal do divertículo do alantoide original persiste durante a maior parte do desenvolvimento como um cordão, o úraco, que se estende da bexiga até a região umbilical. O úraco é representado nos adultos pelo ligamento umbilical mediano. Os vasos sanguíneos do alantoide tornam-se as artérias umbilicais. A porção intraembrionária das veias umbilicais tem uma origem diferente.
Cistos do alantoide:
· Os cistos do alantoide, resquícios da porção extraembrionária do alantoide, são geralmente encontrados entre os vasos umbilicais fetais e podem ser detectados por ultrassonografia. Eles são mais frequentemente detectados na região proximal do cordão umbilical, próximo à sua ligação com a parede abdominal anterior. Os cistos são geralmente assintomáticos até a infância ou adolescência, quando podem se tornar infectados e inflamados.
Neurulação: formação do tubo neural
· O processo envolvido na formação da placa neural e das pregas neurais e no fechamento das pregas para formar o tubo neural constitui a neurulação. A neurulação está completa até o final da quarta semana, quando ocorre o fechamento do neuroporo caudal.
Placa Neural e Tubo Neural:
· Conforme a notocorda se desenvolve, ela induz o ectoderma localizado acima dela ou adjacente à linha média, a se espessar e formar uma placa neural alongada de células epiteliais espessas. O neuroectoderma da placa dá origem ao SNC, o encéfalo e a medula espinhal. O neuroectoderma também é fonte de várias outras estruturas como, a retina, por exemplo. Inicialmente, a placa neural corresponde em comprimento à notocorda subjacente. Ela surge rostralmente (extremidade da cabeça) ao nó primitivo e dorsalmente (posterior) à notocorda e ao mesoderma adjacente a ela. Conforme a notocorda se alonga, a placa neural se amplia e finalmente se estende cranialmente até a membrana bucofaríngea. Posteriormente, a placa neural se estende além da notocorda.
· Aproximadamente no 18° dia, a placa neural se invagina ao longo do seu eixo central para formar o sulco neural mediano longitudinal, com as pregas neurais em ambos os lados. As pregas neurais se tornam particularmente proeminentes na extremidade cranial do embrião e são o primeiro sinal do desenvolvimento do encéfalo. Ao final da terceira semana, as pregas neurais se movem e se fusionam transformado a placa neural em tubo neural, o primórdio das vesículas encefálicas e da medula espinhal. O tubo neural se separa do ectoderma superficial assim que as pregas neurais se fusionam.
 
· As células da crista neural sofrem uma transição de epitelial para mesenquimal e migram à medida que as pregas neurais se encontram e as margens livres do ectoderma de superfície (ectoderma não neural) se fundem, de modo que essa camada se torna contínua sobre o tubo neural e no dorso do embrião. Em seguida, o ectoderma superficial se diferencia na epiderme. A neurulação se completa durante a quarta semana. A formação do tubo neural é um processo celular complexo e multifatorial que envolve uma cascata de mecanismos moleculares e fatores extrínsecos.
Formação da Crista Neural:
· À medida que as pregas neurais se fundem para formar o tubo neural, algumas células neuroectodérmicas situadas ao longo da margem interna de cada prega neural perdem a sua afinidade epitelial e a ligação às células vizinhas. Conforme o tubo neural se separa do ectoderma superficial, as células da crista neural formam uma massa achatada irregular, a crista neural, entre o tubo neural e o ectoderma superficial acima. A sinalização Wnt/β-catenina ativa o gene homeobox GBX2 e é fundamental para o desenvolvimento da crista neural.
· A crista neural logo se separa em porção direita e esquerda, e estas se deslocam para os aspectos dorsolaterais do tubo neural; nesse local elas dão origem aos gânglios sensoriais dos nervos espinhais e cranianos. Em seguida, as células da crista neural se movem tanto para dentro quanto sobre a superfície dos somitos. Embora essas células sejam difíceis de identificar, técnicas de traçadores especiais revelaram que as células da crista neural se disseminam amplamente, mas, em geral, ao longo de vias predefinidas. A diferenciação e a migração das células da crista neural são reguladas por interações moleculares de genes específicos (p. ex., FOXD3, SNAIL2, SOX9 e SOX10), moléculas de sinalização e fatores de transcrição.
· As células da crista neural dão origem aos gânglios espinhais (gânglios da raiz dorsal) e aos gânglios do sistema nervoso autônomo. Os gânglios dos nervos cranianos V, VII, IX e X também são parcialmente derivados das células da crista neural. Além de formar as células ganglionares, as células da crista neural formam as bainhas de neurilema dos nervos periféricose contribuem para a formação das leptomeninges, a aracnoide-máter e a pia-máter. As células da crista neural também contribuem para a formação das células pigmentares, da medula da glândula suprarrenal e muitos outros tecidos e órgãos.
