Prévia do material em texto
Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Matemática Exerćıcios de equações diferenciais lineares de segunda ordem - Mônica Merkle 1. Resolva: (a) y′′ + 2y′ − 3y = 0 (b) 4y′′ + 4y′ + y = 0 (c) 6y′′ − y′ − y = 0 (d) 2y′′ − 3y′ + y = 0 (e) y′′ − y = 0 (f) y′′ − 2y′ + y = 0 (g) y′′ − 2y′ + 2y = 0 (h) y′′ − 2y′ + 6y = 0 (i) y′′ + 2y′ − 8y = 0 (j) y′′ + 2y′ + 2y = 0 (k) 9y′′ − 6y′ + y = 0 (l) y′′ + 6y′ + 13y = 0 (m) y′′ + 5y′ = 0 (n) y′′ − 9y′ + 9y = 0 (o) y′′ − 2y′ − 2y = 0 (p) y′′ + y′ − 2y = 0 2. Resolva: (a) y′′ + y′ − 2y = 0 y(0) = 1 y′(0) = 1 (b) y′′ − 6y′ + 9y = 0 y(0) = 0 y′(0) = 2 (c) y′′ + 4y = 0 y(0) = 0 y′(0) = 1 (d) y′′ + 4y′ + 5y = 0 y(0) = 1 y′(0) = 0 (e) y′′ + 8y′ − 9y = 0 y(1) = 1 y′(1) = 0 3. Resolva: (a) y′′ − 5y′ + 6y = 2ex (b) y′′ − y′ − 2y = 2e−x (c) y′′ + 2y′ + y = 3e−x (d) 2y′′ + 3y′ + y = x2 + 3 senx (e) y′′ + y′ + 4y = 2 senh x (f) y′′ − 4y′ = 2x2 (g) y′′ + y′ = sen 2x (h) y′′ − 8y′ + 7y = 14 (i) y′′ + y = cosx (j) y′′ − 2y′ + 10y = ex + sen (3x) 4. Resolva: (a) y′′ + 4y = sen x y(0) = 1 y′(0) = 1 (b) y′′ − 2y′ = e2x + x2 − 1 y(0) = 1/8 y′(0) = 1 5. Resolver a equação d2x dt2 + w2x = A sen (pt), examinando os casos (a) p 6= w e (b) p = w. Respostas 1. (a) y = C1e x + C2e −3x (b) y = C1e −x/2 + C2xe −x/2 (c) y = C1e x/2 + C2e −x/3 (d) y = C1e x/2 + C2e x (e) y = C1e x + C2e −x (f) y = C1e x + C2xe x (g) y = C1e x cosx + C2e x senx (h) y = C1e x cos ( √ 5x) + C2e x sen ( √ 5x) (i) y = C1e 2x + C2e −4x (j) y = C1e −x cosx + C2e −x senx (k) y = C1e x/3 + C2xe x/3 (l) y = e−3x(C1 cos (2x) + C2 sen (2x)) (m) y = C1 + C2e −5x (n) y = C1e (9+3 √ 5)x/2 + C2e (9−3 √ 5)x/2 (o) y = C1e (1+ √ 3)x + C2e (1− √ 3)x (p) y = C1e −2x + C2e x 2. (a) y = ex (b) y = 2xe3x (c) y = 1 2 sen (2x) (d) y = e−2x cosx + 2e−2x senx (e) y = 1 10 e−9(x−1) + 9 10 ex−1 3. (a) y = C1e 2x + C2e 3x + ex (b) y = C1e 2x + C2e −x − 2 3 xe−x (c) y = C1e −x + C2xe −x + 3 2 x2e−x (d) y = C1e −x + C2e −x/2 + x2 − 6x + 14− 3 10 senx− 9 10 cosx (e) y = [ C1 cos (√ 15x 2 ) + C2 sen (√ 15x 2 )] e−x/2 + e x 6 − e−x 4 (f) y = C1 + C2e 4x − x3 6 − x2 8 − x 16 (g) y = C1 + C2e −x + x 2 + 1 20 (2 cos (2x)− sen (2x)) (h) y = C1e 7x + C2e x + 2 (i) y = C1 cosx + C2 senx + x 2 senx (j) y = ex(C1 cos(3x) + C2 sen (3x)) + 1 9 ex + 1 37 ( sen (3x) + 6 cos(3x)) 4. (a) y = sen (2x) 3 + cos (2x) + senx 3 (b) y = 1 8 e2x(4x + 1)− x3 6 − x2 4 + x 4 5. (a) x = C1 cos (wt) + C2 sen (wt) + A w2−p2 sen (pt) (b) x = C1 cos (wt) + C2 sen (wt)− A2w t cos (wt) 2