Buscar

Água para Uso Farmacêutico

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 54 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 54 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 54 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DEFINIÇÃO
Legislação e cuidados de distribuição, sanitização, armazenamento e validação referentes aos
sistemas de purificação de água.
PROPÓSITO
Compreender os sistemas de purificação de água para uso farmacêutico e as Boas Práticas de
Manipulação de Preparações Magistrais e Oficinais para uso em Farmácia.
OBJETIVOS
MÓDULO 1
Identificar as Boas Práticas de Manipulação de Preparações Magistrais e Oficinais para Uso
Humano em Farmácia, de acordo com a legislação vigente
MÓDULO 2
Descrever os processos de purificação de água para utilização na manipulação farmacêutica e
suas especificações farmacopeicas
MÓDULO 3
Analisar os cuidados com a distribuição, sanitização, armazenamento e validação dos sistemas
de purificação de água para uso farmacêutico
INTRODUÇÃO
Neste tema, vamos conhecer um ponto muito importante dentro da manipulação farmacêutica:
a água utilizada para este fim. Como provavelmente você já deve saber, a água é considerada
o solvente universal. Realmente, na Farmacotécnica, ela deve ser o solvente de escolha, pois
não faria sentido utilizar para a fabricação e administração de medicamentos outro solvente
que não fosse a água.
São pouquíssimos os casos em que ela não pode ser o solvente de escolha, como, por
exemplo, na preparação de medicamentos injetáveis cujo solvente precise ter caráter oleoso.
Ou ainda em sistemas co-solventes em que ela precise estar associada a outros solventes
hidrofílicos para facilitar a solubilização de um fármaco.
De qualquer forma, a água para uso farmacêutico deve apresentar requisitos específicos para
que seja utilizada nas preparações farmacêuticas de acordo com as Boas Práticas de
Fabricação e é tratada como matéria-prima. Esse será o objeto de nosso estudo a partir de
agora. Vamos conhecer a legislação para as Boas Práticas de Fabricação de Medicamentos e
a Água para Uso Farmacêutico. E então? Vamos comigo nessa jornada?
MÓDULO 1
 Apresentar as Boas Práticas de Manipulação de Preparações Magistrais 
e Oficinais para Uso Humano em Farmácia, de acordo com a 
legislação vigente
BOAS PRÁTICAS DE FABRICAÇÃO DE
MEDICAMENTOS (BPF)
Atualmente, no Brasil, a fabricação de medicamentos se divide de duas maneiras: os
medicamentos fabricados em escala industrial pelas indústrias farmacêuticas e os
medicamentos fabricados de forma manufaturada pelas farmácias de manipulação.
Dessa forma, as Boas Práticas de Fabricação de Medicamentos também precisam atender os
dois segmentos de forma diferenciada. Para tanto, de acordo com a ANVISA, existem duas
legislações que contemplam essas atividades: a RDC nº 67 de 8 de outubro de 2007 e a RDC
nº 301 de 21 de agosto de 2019.
RDC Nº 67 DE 8 DE OUTUBRO DE 2007
Dispõe sobre Boas Práticas de Manipulação de Preparações Magistrais e Oficinais para
Uso Humano em Farmácias. Conheça a legislação na íntegra clicando aqui.
RDC Nº 301 DE 21 DE AGOSTO DE 2019
javascript:void(0)
javascript:void(0)
javascript:void(0);
Dispõe sobre as Diretrizes Gerais de Boas Práticas de Fabricação de Medicamentos.
Conheça a legislação na íntegra clicando aqui
Uma vez que a profissão farmacêutica abrange conhecimentos técnicos altamente específicos
e que impacta diretamente a vida das pessoas, é natural se esperar que essa profissão e suas
atividades específicas sejam altamente regulamentadas e exigidas. O farmacêutico é, portanto,
um profissional que precisa conhecer muito bem as legislações referentes a seu setor de
atividade. Neste tema, iremos abordar somente a legislação RDC nº 67/2007, que regulamenta
as atividades nas farmácias magistrais.
 
Fonte: Autor
Antes de entrarmos diretamente na RDC nº 67/07, vamos conhecer um pouco do histórico
dessas legislações a respeito das farmácias magistrais a partir da criação da ANVISA.
A Figura a seguir apresenta uma cronologia a respeito dessas legislações (Figura 1).
 
Fonte: Autor
javascript:void(0);
A ANVISA foi criada no dia 26 de janeiro de 1999 com o objetivo de promover a proteção da
saúde da população, por intermédio do controle sanitário da produção e consumo de produtos
e serviços submetidos à vigilância sanitária, inclusive dos ambientes, dos processos, dos
insumos e das tecnologias a eles relacionados, bem como o controle de portos, aeroportos,
fronteiras e recintos alfandegados.
A primeira legislação sobre Boas Práticas de Manipulação nas Farmácias de Manipulação foi a
RDC nº 33/2000, que criou o Regulamento Técnico sobre as Boas Práticas de Manipulação de
Medicamentos em Farmácias. Essa legislação foi revogada pela RDC nº 214/2006, a qual
aprova um novo Regulamento Técnico, contemplando, dessa vez, as Boas Práticas de
Manipulação de Medicamentos para Uso Humano nas Farmácias.
Foi por meio da RDC nº 214/2006 que as farmácias magistrais passaram a ser divididas
em:para uso humano e para uso veterinário. Porém, a RDC nº 214/2006 foi rapidamente
revogada, em menos de um ano, pela RDC nº 67/2007, atualmente em vigor. Esta resolução foi
alterada quatro vezes, respectivamente pelas RDC nº 24/2008, RDC nº 49/2008, RDC nº
87/2008 e RDC nº 21/2009.
Observe o quadro 1 a seguir, o qual contempla de forma resumida todas essas legislações.
Quadro 1: Legislações sobre Farmácias Magistrais
Legislação Descrição
Lei nº
9.782 de
26 de
janeiro de
1999.
Cria a Agência Nacional de Vigilância Sanitária (ANVISA).
RDC nº 33
de 19 de
abril de
2000.
Aprova o Regulamento Técnico (RT) sobre Boas Práticas de
Manipulação de Medicamentos em Farmácias e seus Anexos.
RDC nº
214 de 12
de
dezembro
de 2006.
Aprova o Regulamento Técnico (RT) sobre Boas Práticas de
Manipulação de Medicamentos para Uso Humano em Farmácias e
seus Anexos.
RDC nº 67
de 08 de
outubro de
2007.
Dispõe sobre boas práticas de manipulação de preparações magistrais
e oficinais para uso humano em farmácias.
RDC nº 24
de 03 de
abril de
2008.
Prorroga por 90 (noventa) dias, a partir da data de publicação desta
resolução de diretoria colegiada, o prazo para o atendimento dos itens
7.3.13; 9.2.2 e 9.2.2.1 do anexo i e o item 2.16 do anexo iii da
resolução – RDC nº. 67, de 08 de outubro de 2007, publicada no DOU
de 09 de outubro de 2007.
RDC nº 49
de 16 de
junho de
2008.
Prorroga por 90 (noventa) dias, a partir da data de publicação desta
resolução de diretoria colegiada, o prazo para o atendimento dos itens
7.3.13; 9.2.2 e 9.2.2.1 do anexo i e o item 2.16 do anexo iii da
resolução – RDC nº 67, de 8 de outubro de 2007, publicada no DOU nº
195, de 9 de outubro de 2007, seção 1, pág. 29.
RDC nº 87
de 20 de
novembro
de 2008.
Altera o regulamento técnico sobre boas práticas de manipulação em
farmácias. Exp. 007192087.
RDC nº 21
de 20 de
Altera o item 2.7, do anexo iii, da resolução rdc nº 67, de 8 de outubro
de 2007.
maio de
2009.
Fonte: Própria
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
Agora que você já conhece o histórico das legislações sobre as Boas Práticas de Manipulação
de Medicamentos em Farmácias Magistrais, vamos conhecer um pouco mais sobre essa
legislação específica e sobre esse assunto.
A primeira parte é compreender o que são as Boas Práticas de Fabricação (BPFs). Essas
normas existem em diversos segmentos produtivos, como na indústria de alimentos, na
indústria automotiva, na indústria de eletrodomésticas e em todos os segmentos que
apresentem linhas de produção (BRASIL, 2007).
MAS AFINAL, O QUE SÃO AS BPFS?
Segundo a Organização Pan-americana de Saúde (OPAS):
CITAÇÃO
AS BPFS SÃO UM CONJUNTO DE NORMAS MÍNIMAS
PARA A FABRICAÇÃO DE MEDICAMENTOS. ESTA
NORMA TEM POR OBJETIVO ENUNCIAR OS PADRÕES
VIGENTES QUE DEVEM SER OBSERVADOS PELA
INDÚSTRIA, PARA A FABRICAÇÃO DE
MEDICAMENTOS, OS QUAIS DEVEM SATISFAZER
CRITÉRIOS DE QUALIDADE ESTABELECIDOS
OPAS
A RDC nº 67/2007 teve por objetivo auxiliar a implementação do Regulamento Técnico sobre
as Boas Práticas de Manipulação de Preparações Magistrais e Oficinais para Uso Humano em
Farmácias, incluindo os anexos, contemplandoos requisitos mínimos exigidos para tais
atividades.
Essa resolução dispõe, portanto, sobre as normas e padrões para as instalações físicas,
equipamentos, pessoal, aquisição e controle de qualidade de insumos, armazenamento,
avaliação das prescrições, manipulação, conservação, transporte e dispensação das
preparações farmacêuticas, visando à garantia de sua qualidade, segurança, efetividade e
promoção do seu uso seguro e racional.
 