· Estudos indicam que as interações celulares dentro do epitélio de superfície e entre ele e o mesoderma subjacente são necessárias para estabelecer os limites da placa neural e especificar os locais onde ocorrerá a transformação epitelial-mesenquimal. Essas interações são mediadas pelas proteínas morfogenéticas ósseas e pelos sistemas de sinalização Wnt, Notch e FGF. Moléculas como as efrinas também são importantes para orientar os fluxos específicos da migração das células da crista neural. Muitas doenças humanas resultam de defeitos na migração e/ou diferenciação das células da crista neural.
Defeitos congênitos resultantes da neurulação anormal:
· Uma vez que a placa neural, o primórdio do SNC, surge durante a terceira semana e dá origem às pregas neurais e ao início do tubo neural, alterações na neurulação podem resultar em graves defeitos congênitos do encéfalo e da medula espinhal. Os defeitos do tubo neural estão entre as anomalias congênitas mais comuns. As evidências disponíveis sugerem que o distúrbio primário (p. ex., uma substância teratogênica) afeta os destinos celulares, a adesão celular e o mecanismo de fechamento do tubo neural. Isso resulta na falha da fusão das pregas neurais e na formação do tubo neural.
Desenvolvimento dos somitos:
· Além da notocorda, as células derivadas do nó primitivo formam o mesoderma paraxial. Próximo ao nó primitivo, essa população celular aparece como uma coluna espessa e longitudinal de células. Cada coluna é contínua lateralmente com o mesoderma intermediário, que gradualmente se estreita em uma camada de mesoderma lateral. O mesoderma lateral é contínuo com o mesoderma extraembrionário que reveste a vesícula umbilical e o âmnio. Próximo ao final da terceira semana, o mesoderma paraxial se diferencia, se condensa e começa a se dividir em corpos cuboides pareados, os somitos (do Grego soma, corpo), que se formam em uma sequência craniocaudal.
· Esses blocos de mesoderma estão localizados em cada lado do tubo neural em desenvolvimento. Cerca de 38 pares de somitos se formam durante o período somítico do desenvolvimento humano (dias 20 a 30). O tamanho e a forma dos somitos são determinados pelas interações celulares. Ao final da quinta semana, 42 a 44 pares de somitos estão presentes. Os somitos formam elevações na superfície do embrião e são um pouco triangulares em secções transversais. Como os somitos são bem proeminentes durante a quarta e a quinta semanas, eles são utilizados como um dos vários critérios para a determinação da idade do embrião.
· Os somitos surgem primeiro na futura região occipital da cabeça do embrião. Eles logo se desenvolvem craniocaudalmente e dão origem à maior parte do esqueleto axial e à musculatura associada, assim como à derme da pele adjacente. O primeiro par de somitos aparece a uma pequena distância caudal do local em que o placoide ótico se forma. Os axônios motores da medula espinhal inervam as células musculares nos somitos, um processo que necessita da correta orientação dos axônios da medula espinhal para as células-alvo apropriadas.
· A formação dos somitos a partir do mesoderma paraxial envolve a expressão dos genes da via de sinalização Notch, dos genes HOX e outros fatores de sinalização. Além disso, a formação dos somitos a partir do mesoderma paraxial é precedida pela expressão de fatores de transcrição forkhead FoxC1 e FoxC2, e o padrão segmentar craniocaudal dos somitos é regulado pela via de sinalização Delta-Notch. Um oscilador ou relógio molecular foi proposto como o mecanismo responsável pela sequência ordenada dos somitos.
Desenvolvimento do celoma intraembrionário:
· O primórdio do celoma intraembrionário (cavidade do corpo do embrião) aparece como espaços celômicos isolados no mesoderma intraembrionário lateral e no mesoderma cardiogênico (coração em formação). Esses espaços logo coalescem para formar uma única cavidade em formato de ferradura, o celoma intraembrionário, que divide o mesoderma lateral em duas camadas:
• Uma camada somática ou parietal de mesoderma lateral localizado abaixo do epitélio ectodérmico, que é contínuo com o mesoderma extraembrionário que reveste o âmnio. 
• Uma camada esplâncnica ou visceral de mesoderma lateral localizado adjacente ao endoderma, que é contínuo com o mesoderma extraembrionário que reveste a vesícula umbilical.
· O mesoderma somático e o ectoderma embrionário acima formam a parede do corpo do embrião ou somatopleura (Fig. 4-9F), enquanto o mesoderma esplâncnico e o endoderma embrionário abaixo formam o intestino embrionário ou esplancnopleura. Durante o segundo mês, o celoma intraembrionário se divide em três cavidades corporais: cavidade pericárdica, cavidades pleurais e cavidade peritoneal. Para uma descrição dessas divisões do celoma intraembrionário.
