Buscar

Laboratório 2 Física Instrumental(ENM09)-Livro

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 165 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 165 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 165 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

2008
FÍSICA INSTRUMENTAL
Profª. Margaret Luzia Froehlich
Copyright © UNIASSELVI 2008
Elaboração:
Profª. Margaret Luzia Froehlich
Revisão, Diagramação e Produção:
Centro Universitário Leonardo da Vinci – UNIASSELVI
Ficha catalográfica elaborada na fonte pela Biblioteca Dante Alighieri 
UNIASSELVI – Indaial.
Impresso por:
 Centro Universitário Leonardo da Vinci – UNIASSELVI
 Froehlich, Margaret Luzia
 Física Instrumental / Froehlich, Margaret Luzia - Centro Universitário 
Leonardo da Vinci(ASSELVI). – Indaial: Ed. Grupo UNIASSELVI, 2008.
 
 155 p.
ISBN 978-85-7830-015-9
 1. Física Instrumental I. Centro Universitário Leonardo da Vinci – 
UNIASSELVI II. Título
 CDD 530
III
ApresentAção
Caro(a) acadêmico(a),
Caro acadêmico! Se você está diante dessas páginas, é porque já 
cursou a disciplina de Física Geral e pretende dar continuidade aos seus 
conhecimentos científicos, especialmente o que concerne à área de Física, 
através da Física Instrumental. Aqui, você terá a oportunidade de comprovar 
alguns desses conhecimentos através de práticas experimentais direcionadas 
que introduziremos nessa disciplina. Você perceberá que pouco a pouco 
será induzido a encontrar e observar os resultados mais relevantes no 
estudo de um fenômeno físico. A vantagem de cursar uma disciplina como 
a Física Instrumental é a visão realista adquirida pelo acadêmico. A partir 
de situações que podem ser repetidas por meio de experiências, visamos 
mostrar o caráter científico no tratamento de dados coletados e a importância 
da precisão nesse tratamento.
Profª Margaret Luzia Froehlich
IV
Você já me conhece das outras disciplinas? Não? É calouro? Enfim, tanto para 
você que está chegando agora à UNIASSELVI quanto para você que já é veterano, há 
novidades em nosso material.
Na Educação a Distância, o livro impresso, entregue a todos os acadêmicos desde 2005, é 
o material base da disciplina. A partir de 2017, nossos livros estão de visual novo, com um 
formato mais prático, que cabe na bolsa e facilita a leitura. 
O conteúdo continua na íntegra, mas a estrutura interna foi aperfeiçoada com nova 
diagramação no texto, aproveitando ao máximo o espaço da página, o que também 
contribui para diminuir a extração de árvores para produção de folhas de papel, por exemplo.
Assim, a UNIASSELVI, preocupando-se com o impacto de nossas ações sobre o ambiente, 
apresenta também este livro no formato digital. Assim, você, acadêmico, tem a possibilidade 
de estudá-lo com versatilidade nas telas do celular, tablet ou computador. 
 
Eu mesmo, UNI, ganhei um novo layout, você me verá frequentemente e surgirei para 
apresentar dicas de vídeos e outras fontes de conhecimento que complementam o assunto 
em questão. 
Todos esses ajustes foram pensados a partir de relatos que recebemos nas pesquisas 
institucionais sobre os materiais impressos, para que você, nossa maior prioridade, possa 
continuar seus estudos com um material de qualidade.
Aproveito o momento para convidá-lo para um bate-papo sobre o Exame Nacional de 
Desempenho de Estudantes – ENADE. 
 