Fonte:Shutterstock
A primeira grande mudança que essa resolução nos trouxe foi a classificação das atividades
nas farmácias magistrais em seis grupos de acordo com a complexidade do processo de
manipulação e das características dos insumos utilizados, para fins do atendimento aos
critérios de Boas Práticas de Manipulação em Farmácias (BPMF).
Veja a Quadro 2 e conheça detalhadamente cada grupo.
Quadro 2: Quadro dos grupos de atividades das farmácias magistrais
Grupos Atividade/ Natureza dos insumos manipulados
Disposições a
serem atendidas
Grupo I
Manipulação de medicamentos a partir de
insumos/matérias primas, inclusive de origem
vegetal
Regulamento
Técnico (RT) e
Anexo I
Grupo
II
Manipulação de substâncias de baixo índice
terapêutico
RT e Anexos I e II
Grupo
III
Manipulação de antibióticos, hormônios,
citostáticos e substâncias sujeitas a controle
especial
RT e Anexos I e
III
Grupo
IV
Manipulação de produtos estéreis
RT e Anexos I e
IV
Grupo
V
Manipulação de medicamentos homeopáticos RT e Anexos I e V
Grupo
VI
Manipulação de doses unitárias e unitarização de
dose de medicamentos em serviço de saúde
RT e Anexos I, IV
e VI
Fonte: Própria
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
 ATENÇÃO
É muito importante ressaltar que essa legislação e esse RT não contemplam as empresas e
farmácias que manipulam Soluções para Nutrição Parenteral, Enteral e Concentrado
Polieletrolítico para Hemodiálise (CPHD).
Observem nos quadros a seguir que o Regulamento Técnico está dividido em oito anexos e a
classificação das atividades das farmácias em seis grupos de acordo com a RDC nº 67/2007. A
farmácia poderá escolher com quais grupos de atividades trabalhar e cumprir com todas as
disposições gerais e específicas contempladas em cada anexo (Quadro 3).
Quadro 3: Anexos do Regulamento Técnico
Anexos Regulamento
Anexo I Boas práticas de Manipulação em Farmácias
Anexo
II
Boas Práticas de Manipulação de Substâncias de Baixo Índice Terapêutico
Anexo
III
Boas Práticas de Manipulação de Antibióticos, Hormônios, Citostáticos e
Substâncias Sujeitas a Controle Especial
Anexo
IV
Boas Práticas de Manipulação de Produtos Estéreis
Anexo
V
Boas Práticas de Manipulação de Preparações Homeopáticas
Anexo Boas Práticas para Preparação de Dose Unitária e Unitarização de Doses
VI de Medicamentos em Serviço de Saúde
Anexo
VII
Roteiro de Inspeção para Farmácia
Anexo
VIII
Padrão Mínimo para Informações ao Paciente, Usuários de Fármacos de
Baixo Índice Terapêutico
Fonte: Própria
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
 COMENTÁRIO
O anexo VII apresenta o Roteiro de Inspeção para Farmácias, documento importante durante a
inspeção sanitária exigido para a liberação da autorização de funcionamento para a
manipulação de medicamentos e durante as inspeções sanitárias regulares para averiguação
das boas práticas de manipulação.
Assista ao vídeo a seguir e conheça mais sobre as boas práticas de manipulação de
medicamentos magistrais.
VERIFICANDO O APRENDIZADO
1. DE ACORDO COM A RDC ANVISA 67/2007, QUE TRATA DE BOAS
PRÁTICAS DE MANIPULAÇÃO DE PREPARAÇÕES MAGISTRAIS E
OFICINAIS PARA USO HUMANO EM FARMÁCIAS, PARA A
MANIPULAÇÃO DE DETERMINADAS SUBSTÂNCIAS, É NECESSÁRIO
ATENDER A REQUISITOS ESPECÍFICOS. NESSE SENTIDO, ANALISE OS
SEGUINTES TÓPICOS. 
1. MANIPULAÇÃO DE SUBSTÂNCIAS DE BAIXO ÍNDICE TERAPÊUTICO. 
2. MANIPULAÇÃO DE SUBSTÂNCIAS SUJEITAS A CONTROLE ESPECIAL.
3. MANIPULAÇÃO DE HORMÔNIOS, ANTIBIÓTICOS E CITOSTÁTICOS. 
4. MANIPULAÇÃO DE PREPARAÇÕES ESTÉREIS. 
( ) A FARMÁCIA DEVE POSSUIR SALAS DE MANIPULAÇÃO DEDICADAS,
DOTADAS DE ANTECÂMARAS PARA A MANIPULAÇÃO DAS CLASSES
TERAPÊUTICAS. 
( ) SOMENTE PODERÁ SER INICIADA A MANIPULAÇÃO APÓS A
PUBLICAÇÃO EM DIÁRIO OFICIAL DA AUTORIZAÇÃO ESPECIAL
EMITIDA PELA ANVISA. 
( ) A FARMÁCIA DEVE SOLICITAR INSPEÇÃO À VIGILÂNCIA SANITÁRIA
LOCAL, E A MANIPULAÇÃO DESSAS SUBSTÂNCIAS SOMENTE PODERÁ
SER INICIADA APÓS SUA APROVAÇÃO. 
( ) A SALA DESTINADA À MANIPULAÇÃO E ENVASE DEVE SER
INDEPENDENTE E EXCLUSIVA, DOTADA DE FILTROS DE AR PARA
RETENÇÃO DE PARTÍCULAS E MICRORGANISMOS. 
ASSINALE A ALTERNATIVA QUE APRESENTA A NUMERAÇÃO CORRETA.
A) 3 – 1 – 2 – 4
B) 2 – 3 – 4 – 1
C) 4 – 2 – 1 – 3
D) 3 – 2 – 1 – 4
2. A RDC Nº 67/2007 DISPÕE SOBRE BOAS PRÁTICAS DE
MANIPULAÇÃO DE PREPARAÇÕES MAGISTRAIS E OFICINAIS PARA
USO HUMANO EM FARMÁCIAS. ANALISE ABAIXO OS ENSAIOS QUE
DEVEM SER REALIZADOS CONFORME A REFERIDA RESOLUÇÃO:
I. DESCRIÇÃO, ASPECTO, CARACTERES ORGANOLÉPTICOS E PESO
PARA AS PREPARAÇÕES SEMISSÓLIDAS. 
II. DESCRIÇÃO, ASPECTO, CARACTERES ORGANOLÉPTICOS, PH, PESO
OU VOLUME ANTES DO ENVASE PARA AS PREPARAÇÕES LÍQUIDAS
NÃO ESTÉREIS. 
III. DESCRIÇÃO, ASPECTO, CARACTERES ORGANOLÉPTICOS, PH E
PESO PARA AS PREPARAÇÕES SÓLIDAS. 
ESTÃO CORRETAS AS AFIRMATIVAS:
A) Apenas II.
B) Apenas I e II.
C) Apenas I e III.
D) Apenas III
GABARITO
1. De acordo com a RDC ANVISA 67/2007, que trata de Boas Práticas de Manipulação de
Preparações Magistrais e Oficinais para Uso Humano em Farmácias, para a manipulação
de determinadas substâncias, é necessário atender a requisitos específicos. Nesse
sentido, analise os seguintes tópicos. 
1. Manipulação de substâncias de baixo índice terapêutico. 
2. Manipulação de substâncias sujeitas a controle especial. 
3. Manipulação de hormônios, antibióticos e citostáticos. 
4. Manipulação de preparações estéreis. 
( ) A farmácia deve possuir salas de manipulação dedicadas, dotadas de antecâmaras
para a manipulação das classes terapêuticas. 
( ) Somente poderá ser iniciada a manipulação após a publicação em Diário Oficial da
Autorização Especial emitida pela ANVISA. 
( ) A farmácia deve solicitar inspeção à Vigilância Sanitária local, e a manipulação dessas
substâncias somente poderá ser iniciada após sua aprovação. 
( ) A sala destinada à manipulação e envase deve ser independente e exclusiva, dotada
de filtros de ar para retenção de partículas e microrganismos. 
Assinale a alternativa que apresenta a numeração correta.
A alternativa "D " está correta.
 