Desenvolvimento inicial do sistema cardiovascular:
· No final da segunda semana, a nutrição do embrião é obtida a partir do sangue materno pela difusão através do celoma extraembrionário e da vesícula umbilical. No início da terceira semana, a formação dos vasos sanguíneos começa no mesoderma extraembrionário da vesícula umbilical, do pedículo de conexão e do córion. Os vasos sanguíneos embrionários começam a se desenvolver aproximadamente 2 dias depois. A formação inicial do sistema cardiovascular está relacionada com a necessidade crescente por vasos sanguíneos para trazer oxigênio e nutrientes para o embrião a partir da circulação materna através da placenta. Durante a terceira semana, se desenvolve uma circulação uteroplacentária primordial.
Vasculogênese e Angiogênese
· A formação do sistema vascular embrionário envolve dois processos, a vasculogênese e a angiogênese. A vasculogênese é a formação de novos canais vasculares pela união de precursores individuais celulares (angioblastos). A angiogênese é a formação de novos vasos pelo brotamento e ramificação de vasos preexistentes. A formação de vasos sanguíneos no embrião e nas membranas extraembrionárias, durante a terceira semana, começa quando as células mesenquimais se diferenciam em precursores das células endoteliais, ou angioblastos (células formadoras de vasos). Os angioblastos se agregam para formar aglomerados celulares angiogênicos isolados, ou ilhotas sanguíneas, que são associados à vesícula umbilical ou com os cordões endoteliais dentro do embrião. Pequenas cavidades aparecem dentro das ilhotas sanguíneas e dos cordões endoteliais pela confluência das fendas intercelulares.
· Os angioblastos se achatam para formar as células endoteliais que se organizam ao redor das cavidades das ilhotas sanguíneas para formar o endotélio. Muitas dessas cavidades revestidas por endotélio se fusionam e formam uma rede de canais endoteliais (vasculogênese). Vasos se ramificam nas áreas adjacentes por meio do brotamento endotelial (angiogênese) e se fundem com outros vasos. As células mesenquimais ao redor dos vasos sanguíneos endoteliais primitivos se diferenciam nos elementos de tecido muscular e tecido conjuntivo da parede dos vasos sanguíneos. 
· As células sanguíneas se desenvolvem a partir de células endoteliais especializadas (epitélio hematogênico) dos vasos à medida que eles crescem na vesícula umbilical e no alantoide ao final da terceira semana e depois em locais especializados ao longo da aorta dorsal. Células sanguíneas progenitoras também se originam diretamente de células-tronco hematopoiéticas. A formação do sangue (hematogênese) não começa no embrião até a quinta semana. Primeiro, ela ocorre ao longo da aorta e, depois, em várias regiões do mesênquima embrionário, principalmente no fígado e no baço, na medula óssea e nos linfonodos. As hemácias fetais e adultas são derivadas de células progenitoras hematopoiéticas.
Sistema Cardiovascular Primitivo:
· O coração e os grandes vasos se formam a partirdas células mesenquimais na área cardiogênica. Os canais longitudinais e pareados revestidos por células endoteliais, ou tubos cardíacos endocárdicos, se desenvolvem durante a terceira semana e se fusionam para formar o tubo cardíaco primitivo. O coração tubular se une aos vasos sanguíneos do embrião, do pedículo de conexão e da vesícula umbilical para formar o sistema cardiovascular primitivo. Ao final da terceira semana, o sangue está circulando e o coração começa a bater no 21° ou 22° dia.
· O sistema cardiovascular é o primeiro sistema de órgãos a alcançar um estado funcional. Os batimentos cardíacos embrionários podem ser detectados ao se realizar uma ultrassonografia com Doppler durante a quarta semana, aproximadamente 6 semanas após o último período menstrual normal.
Desenvolvimento das vilosidades coriônicas:
· Logo após o aparecimento das vilosidades coriônicas primárias, ao final da segunda semana, elas começam a se ramificar. No início da terceira semana, o mesênquima cresce para dentro dessas vilosidades primárias, formando um eixo central de tecido mesenquimal. Nesse estágio, as vilosidades, agora vilosidades coriônicas secundárias, revestem toda a superfície do saco coriônico. Algumas células mesenquimais nas vilosidades logo se diferenciam em capilares e células sanguíneas. As vilosidades são denominadas vilosidades coriônicas terciárias quando vasos sanguíneos são visíveis no interior delas.