1. Manipulação de substâncias de baixo índice terapêutico. – A farmácia deve solicitar
inspeção à Vigilância Sanitária local, e a manipulação dessas substâncias somente poderá ser
iniciada após sua aprovação. Anexo I e II – Substâncias de baixo índice terapêutico.
2. Manipulação de substâncias sujeitas a controle especial. – Somente poderá ser iniciada a
manipulação após a publicação em Diário Oficial da Autorização Especial emitida pela
ANVISA. Anexos I e III – Manipulação de antibióticos, hormônios, citostáticos e substâncias
sujeitas a controle especial.
3. Manipulação de hormônios, antibióticos e citostáticos. – A farmácia deve possuir salas de
manipulação dedicadas, dotadas com antecâmaras para a manipulação das classes
terapêuticas. Anexo I e Anexo III.
4. Manipulação de preparações estéreis. – A sala destinada à manipulação e envase deve ser
independente e exclusiva, dotada de filtros de ar para retenção de partículas e microrganismos.
Anexo I e IV.
Esse assunto foi abordado quando estudamos a RDC nº 67/07, no item Boas Práticas de
Fabricação de Medicamentos (BPF).
2. A RDC nº 67/2007 dispõe sobre boas práticas de manipulação de preparações
magistrais e oficinais para uso humano em farmácias. Analise abaixo os ensaios que
devem ser realizados conforme a referida Resolução:
I. Descrição, aspecto, caracteres organolépticos e peso para as preparações
semissólidas. 
II. Descrição, aspecto,caracteres organolépticos, pH, peso ou volume antes do envase
para as preparações líquidas não estéreis. 
III. Descrição, aspecto, caracteres organolépticos, pH e peso para as preparações
sólidas. 
Estão corretas as afirmativas:
A alternativa "B " está correta.
 
Segundo a RDC nº 67/07, item 9.1.1.:
Devem ser realizados, no mínimo, os seguintes ensaios, de acordo com a Farmacopeia
Brasileira ou outro Compêndio Oficial reconhecido pela ANVISA, em todas as preparações
magistrais e oficinais:
Preparações Ensaios
Sólidas Descrição, aspecto, caracteres organolépticos, peso médio.
Semissólidas
Descrição, aspecto, caracteres organolépticos, pH (quando
aplicável), peso.
Líquidas não-
estéreis
Descrição, aspecto, caracteres organolépticos, pH, peso ou
volume antes do envase.
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
Esse assunto foi abordado quando estudamos a RDC nº 67/07, no item Boas Práticas de
Fabricação de Medicamentos (BPF).
MÓDULO 2
 Descrever os processos de purificação de água para utilização 
na manipulação farmacêutica e suas especificações farmacopeicas
ÁGUA PARA USO FARMACÊUTICO
A água é o solvente mais utilizado na prática farmacêutica e, por isso mesmo, é chamada de
solvente universal. Devido ao seu grau de importância, a água para uso farmacêutico é
considerada como um insumo farmacêutico e deve atender aos requisitos de qualidade de
acordo com a sua finalidade de uso. Dentre todas as aplicações da água na prática
farmacêutica, podemos destacar (ALLEN JR., 2013):
Na síntese de fármacos;
Na formulação e produção de medicamentos;
Em laboratórios de ensaios, diagnósticos e demais aplicações relacionadas à área da
saúde;
Na limpeza de utensílios, equipamentos e sistemas.
 
Fonte: Shutterstock
As determinações e os padrões de qualidade para a utilização da água na manipulação
farmacêutica estão descritos no capítulo 8.5 da Farmacopeia Brasileira 6a Edição (2019) e
devem ser rigorosamente atendidos e seguidos.
 
Fonte: Organic Solucoes
É preciso entender que a água comum ou na sua forma natural não pode ser utilizada para a
prática farmacêutica, pois ela apresenta uma série de contaminantes. Mesmo a água potável
que abastece as cidades e a maioria das casas e que é considerada uma água tratada não
deve ser utilizada para uso farmacêutico por apresentar possíveis incompatibilidades entre os
contaminantes presentes e os fármacos adicionados a ela.
A água potável não é regulamentada pela ANVISA nem pela Farmacopeia Brasileira. Ela
atende aos órgãos responsáveis regionais, como o Instituto Estadual do Ambiente (INEA) no
Rio de Janeiro e a Agência Nacional de Água (ANA), no Distrito Federal.
Para a água ser considerada potável, ela deve apresentar menos de 0,1% de sólidos totais.
Isso é obtido a partir da evaporação de uma amostra de 100 mL de água até completa
secagem e pesagem dos resíduos sólidos que devem ser inferiores a 100 mg (ALLEN JR.,
2013).
CONTAMINANTES DA ÁGUA
Os principais contaminantes da água potável são de origem física, química ou biológica. Os
contaminantes físicos são os mais facilmente eliminados pelo processo de filtração. Já os
contaminantes químicos e biológicos podem ser mais difíceis de serem eliminados e
comprometem a qualidade final da água.
O controle de contaminantes da água para uso farmacêutico é, portanto, fundamental para
atender as especificações estabelecidas pelos órgãos reguladores.
Observe a Figura 2 para entender quais são os principais contaminantes da água.
Figura 2: Esquema com os contaminantes da água
 
Fonte: Própria
Fonte: Própria
Os contaminantes químicos podem ser orgânicos ou inorgânicos e precisam ser removidos por
dois motivos principais: primeiro, para evitar que interfiram nas fases de pré-tratamento dos
sistemas de purificação de água e, segundo, para proteger a saúde das pessoas.
Esses contaminantes químicos apresentam diversas origens, como, por exemplo, a fonte de
alimentação, a extração de materiais com os quais a água entra em contato, a absorção de
gases da atmosfera, resíduos poluentes, resíduos de produtos utilizados na limpeza e
sanitização de equipamentos, entre muitos outros.
Eles podem ser removidos por um sistema de osmose reversa ou técnicas associadas como
deionização, carvão ativado, ozônio e radiação ultravioleta. Estudaremos essas técnicas mais a
diante.
Os contaminantes microbiológicos podem ser fungos, bactérias e vírus, sendo que a
contaminação bacteriana é a mais preocupante e apresenta um grande desafio à qualidade da
água. O controle microbiológico da água é certamente o mais importante e prioritário e deve
ser constantemente verificado e atualizado de acordo com os parâmetros legais.
TIPOS DE ÁGUA PARA USO
FARMACÊUTICO
De acordo com a Farmacopeia Brasileira 6ª Edição (2019), existem três tipos de água para uso
farmacêutico: a água purificada (AP), a água para injetáveis (API) e a água ultrapurificada
(AUP). Para se obter qualquer uma delas, parte-se primariamente da água potável. Assim, as
características da água potável devem servir de diretriz fundamental na obtenção dos demais
tipos de água para a manipulação farmacêutica.
A Tabela 1 a seguir apresenta um resumo dos tipos de água para uso farmacêutico, suas
características, aplicações e parâmetros exigidos pela Farmacopeia. Observe, principalmente,
os parâmetros críticos sugeridos para cada uma delas.
Uma vez que a fonte de alimentação para um sistema de purificação de água é usualmente a
água potável, analisar as características dessa água é fundamental para a escolha do tipo de
sistema mais adequado para o tratamento. As principais análises realizadas são químicas e
microbiológicas tais como: condutividade elétrica, COT (contaminantes orgânicos totais),
contagem do número total de bactérias e, para as águas API e AUP, determinação de
endotoxinas (BRASIL, 2019).
Tabela 1: Tipos de água para uso farmacêutico e parâmetros de qualidade
Tipo de água Características Parâmetros
críticos
sugeridos
Aplicações
Água potável
Obtida de
mananciais ou
da rede de
distribuição
pública.
Possui
legislação
específica.
Limpeza em geral e fonte
de alimentação de
sistemas de tratamento.
Água
purificada
Níveis variáveis
de
contaminação
orgânica e
bacteriana.
Exige cuidados
de forma a
evitar a
contaminação
química e
microbiológica.
Pode ser obtida
por osmose
reversa ou por
uma
combinação de
técnicas de
purificação a
partir da água
potável.
Condutividade
máxima de
1,3 μS/cm a
25,0 °C
(resistividade
> 1,0 MΩ-cm);
COT ≤ 0,50
mg/L;
Contagem do
número total
de bactérias
heterotróficas:
no máximo,
100 UFC/mL;
Ausência de
Pseudomonas
sp e
coliformes.
Produção de
medicamentos e
cosméticos em geral,
farmácias, lavagem de
material, preparo de
soluções reagentes,
meios de cultura,
tampões, diluições,
microbiologia em geral,
análises clínicas, técnicas
por Elisa,
radioimunoensaio,
aplicações diversas na
maioria dos laboratórios,
principalmente em
análises qualitativas ou
quantitativas menos
exigentes (em %). Em
CLAE (em %).
Água para
injetáveis
Água purificada
tratada por
Atende aos
requisitos
Como veículo ou solvente
de injetáveis, fabricação
destilação ou
processo
similar.
químicos da
água
purificada e
exige controle
de
endotoxinas.
Contagem do
número total
de bactérias
heterotróficas:
no máximo,
10 UFC/100
mL.
Endotoxinas <
0,25 UE/mL.
Ausência de
Pseudomonas
sp e
coliformes.
de princípios ativos de uso
parenteral, lavagem final
de equipamentos,
tubulação e recipientes
usados em preparações
parenterais. Usada como
diluente de preparações
parenterais.
Água
ultrapurificada
Para análises
que exigem
mínima
interferência e
máxima
precisão e
exatidão. Baixa
concentração
iônica, baixa
carga
microbiana e
baixo nível de
carbono
orgânico total.
Condutividade
máxima de
0,1 μS/cm a
25,0 °C
(resistividade
> 18,0 MΩ-
cm);
COT ≤ 0,50
mg/L;Contagem do
número total
de bactérias
heterotróficas:
no máximo,
Dosagem de resíduos
minerais ou orgânicos,
endotoxinas, preparações
de calibradores, controles,
SQR, espectrometria de
absorção atômica,
ICP/IOS, ICP/MS,
espectrometria de massa,
procedimentos
enzimáticos,
cromatografia a gás,
CLAE (ppm ou ppb),
biologia molecular e
cultivo celular etc.
Água purificada
tratada por
processo
complementar
10 UFC/100
mL.
Endotoxinas:
< 0,25 UE/mL
(quando alta
qualidade
biológica é
requerida)
Ausência de
Pseudomonas
sp e
coliformes.
Eventualmente em
preparações
farmacêuticas que
requeiram água de alta
pureza.
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
COT = Contaminantes Orgânicos Totais
UFC = Unidades Formadoras de Colônia
(Adaptado de Farmacopeia Brasileira 6a Edição, 2019)
SISTEMAS DE PURIFICAÇÃO DE ÁGUA E
TECNOLOGIAS DE PURIFICAÇÃO
Basicamente, existem três métodos principais utilizados para a obtenção de água purificada:
destilação, deionização e osmose reversa. A escolha de um método específico depende do
tipo e da qualidade de água desejados, mas também do volume necessário. Para uma
farmácia de manipulação, um método único e mais simples poderá ser suficiente; já para a
indústria farmacêutica, é necessário um sistema de purificação de água complexo e com várias
técnicas associadas, como você pode observar na figura abaixo (Figura 3).
Figura 3: Sistema de Purificação de água industrial
 
Fonte: Shutterstock
Um projeto de instalação de um sistema de purificação de água depende de algumas
condições específicas listadas a seguir. Veja:
A qualidade da água de fornecimento e da água desejada ao final;
A vazão necessária;
A distância entre o sistema de produção e os pontos de uso;
O layout da tubulação e conexões;
O material empregado;
Facilidades de assistência técnica e manutenção;
Os instrumentos adequados para o monitoramento.
Na realidade, a escolha de um sistema de purificação eficiente depende da qualidade da água
de entrada, ou seja, das características da água potável que irá alimentar o sistema, e do tipo e
qualidade da água que se deseja.
Iremos apresentar a seguir, em uma ordem sequencial lógica, as principais tecnologias de
purificação de água encontradas para a remoção dos diversos tipos de contaminantes
seguindo etapas na sequência de purificação.
PRÉ-FILTRAÇÃO
A pré-filtração destina-se a remover sólidos particulados com tamanho na faixa entre 5 e 10
μm, essencialmente para proteger as tecnologias subsequentes, utilizando filtros de areia ou
uma combinação de filtros (Figura 4). Ela deve estar associada a todos os sistemas de
purificação de água com o objetivo de proteger os equipamentos mais sensíveis e caros
(BRASIL, 2019).
Figura 4: Pré-filtração – Filtros de areia e combinação de pré-filtros
 
Fonte: www.acquacontroll.com.br / www.efiltros.com.br
A = Filtro de areia
B = Esquema de filtração por areia
C = Filtros e carcaças filtrantes, combinação de pré-filtros
Fonte: www.acquacontroll.com.br / www.efiltros.com.br
FILTRAÇÃO POR ADSORÇÃO POR CARVÃO VEGETAL
ATIVADO
Pode ser considerada também uma técnica de pré-filtração, mas, neste caso, o carvão vegetal
ativado tem a capacidade de remover compostos orgânicos como as cloraminas e o cloro livre,
os quais adsorvem em sua superfície (Figura 5). Esta tecnologia é muito importante para
proteger as membranas da osmose reversa, por exemplo.
Deve-se tomar cuidado com a formação de biofilme, o que implica a necessidade de
sanitização do carvão ativado com vapor quente ou da troca do material filtrante.
Figura 5: Filtros de carvão vegetal ativado
 
Fonte: www.technifilter.com.br
Fonte: www.technifilter.com.br
TRATAMENTO COM ADITIVOS QUÍMICOS
A utilização de aditivos químicos é realizada com o objetivo principal de ajustar o pH ou retirar
substâncias como carbonatos e amônia que possam ser agressivas para as tecnologias
subsequentes, como a osmose reversa, por exemplo.
É importante ressaltar que os aditivos químicos deverão necessariamente ser removidos em
alguma etapa posterior ao processo de purificação, para que não existam resíduos presentes
na água final.
 ATENÇÃO
Os aditivos químicos mais utilizados são o ozônio, para controle microbiológico, e o
metabissulfito de sódio, utilizado como agente redutor para o cloro livre.
TRATAMENTO COM ABRANDADORES
Em muitos lugares que utilizam água de poço como fonte primária para o abastecimento do
sistema de purificação, é necessária a utilização de abrandadores, uma vez que essa água é
rica em íons de cálcio, ferro e magnésio, também conhecida como “água dura”. O tratamento
com abrandadores é muito parecido com a deionização e também utiliza resinas de troca iônica
que capturam os íons metálicos e liberam íons de sódio na água. É importante observar a
recorrência de sanitização ou troca das resinas periodicamente, evitando a formação de
biofilme e contaminação da água, como você pode observar na figura 6.
 
Fonte: www.marbella.com.br
Fonte: www.marbella.com.br
DEIONIZAÇÃO E ELETRODEIONIZAÇÃO CONTÍNUA
A técnica de deionização ou desmineralização é muito utilizada para a obtenção de água
purificada para uso rotineiro das farmácias de manipulação. Ela remove apenas sais
inorgânicos através de resinas de troca iônica específicas para cátions e ânions. Nesses casos,
as resinas catiônicas capturam os íons catiônicos, liberando H+, e as resinas aniônicas
capturam os íons aniônicos, liberando OH-.
Observe a Figura 7 e entenda melhor como essa troca acontece.
Figura 7: Deionização da água
 
Fonte: Autor
Apesar de ser uma técnica relativamente simples, rápida e barata, a deionização não produz
uma água de alta pureza e deve ser associada a outras tecnologias, a fim de melhorar a
qualidade da água e atender às exigências da legislação específica. Um outro problema é a
necessidade de regeneração das resinas, devido à possibilidade de formação de biofilme.
Existem dois tipos de deionizadores no mercado de leito misto (uma única resina mista) e de
leito separado (com duas resinas, uma catiônica e uma aniônica). Veja a figura 8.
Figura 8: Deionizador de Leito Misto e Deionizador de Leito Separado
 
Fonte: www.hexasystems.com.br / www.quimis.com.br
A = Deionizador de Leito Misto
Fonte: www.hexasystems.com.br
B = Deionizador de Leito Separado
Fonte: www.quimis.com.br
A eletrodeionização contínua é a tecnologia de purificação de água mais moderna e atual
encontrada no mercado, mas que ainda envolve altos custos. Nesta técnica, as resinas
catiônicas e aniônicas são combinadas com membranas semipermeáveis juntamente com a
aplicação de um campo elétrico, promovendo a remoção dos íons de forma contínua, sem a
necessidade de regeneração (Figura 9). Em ambos os casos, porém, o controle de
microrganismos é necessário.
Figura 9: Esquema de Eletrodeionização contínua
 