· Os capilares nas vilosidades coriônicas se fundem para formar redes arteriocapilares, que logo se tornam conectadas com o coração do embrião através dos vasos que se diferenciam no mesênquima do córion e do pedículo de conexão. Até o final da terceira semana, o sangue do embrião começa a fluir lentamente através dos capilares das vilosidades coriônicas. O oxigênio e os nutrientes do sangue materno presentes no espaço interviloso se difundem através das paredes das vilosidades e entram no sangue do embrião. O dióxido de carbono e os produtos residuais se difundem do sangue dos capilares fetais, através da parede das vilosidades coriônicas, para o sangue materno. Simultaneamente, as células citotrofoblásticas das vilosidades coriônicas proliferam e se estendem através do sinciciotrofoblasto, formado uma capa citotrofoblástica extravilosa que, gradativamente, envolve o saco coriônico e o fixa ao endométrio.
· As vilosidades que se prendem aos tecidos maternos através da capa citotrofoblástica são as vilosidades coriônicas-tronco (vilosidades de ancoragem). As vilosidades que crescem das laterais das vilosidades-tronco são as vilosidades coriônicas ramificadas, e é através das paredes das vilosidades ramificadas que ocorre a principal troca de material entre o sangue materno e do embrião. As vilosidades ramificadas são banhadas por sangue materno do espaço interviloso, que é renovado continuamente.
Resumo da terceira semana:
· O disco embrionário bilaminar é convertido em um disco embrionário trilaminar durante a gastrulação. Essas alterações começam com o aparecimento da linha primitiva, que surge no início da terceira semana como um espessamento do epiblasto na extremidade caudal do disco embrionário. 
· A linha primitiva resulta da migração de células do epiblasto para o plano mediano do disco. A invaginação das células epiblásticas a partir da linha primitiva dá origem as células mesenquimais que migram ventral, lateral e cranialmente entre o epiblasto e o hipoblasto. 
· Logo que a linha primitiva começa a produzir células mesenquimais, o epiblasto passa a ser conhecido como ectoderma embrionário. Algumas células do epiblasto deslocam o hipoblasto e formam o endoderma embrionário. As células mesenquimais produzidas pela linha primitiva logo se organizam em uma terceira camada germinativa, o mesoderma intraembrionário ou embrionário, ocupando a área entre o antigo hipoblasto e as células do epiblasto. As células do mesoderma migram para as bordas do disco embrionário, onde se unem ao mesoderma extraembrionário que reveste o âmnio e a vesícula umbilical. 
· Ao final da terceira semana, o embrião é um disco embrionário oval e achatado. O mesoderma existe entre o ectoderma e o endoderma do disco em toda a sua extensão, exceto na membrana bucofaríngea; no plano mediano, ocupado pela notocorda e na membrana cloacal . 
· No início da terceira semana, as células mesenquimais da linha primitiva formam o processo notocordal, entre o ectoderma e o endoderma embrionário. O processo notocordal se estende do nó primitivo até a placa précordal. Formam-se aberturas no assoalho do canal notocordal, que logo coalescem, formando a placa notocordal. Essa placa se invagina para formar a notocorda, o eixo primitivo do embrião ao redor do qual se forma o esqueleto axial (p. ex., a coluna vertebral). 
· A placa neural aparece como um espessamento do ectoderma do embrião, induzido pelo desenvolvimento da notocorda. Um sulco neural longitudinal se desenvolve na placa neural, e é margeado pelas pregas neurais. A fusão das pregais neurais forma o tubo neural, o primórdio do SNC.
· À medida que as pregas neurais se fusionam para formar o tubo neural, as células neuroectodérmicas formam a crista neural entre o ectoderma superficial e o tubo neural. 
· O mesoderma de cada lado da notocorda se condensa para formar colunas longitudinais de mesoderma paraxial, que, até o final da terceira semana, dão origem aos somitos. 
· O celoma (cavidade) no interior do embrião surge como espaços isolados no mesoderma lateral e no mesoderma cardiogênico. As vesículas celômicas em seguida coalescem formando uma única cavidade, em formato de ferradura, que, posteriormente, originam as cavidades do corpo. 
· Os vasos sanguíneos aparecem primeiro na parede da vesícula umbilical, do alantoide e do córion. Eles se desenvolvem no interior do embrião logo em seguida. As hemácias fetais se desenvolvem a partir de precursores hematopoiéticos diferentes. 
· O coração primitivo é representado pelos tubos cardíacos endocárdicos pareados. Até o final da terceira semana, os tubos cardíacos se fundiram, formando um coração tubular, que está unido aos vasos sanguíneos do embrião, da vesícula umbilical, do córion e do pedículo de conexão, formando um sistema cardiovascular primitivo. 
· As vilosidades coriônicas primárias se tornam vilosidades coriônicas secundárias quando adquirem um eixo central mesenquimal. Antes do final da terceira semana, ocorre o desenvolvimento de capilares transformando-as em vilosidades coriônicas terciárias. As extensões citotrofoblásticas das vilosidades-tronco se unem para formar uma capa citotrofoblástica que ancora o saco coriônico no endométrio.

Outros materiais