Fonte: www.ianalitica.com.br
Fonte: www.ianalitica.com.br
OSMOSE REVERSA
Atualmente, a osmose reversa vem se tornando a tecnologia de primeira escolha como sistema
de purificação de água devido à sua alta versatilidade. Esta tecnologia atende a todo tipo de
demanda, com equipamentos para larga escala industrial (1.000 L/hora) e pequenos
equipamentos para a escala laboratorial com capacidade de cerca de 10 L/hora, por exemplo.
Esta tecnologia se baseia na utilização de membranas semipermeáveis com propriedades
específicas utilizadas para a remoção de íons, microrganismos e endotoxinas bacterianas. É
um processo altamente eficiente que remove entre 90% a 99% dos contaminantes. Por se
tratar de um processo altamente eficiente, uma série de fatores podem afetar significativamente
esta tecnologia, tais como:
pH;
Pressão diferencial ao longo da membrana;
Temperatura;
Polímero da membrana;
Construção dos cartuchos de osmose reversa.
Para entendermos melhor como ocorre o processo de osmose reversa, vamos primeiro
recordar o que é um processo de osmose.
A osmoseé um processo celular que ocorre naturalmente, ou seja, sem gasto de energia.
Ela consiste na passagem de um solvente através de uma membrana semipermeável de um
meio hipotônico para um meio hipertônico. Veja a figura 10 e entenda melhor.
 
Fonte: Shutterstock
Fonte: Shutterstock
Fica fácil entendermos agora que a osmose reversa seria um processo contrário ao da
osmose, ou seja, a passagem do solvente do meio hipertônico para o meio hipotônico. O
problema é que isso não aconteceria naturalmente ou sem gasto de energia. Dessa forma, é
necessário pressurizar o sistema para que o processo de osmose reversa possa acontecer.
Entenda melhor vendo a figura abaixo.
Figura 11: Esquema de Osmose Reversa
 
Fonte: Shutterstock
Fonte: Shutterstock
É importante que você compreenda que o processo de osmose reversa nada mais é do que um
processo de filtração, utilizando as membranas semipermeáveis como elemento filtrante. Para
isso, é fundamental que exista um sistema pré-tratamento que remova particulados, agentes
oxidantes e contaminantes que favoreçam incrustações como cálcio e magnésio, a fim de
proteger e preservar as membranas. Outro ponto importante é a sanitização do sistema
evitando a formação de biofilme e a contaminação microbiana.
O sistema de purificação de água por osmose reversa vem se tornando cada vez mais
acessível por sua fácil instalação e baixo custo de manutenção. Já existem sistemas de
osmose reversa de duplo passo, nos quais a água purificada em uma primeira etapa alimenta o
sistema em uma segunda etapa, aumentando a capacidade de purificação.
ULTRAFILTRAÇÃO
Assim como a osmose reversa e como o próprio nome explica, a ultrafiltração utiliza uma
tecnologia de filtração com membranas especiais que têm a capacidade de reter endotoxinas
e moléculas de acordo com o seu peso molecular e sua estereoquímica.
javascript:void(0)
ENDOTOXINAS BACTERIANAS:
Teste realizado para detectar e quantificar endotoxinas de bactérias Gram-negativas. O
principal teste utiliza o reagente de LAL e pode ser dividido com duas metodologias
diferentes – método da coagulação em gel (semiquantitativos) e métodos fotométricos
(quantitativos).
Um dos sistemas de ultrapurificação de água mais conhecido do mundo é o chamado tipo
Milli-Q. Na verdade, uma água conhecida como do tipo, Miili-Q é uma água
ultrapurificada (AUP) obtida por essa marca de sistema, registrada pelo grupo Merck.
Figura 12: Equipamento de água ultrapurificada do tipo Milli-Q
 
Fonte: www.merckmillipore.com
Fonte: www.merckmillipore.com
Assim como outros sistemas de purificação que envolvam alta tecnologia, este sistema deve
ser validado, ter um pré-tratamento, ter suas condições operacionais controladas e passar
procedimentos adequados de limpeza e sanitização. Esta tecnologia pode estar associada a
outras, mas geralmente é mais utilizada em laboratórios que envolvem alta tecnologia como
biologia molecular e espectrometria de massas.
FILTRAÇÃO COM CARGA ELETROSTÁTICA
Este tipo de tecnologia deve estar associada a um outro sistema de purificação de água e é
bem específica para a obtenção de água do tipo API, devido à sua alta capacidade de remoção
de endotoxinas. Esta técnica consiste em gerar cargas positivas na superfície das membranas,
pois, uma vez que as endotoxinas possuem carga negativa, isso aumenta a eficiência do
processo. Apesar de eficiente, esta tecnologia é menos utilizada devido à sua dificuldade em
validar o processo, uma vez que é complicado determinar o momento de saturação do filtro
quando as cargas se encontram totalmente neutralizadas. Dessa forma, a microfiltração tem
sido a tecnologia de escolha mais usual para a obtenção de água API.
MICROFILTRAÇÃO
Assim como a ultrafiltração, esta tecnologia também pode estar associada a outros sistemas de
purificação de água. Trata-se de um processo que utiliza membranas filtrantes microporosas,
com tamanho de poro de 0,22 µm, e, por isso, pode ser considerada uma filtração esterilizante,
ainda que, para tanto, precise ser validada. Essas membranas podem estar associadas a um
sistema de osmose reversa, mas também podem ser utilizadas de forma individualizada em
pequenos filtros isolados. Na Figura 13, você pode observar os filtros de seringa disponíveis
com membranas de 0,45 µm e 0,22 µm utilizados para filtrações em pequena escala ou para
injeções em Cromatografia Líquida de Alta Eficiência (CLAE).
Figura 13: Microfiltração
 
Fonte: www.merckmillipore.com
Fonte: Shutterstock
RADIAÇÃO ULTRAVIOLETA
Esta é uma tecnologia que deve ser utilizada sempre de forma associada a outro sistema. De
forma isolada, esta técnica não produz água purificada. A radiação ultravioleta é utilizada em 2
comprimentos de onda que promovem efeitos distintos. São eles:
185 nm + 254 nm – Oxidação de compostos orgânicos e consequente redução de sua
concentração para atender aos limites da AP, AUP e API;
254 nm – Ação germicida nos diversos pontos da sequência de purificação, para reduzir a
contagem microbiana.
Figura 14: Esquema de radiação ultravioleta
 
Fonte:Shutterstock
 
Fonte:Shutterstock
Fonte: Shutterstock
Esta técnica é muito utilizada ao longo dos tanques de armazenamento para reduzir a
contaminação microbiana e associada a capelas de fluxo laminares (BRASIL, 2019).
DESTILAÇÃO
Este sistema de purificação de água é certamente o mais antigo do mundo. Como você já deve
conhecer, a destilação é um processo de separação de líquidos por meio do vapor. O princípio
da destilação consiste em evaporar a água por aquecimento, para, então, condensar o vapor
d’água na forma líquida novamente por resfriamento através de um tubo condensador. Veja as
figuras a seguir:
Figura 15: Destilador de água
Fonte:Shutterstock
Fonte: Shutterstock
Figura 16: Esquema de destilação simples
 
Fonte:Shutterstock
Fonte: Shutterstock
Durante centenas de anos, este foi o principal método de escolha como sistema de purificação
de água e o mais utilizado na prática farmacêutica. Um sistema de destilação de água consiste
num método de fácil instalação, reutilizável, com baixo custo de instalação e alta eficiência.
Pode produzir inclusive água API por um processo de bidestilação. Apesar disso, esta técnica
apresenta algumas desvantagens como altos custos de consumo de água e elétrico, difícil
manutenção, arrasto de contaminantes pelo processo de condensação e arrasto de impurezas
voláteis. Por esses motivos, atualmente, a substituição de destiladores por sistemas de osmose
reversa têm se mostrado mais eficiente e econômica.
Veja no vídeo a seguir o Sistema de Purificação de Água.
VERIFICANDO O APRENDIZADO
1. O PROCESSO DE PURIFICAÇÃO DA ÁGUA PARA USO
FARMACÊUTICO É BASEADO NA ELIMINAÇÃO DE IMPUREZAS FÍSICO-
QUÍMICAS, BIOLÓGICAS E MICROBIANAS ATÉ SE OBTEREM NÍVEIS
PREESTABELECIDOS EM COMPÊNDIOS OFICIAIS APROVADOS PELAS
AUTORIDADES SANITÁRIAS. SOBRE A ÁGUA PURIFICADA, SUA
OBTENÇÃO E CONTROLE, ANALISE AS ASSERTIVAS E ASSINALE A
ALTERNATIVA QUE APONTA AS CORRETAS.
I. O CONTROLE DA CONTAMINAÇÃO DA ÁGUA PARA USO
FARMACÊUTICO É FUNDAMENTAL, UMA VEZ QUE A ÁGUA TEM
GRANDE SUSCETIBILIDADE PARA AGREGAR COMPOSTOS DIVERSOS E
PARA SOFRER RECONTAMINAÇÃO, MESMO APÓS A ETAPA DE
PURIFICAÇÃO. 
II. O CONTROLE DE QUALIDADE MICROBIOLÓGICO NÃO É PRIORIDADE,
POIS, UMA VEZ PURIFICADA, NÃO É POSSÍVEL A RECONTAMINAÇÃO. 
III. OS MÉTODOS MAIS COMUNS E CONFIÁVEIS PARA OBTENÇÃO DE
ÁGUA PURIFICADA SÃO A TROCA IÔNICA, A OSMOSE REVERSA E A
ULTRAFILTRAÇÃO. 
IV. NO BRASIL, OS REQUISITOS DE QUALIDADE DA ÁGUA PARA USO
FARMACÊUTICO SÃO ESTABELECIDOS EM NORMAS TÉCNICAS DE
BOAS PRÁTICAS DE FABRICAÇÃO (BPF) E TAMBÉM NA FARMACOPEIA
BRASILEIRA. 
V. O RESERVATÓRIO UTILIZADO PARA ARMAZENAR A ÁGUA DEVE SER
CONSTRUÍDO COM MATERIAL INERTE, PARA QUE NÃO SEJA FONTE DE
CONTAMINAÇÃO DE SEU CONTEÚDO. 
A) Apenas I e II.
B) Apenas I, II e III.
C) Apenas I, III, IV e V.
D) Apenas III, IV e V.
2. A ÁGUA É O SOLVENTE OU VEÍCULO MAIS COMUMENTE
EMPREGADO NA PREPARAÇÃODE FORMAS FARMACÊUTICAS. A
PARTIR DESSA AFIRMAÇÃO, ANALISE AS ASSERTIVAS E ASSINALE A
ALTERNATIVA QUE APONTA AS OPÇÕES CORRETAS.
I. NA PURIFICAÇÃO DA ÁGUA POR DESTILAÇÃO, DEVE SER USADO
CONDENSADOR DE PLÁSTICO, FERRO, VIDRO OU ESTANHO, POIS, UMA
VEZ QUE A ÁGUA SE TORNA VAPOR, O MATERIAL DE CONSTITUIÇÃO
NÃO FARÁ DIFERENÇA. 
II. O PROCESSO DE PURIFICAÇÃO DA ÁGUA POR OSMOSE REVERSA
OCORRE QUANDO É EXERCIDA UMA PRESSÃO, A QUAL É APLICADA
PARA SUPERAR A PRESSÃO OSMÓTICA E FORÇAR A PENETRAÇÃO DE
ÁGUA ATRAVÉS DA MEMBRANA. 
III. NA PURIFICAÇÃO DA ÁGUA POR OSMOSE REVERSA, A ÁGUA
ATRAVESSA UMA MEMBRANA SEMIPERMEÁVEL, COM POROS
MICROSCÓPICOS, QUE RETÊM SAIS, MICRORGANISMOS E OUTRAS
IMPUREZAS. 
IV. UM DOS ASPECTOS PRINCIPAIS DO PROCESSO DE PURIFICAÇÃO DE
ÁGUA POR OSMOSE REVERSA É A UTILIZAÇÃO DE MEMBRANAS
OSMÓTICAS SINTÉTICAS E PERMEÁVEIS, UMA TECNOLOGIA DE
PONTA, CRIADA PARA USO EM PROCESSOS INDUSTRIAIS. 
V. NO PROCESSO DE PURIFICAÇÃO DA ÁGUA POR TROCA IÔNICA,
OCORRE A REMOÇÃO DE ÍONS PRESENTES EM ÁGUA ATRAVÉS DE
RESINAS CATIÔNICAS E ANIÔNICAS. 
A) I, III e V.
B) II e IV
C) Apenas II, III e V
D) Apenas III, IV e V.
GABARITO
1. O processo de purificação da água para uso farmacêutico é baseado na eliminação de
impurezas físico-químicas, biológicas e microbianas até se obterem níveis
preestabelecidos em compêndios oficiais aprovados pelas autoridades sanitárias. Sobre
a água purificada, sua obtenção e controle, analise as assertivas e assinale a alternativa
que aponta as corretas.
I. O controle da contaminação da água para uso farmacêutico é fundamental, uma vez
que a água tem grande suscetibilidade para agregar compostos diversos e para sofrer
recontaminação, mesmo após a etapa de purificação. 
II. O controle de qualidade microbiológico não é prioridade, pois, uma vez purificada,
não é possível a recontaminação. 
III. Os métodos mais comuns e confiáveis para obtenção de água purificada são a troca
iônica, a osmose reversa e a ultrafiltração. 
IV. No Brasil, os requisitos de qualidade da água para uso farmacêutico são
estabelecidos em normas técnicas de Boas Práticas de Fabricação (BPF) e também na
Farmacopeia Brasileira. 
V. O reservatório utilizado para armazenar a água deve ser construído com material
inerte, para que não seja fonte de contaminação de seu conteúdo. 
A alternativa "C " está correta.
 
Conforme a Farmacopeia Brasileira 6a Edição (2019), capítulo 8.4, quanto maior o grau de
purificação da água maior a capacidade de recontaminação. II. O controle de qualidade
microbiológico não é prioridade, pois uma vez purificada não é possível a recontaminação
(ERRADO). Este assunto foi abordado no item Tipos de Água para Uso Farmacêutico.
2. A água é o solvente ou veículo mais comumente empregado na preparação de formas
farmacêuticas. A partir dessa afirmação, analise as assertivas e assinale a alternativa
que aponta as opções corretas.
I. Na purificação da água por destilação, deve ser usado condensador de plástico, ferro,
vidro ou estanho, pois, uma vez que a água se torna vapor, o material de constituição
não fará diferença. 
II. O processo de purificação da água por osmose reversa ocorre quando é exercida uma
pressão, a qual é aplicada para superar a pressão osmótica e forçar a penetração de
água através da membrana. 
III. Na purificação da água por osmose reversa, a água atravessa uma membrana
semipermeável, com poros microscópicos, que retêm sais, microrganismos e outras
impurezas. 
IV. Um dos aspectos principais do processo de purificação de água por osmose reversa
é a utilização de membranas osmóticas sintéticas e permeáveis, uma tecnologia de
ponta, criada para uso em processos industriais. 
V. No processo de purificação da água por troca iônica, ocorre a remoção de íons
presentes em água através de resinas catiônicas e aniônicas. 
A alternativa "C " está correta.
 
I. Na purificação da água por destilação, deve ser usado condensador de plástico, ferro, vidro
ou estanho, pois, uma vez que a água se torna vapor, o material de constituição não fará
diferença (ERRADO). O material de constituição de equipamentos para sistemas de purificação
de água deverá ser inerte e de fácil limpeza, preferencialmente de aço inoxidável 316L. Ferro,
estanho e plástico não podem ser considerados materiais inertes. (Farmacopeia Brasileira 6a
Edição). IV. Um dos aspectos principais do processo de purificação de água por osmose
reversa é a utilização de membranas osmóticas sintéticas e permeáveis, uma tecnologia de
ponta, criada para uso em processos industriais (ERRADO). As membranas deverão ser
semipermeáveis para reterem os contaminantes de acordo com o tamanho do poro e permitir a
passagem da água purificada (Farmacopeia Brasileira 6a Edição). Este assunto foi abordado
no item Sistemas de Purificação de Água e Tecnologias de Purificação.
MÓDULO 3
 Analisar os cuidados com a distribuição, sanitização, armazenamento 
e validação dos sistemas de purificação de água para uso farmacêutico
ARMAZENAMENTO, DISTRIBUIÇÃO,
SANITIZAÇÃO E VALIDAÇÃO
ARMAZENAMENTO
Você sabia que as condições de armazenamento da água dependem do grau de purificação da
água?
Quanto maior for a qualidade da água, maior os cuidados e critérios em relação às suas
condições de estocagem, pois mais rapidamente ela poderá se recontaminar.
Outro ponto importante é o volume necessário para trabalho diário, uma vez que o
armazenamento, a distribuição e a sanitização da água dependerão da quantidade necessária
para se trabalhar. Tanto na indústria farmacêutica como na farmácia magistral, o ideal é que a
água purificada permaneça em circulação constante e fique armazenada por um período
máximo de 48 horas, com exceção da água ultrapurificada, que, segundo a Farmacopeia
Brasileira 6a Edição (2019), só poderá ser armazenada por um período máximo de 24 horas.
Os reservatórios para o armazenamento devem ser constituídos de material inerte, limpo e não
representar uma fonte de contaminação. O material ideal é o aço inox polido 316L, o qual
apresenta porosidade e rugosidade adequadas que facilitam a limpeza e evitam a aderência de
resíduos.
Alguns outros recipientes, como os barriletes de PVC, também são permitidos para o
armazenamento em menores volumes nas farmácias magistrais e laboratórios de controle de
qualidade. No caso das indústrias farmacêuticas, esses reservatórios precisam estar providos
com filtro de respiro para evitar o acúmulo de volume morto e permitir o esgotamento total do
tanque.
Figura 17: Tanques de armazenamento de água
 
Fonte:Shutterstock
Fonte: Shutterstock
Quando se tem o armazenamento da água purificada em grandes tanques e volumes é
necessário tomar determinados cuidados com relação à sua distribuição e deve-se manter em
recirculação constante. No caso da água API, para minimizar a contaminação microbiana além
da água circulante, é importante o armazenamento em temperaturas superiores a 80°C.
Vamos conhecer agora um pouco melhor um sistema de distribuição de água.
DISTRIBUIÇÃO
A distribuição de um sistema de tratamento de água se apresenta de forma significativa nas
indústrias farmacêuticas.
Um sistema de distribuição de água deve levar em conta alguns fatores importantes como:
Material de construção de válvulas, encanamentos, tubulações e demais instrumentos,
que devem ser feitos com material inerte, preferencialmente de aço inox 316L com
acabamento sanitário;
A planta do sistema de circulação de água deve apresentar um desenho com capacidade
de recirculação constante e aquecimento;
Apresentar pontos de uso para coleta de amostras projetados de forma que permita o
esgotamento total, evite o acúmulo de volume morto e permita a recirculação constante
da água;
Não utilizar filtros de retenção microbiológica na saída dos sistemas de distribuição para
evitar a contaminação por endotoxinas.
Figura 18: Componentes de tanques de armazenamento de água
 
Fonte: www.valvulasclamp.com
A = Ponto de uso comválvula
B = Válvulas clamp para pontos de uso
C = Ponto de uso
Fonte: www.valvulasclamp.com
SANITIZAÇÃO
Todo o sistema de tratamento e purificação de água deverá ser periodicamente sanitizado.
Dessa forma, o material de construção, além de seguir as normas sanitárias, deverá também
ser resistente ao calor e aos agentes químicos de sanitização. As técnicas mais comuns de
sanitização são a associação do calor com temperaturas entre 65oC e 80oC, mantendo
sempre a circulação contínua da água, e os agentes químicos oxidantes, como, por exemplo,
peróxido de hidrogênio e ácido perclórico.
Todo o processo de sanitização deverá ser validado.
VALIDAÇÃO
Na indústria farmacêutica, todo o sistema de purificação de água deverá ser validado.
Você já pode perceber que, geralmente, a indústria utiliza mais de um sistema de purificação
associados a fim de obter a qualidade da água dentro das especificações exigidas. Dessa
forma, a etapa de validação de um sistema de purificação de água é altamente complexa e
envolve diversos parâmetros.
A validação é um ato documentado que atesta que qualquer procedimento, processo,
equipamento, operação ou sistema realmente conduza aos resultados esperados e
reprodutíveis.
O objetivo principal da validação de um sistema de tratamento de água é garantir a
confiabilidade em todas as etapas: produção, distribuição, armazenamento e monitoramento
dos pontos de uso. A empresa deverá, portanto, desenvolver um plano de validação que
contemple as seguintes etapas:
Conhecer o padrão de qualidade da fonte de alimentação;
Estabelecer o padrão de qualidade da água purificada;
Definir as tecnologias de purificação e sua sequência, a partir da qualidade da água de
entrada;
Selecionar os materiais de construção dos sistemas de produção, armazenamento,
distribuição e monitoramento dos pontos de uso;
Desenvolver os protocolos de qualificação de projeto, instalação, operação e
desempenho;
Estabelecer os parâmetros críticos, níveis de alerta e de ação e a periodicidade de
sanitização e de monitoramento;
Estabelecer um plano de manutenção da validação, que incluirá mecanismos para o
controle de mudanças nos sistemas de água e proporcionará subsídios para um
programa de manutenção preventiva.
Outra etapa fundamental em qualquer sistema de validação é a qualificação. Esta etapa pode
estar dividida em quatro partes:
QUALIFICAÇÃO DO PROJETO (QP)
Nesta etapa, são revisadas todas as instalações, fluxo de produção e fornecedores a fim de
estabelecer os protocolos necessários para a etapa de qualificação.
QUALIFICAÇÃO DA INSTALAÇÃO (QI)
Verifica se as instalações estão de acordo com as BPFv.
QUALIFICAÇÃO DA OPERAÇÃO (QO)
Verifica os equipamentos de produção e a sua qualificação por meio de testes de desafio
específicos.
QUALIFICAÇÃO DO DESEMPENHO (QD)
Verifica a performance de equipamentos ou processos nas condições normais de produção a
fim de conferir a capacidade de reprodutibilidade.
MONITORAMENTO E CONTROLE DE QUALIDADE DA
ÁGUA
Uma vez validado todo o sistema de purificação de água, é necessário o monitoramento
periódico e controle de qualidade dos parâmetros físico-químicos e microbiológicos da água de
acordo com o tipo e a legislação em vigor. A periodicidade desse monitoramento é justamente
determinada pela legislação e pelo processo de validação.
Para as farmácias magistrais, esse controle é um pouco mais simples, já que não há a
necessidade de validação e esse controle pode ser terceirizado e realizado no mínimo a cada
seis meses.
Deverão ser realizados, registrados e armazenados, no mínimo os seguintes testes:
pH;
Cor aparente;
Turbidez;
Cloro residual livre;
Sólidos totais dissolvidos;
Contagem total de bactérias;
Coliformes totais;
Presença de coli.;
Coliformes termorresistentes.
Já para a indústria farmacêutica, esse controle é mais complexo. Ele deve ser realizado na
maioria das vezes diariamente ou no mínimo pelo que foi determinado no plano de validação
do sistema de purificação de água.
Deverão ser realizados os testes físico-químicos e os testes microbiológicos preconizados nas
monografias específicas para os três tipos de água: AP, API, AUP.
O principais testes físico-químicos são:
CONTAMINANTES ORGÂNICOS TOTAIS
O método de determinação dos contaminantes orgânicos totais na água consiste na oxidação
completa das moléculas orgânicas presentes na água a dióxido de carbono (CO2) e ele é,
portanto, identificado como carbono pelo equipamento.
A tabela abaixo apresenta as quantidades permitidas de COT em água.
Tabela 2: Valores típicos de COT na água
Tipo de purificação Faixa esperada de COT (mg/L)
Água potável 0,5 a 7,0
Destilação Cerca de 0,10
Deionização 0,05 a 0,50
Osmose reversa 0,04 a 0,10
Osmose reversa + deionização 0,01 a 0,05
Tecnologias combinadas 0,003 a 0,005
Tecnologias combinadas + Oxidação UV < 0,002
 Atenção! Para visualizaçãocompleta da tabela utilize a rolagem horizontal
CONDUTIVIDADE DA ÁGUA
A condutividade elétrica da água é a capacidade em se medir o fluxo de elétrons facilitado pela
presença de íons. Uma série de contaminantes orgânicos e inorgânicos interferem tanto nessa
capacidade assim como no pH. É um exemplo desses contaminantes o CO2 gasoso, que,
dissolvido na água, interage com outros íons afetando o pH e a condutividade. É possível medir
a condutividade da água com um instrumento, o condutivímetro.
Além dos testes físico-químicos, é necessária a realização dos testes microbiológicos que
garantem a ausência das bactérias patogênicas, destacando-se a ausência de: Pseudomonas
aeruginosa, Burkholderia cepacia, Escherichia coli e Salmonella sp (BRASIL, 2019).
Os testes microbiológicos mais utilizados são:
CONTAGEM DO NÚMERO TOTAL DE BACTÉRIAS
HETEROTRÓFICAS
Existem basicamente dois métodos para a realização desses testes – o método por
profundidade em placa e o método de filtração em membrana, sendo este último o mais
utilizado.
PESQUISA DE COLIFORMES TOTAIS E FECAIS
Este teste deve ser realizado para todo o tipo de água para uso farmacêutico e,
independentemente do método utilizado, os coliformes totais e fecais deverão estar ausentes.
Existem três métodos padrão para a realização desse teste – fermentação em tubos múltiplos,
filtração em membrana ou cromogênico.
PESQUISA DE PSEUDOMONAS AERUGINOSA
Este teste é importante para todos os tipos de água para uso farmacêutico e é realizado pela
filtração por membrana de modo que a Pseudomonas aeruginosa deverá estar sempre
ausente.
ENDOTOXINAS BACTERIANAS
Este teste é realizado para detectar e quantificar endotoxinas de bactérias Gram-negativas. O
principal teste utiliza o reagente de LAL e pode ser dividido com duas metodologias diferentes
– método da coagulação em gel (semiquantitativos) e métodos fotométricos (quantitativos).
Assista ao vídeo a seguir e saiba mais sobre Armazenamento de Distribuição.
VERIFICANDO O APRENDIZADO
1. COM RELAÇÃO AO SISTEMA DE DISTRIBUIÇÃO DE ÁGUA PARA USO
FARMACÊUTICO, ASSINALE A ALTERNATIVA CORRETA:
I. O DESENHO DO SISTEMA DE DISTRIBUIÇÃO DEVE LEVAR EM CONTA
A RECIRCULAÇÃO CONSTANTE DA ÁGUA PURIFICADA E A
MANUTENÇÃO DA TEMPERATURA DA ÁGUA CONTIDA NO TANQUE. 
II. TUBULAÇÕES, VÁLVULAS, INSTRUMENTOS E OUTROS DISPOSITIVOS
DEVEM TER CONSTRUÇÃO E ACABAMENTO SANITÁRIO, DE FORMA A
NÃO CONTRIBUÍREM PARA QUE OCORRA A CONTAMINAÇÃO
MICROBIANA, E SER SANITIZADOS. 
III. FILTROS DE RETENÇÃO MICROBIOLÓGICA DEVEM SER UTILIZADOS
NA SAÍDA, OU NO RETORNO DOS SISTEMAS DE DISTRIBUIÇÃO DE
ÁGUA PARA USO FARMACÊUTICO. 
IV. OS PONTOS DE USO DEVEM SER PROJETADOS DE FORMA A EVITAR
VOLUMES MORTOS E POSSIBILITAR QUE A ÁGUA RECIRCULE
TOTALMENTE NELES QUANDO ESTIVEREM FECHADOS. 
A) I, II e III corretas
B) II, III e IV corretas
C) I, II e IV corretas
D) II e IV corretas
2. . DE ACORDO COM A FARMACOPEIA BRASILEIRA 6A EDIÇÃO (2019),
EM RELAÇÃO AO ARMAZENAMENTO DA ÁGUA PURIFICADA PARA USO
FARMACÊUTICO, OBSERVE AS AFIRMATIVAS ABAIXO E ASSINALE A
ALTERNATIVA CORRETA.
A) Quanto maiorfor o grau de purificação da água, maior os cuidados referentes ao seu
armazenamento, pois mais facilmente ela irá se contaminar.
B) Não existe uma regulamentação específica para o material que constitui os reservatórios de
armazenamento de água, o que importa são os cuidados de limpeza e manutenção.
C) A água ultrapurificada só pode ser armazenada por um período máximo de 48 horas.
D) A água purificada deverá ser armazenada em tanques reservatórios de aço inoxidável
fechados e lacrados, sem contato com a luz ou ar, por um período de no máximo 72 horas.
GABARITO
1. Com relação ao sistema de distribuição de água para uso farmacêutico, assinale a
alternativa correta:
I. O desenho do sistema de distribuição deve levar em conta a recirculação constante da
água purificada e a manutenção da temperatura da água contida no tanque. 
II. Tubulações, válvulas, instrumentos e outros dispositivos devem ter construção e
acabamento sanitário, de forma a não contribuírem para que ocorra a contaminação
microbiana, e ser sanitizados. 
III. Filtros de retenção microbiológica devem ser utilizados na saída, ou no retorno dos
sistemas de distribuição de água para uso farmacêutico. 
IV. Os pontos de uso devem ser projetados de forma a evitar volumes mortos e
possibilitar que a água recircule totalmente neles quando estiverem fechados. 
A alternativa "C " está correta.
 
III. Filtros de retenção microbiológica devem ser utilizados na saída, ou no retorno dos sistemas
de distribuição de água para uso farmacêutico. (ERRADA). Segundo a Farmacopeia Brasileira
6a Edição (2019), não se devem utilizar filtros de retenção microbiológica na saída dos
sistemas de distribuição para evitar a contaminação por endotoxinas. Este assunto foi
abordado no item Monitoramento e controle de qualidade da água – Endotoxinas bacterianas.
2. . De acordo com a Farmacopeia Brasileira 6a Edição (2019), em relação ao
armazenamento da água purificada para uso farmacêutico, observe as afirmativas abaixo
e assinale a alternativa correta.
A alternativa "A " está correta.
 
B (ERRADA). Os reservatórios para o armazenamento devem ser constituídos de material
inerte, limpo e não representar uma fonte de contaminação. O material ideal é o aço inox polido
316L, o qual apresenta porosidade e rugosidade adequadas que facilitam a limpeza e evitam a
aderência de resíduos. C) (ERRADA) A água ultrapurificada só pode ser armazenada por um
período máximo de 24 horas. D) (ERRADA) Quando se tem o armazenamento da água
purificada em grandes tanques e volumes, é necessário tomar determinados cuidados com
relação à sua distribuição e deve-se manter em recirculação constante. No caso da água API,
para minimizar a contaminação microbiana, além da água circulante, é importante o
armazenamento em temperaturas superiores a 80°C. Ponto de Retorno - Armazenamento,
Distribuição, Sanitização e Validação – Subitem: Armazenamento.
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Ao longo deste tema, você aprendeu a respeito da água para uso farmacêutico e sobre as
Boas Práticas de Fabricação de Medicamentos. Pôde, também, observar que conhecer as
legislações pertinentes à prática farmacêutica é importante para aplicá-las no dia a dia do
profissional farmacêutico e que a fabricação de medicamentos é certamente um dos
segmentos mais regulamentados do mundo. Abordamos os tipos de água para uso
farmacêutico, os sistemas de purificação, a distribuição, o armazenamento, a sanitização e a
importância na validação de todo esse processo. Por fim, percebemos que a água tem um
papel tão importante na manipulação farmacêutica que é considerada como uma matéria-
prima.
AVALIAÇÃO DO TEMA:
REFERÊNCIAS
ALLEN Jr., L. V.; POPOVICH, N. G.; ANSEL, H. C. Formas Farmacêuticas e Sistemas de
Liberação de Fármacos. 9 ed. São Paulo: Artmed, 2013.
BRASIL. Resolução da Diretoria Colegiada – RDC nº 298, de 12 de agosto de 2019 aprova a
Farmacopeeia brasileira, 6ª Edição. Diário Oficial da União, Brasília/DF, 13 de agosto de
2019.
BRASIL. Resolução da Diretoria Colegiada – RDC nº 67, de 8 de outubro de 2007, Dispõe
sobre Boas Práticas de Manipulação de Preparações Magistrais e Oficinais para Uso Humano
em farmácias. Diário Oficial da União, Brasília/DF, 09 de outubro de 2007.
LE HIR, A. Noções de Farmácia Galênica. 6 ed. São Paulo: Organização Andrei, 1997.
EXPLORE+
Conheça um pouco mais sobre a utilização de pré-filtros para a purificação de água lendo
o artigo Pré-filtração em pedregulho e filtração lenta com areia, manta não tecida e
carvão ativado para polimento de efluentes domésticos tratados em leitos cultivados, de
José E. S. PaternianiI; Marcelo J. M. da SilvaII; Tulio A. P. RibeiroIII; Melina Barbosa;
Você poderá se aprofundar um pouco mais sobre testes microbiológicos e endotoxinas
bacterianas e pirogênios lendo o artigo Avaliação comparativa de testes de pirogênios em
produtos farmacêuticos, de Rosimar L. Silveira; Simone S. Andrade; Cleber A. Schmidt;
Renata G. Casali; Sérgio L. Dalmora;
Você poderá saber mais sobre COT na Farmacopeia Brasileira 6ª Edição – Volume I –
Cap. 5.2.30;
Você poderá saber mais sobre condutividade na Farmacopeia Brasileira 6ª Edição –
Volume I – Cap. 5.2.24;
Você poderá saber mais sobre os testes de endotoxinas bacterianas para água na
Farmacopeia Brasileira 6ª Edição – Volume I – Cap. 5.5.2.2;
Você poderá saber mais sobre testes microbiológicos para água na Farmacopeia
Brasileira 6ª Edição – Volume I – Cap. 5.5.3.6.1; 5.5.3.6.2; 5.5.6.3.3.
CONTEUDISTA
Patrícia de Castro Moreira Dias
 CURRÍCULO LATTES
javascript:void(0);

Outros materiais