Bons estudos!
NOTA
Olá acadêmico! Para melhorar a qualidade dos 
materiais ofertados a você e dinamizar ainda 
mais os seus estudos, a Uniasselvi disponibiliza 
materiais que possuem o código QR Code, que 
é um código que permite que você acesse um 
conteúdo interativo relacionado ao tema que 
você está estudando. Para utilizar essa ferramenta, 
acesse as lojas de aplicativos e baixe um leitor 
de QR Code. Depois, é só aproveitar mais essa 
facilidade para aprimorar seus estudos!
UNI
V
VI
VII
UNIDADE 1 - FÍSICA INSTRUMENTAL ........................................................................................... I
TÓPICO 1 - CONHECENDO UM LABORATÓRIO EXPERIMENTAL ....................................... 3
1 INTRODUÇÃO ..................................................................................................................................... 3
2 O QUE É UM LABORATÓRIO EXPERIMENTAL? ....................................................................... 3
3 A IMPORTÂNCIA DE UM LABORATÓRIO EXPERIMENTAL ................................................ 4
RESUMO DO TÓPICO 1........................................................................................................................ 5
AUTOATIVIDADE ................................................................................................................................. 6
TÓPICO 2 - PROCEDIMENTO EXPERIMENTAL ........................................................................... 7
1 INTRODUÇÃO ..................................................................................................................................... 7
2 MÉTODO CIENTÍFICO ...................................................................................................................... 7
3 PROCEDIMENTO EXPERIMENTAL ............................................................................................... 9
RESUMO DO TÓPICO 2........................................................................................................................ 11
AUTOATIVIDADE ................................................................................................................................. 12
TÓPICO 3 - A AQUISIÇÃO DE DADOS ........................................................................................... 13
1 INTRODUÇÃO ..................................................................................................................................... 13
2 DADOS MEDIDOS .............................................................................................................................. 14
3 TABELAS ................................................................................................................................................ 14
4 O TRATAMENTO DE DADOS ......................................................................................................... 15
RESUMO DO TÓPICO 3........................................................................................................................ 16
AUTOATIVIDADE ................................................................................................................................. 17
UNIDADE 2 - TRATAMENTO DOS DADOS EXPERIMENTAIS ................................................ 19
TÓPICO 1 - ALGARISMO SIGNIFICATIVO .................................................................................... 21
1 INTRODUÇÃO ..................................................................................................................................... 21
2 O QUE É ALGARISMO SIGNIFICATIVO? .................................................................................... 21
3 OPERAÇÕES COM ALGARISMOS SIGNIFICATIVOS ............................................................. 22
RESUMO DO TÓPICO 1........................................................................................................................ 23
AUTOATIVIDADE ................................................................................................................................. 24
TÓPICO 2 - EQUAÇÃO DA RETA ...................................................................................................... 25
1 INTRODUÇÃO ..................................................................................................................................... 25
2 CÁLCULO DA EQUAÇÃO DA RETA ............................................................................................. 25
RESUMO DO TÓPICO 2........................................................................................................................ 28
AUTOATIVIDADE ................................................................................................................................. 29
TÓPICO 3 - CONSTRUÇÃO DE GRÁFICOS NO ORIGIN ........................................................... 31
1 INTRODUÇÃO .....................................................................................................................................31
2 COMO FAZER UM GRÁFICO A PARTIR DO PROGRAMA ..................................................... 31
RESUMO DO TÓPICO 3........................................................................................................................ 34
AUTOATIVIDADE ................................................................................................................................. 35
sumário
VIII
TÓPICO 4 - ERROS DE MEDIDAS ..................................................................................................... 37
1 INTRODUÇÃO ..................................................................................................................................... 37
2 ERROS EXPERIMENTAIS .................................................................................................................. 37
3 CÁLCULO DO VALOR MAIS PROVÁVEL E O CÁLCULO DO ERRO .................................. 38
RESUMO DO TÓPICO 4........................................................................................................................ 41
AUTOATIVIDADE ................................................................................................................................. 42
UNIDADE 3 - EXPERIMENTOS .......................................................................................................... 43
TÓPICO 1 - TRILHO DE AR ................................................................................................................. 45
1 INTRODUÇÃO ..................................................................................................................................... 45
2 PROCEDIMENTO EXPERIMENTAL ............................................................................................... 46
3 ATIVIDADES E QUESTIONÁRIO. .................................................................................................. 54
RESUMO DO TÓPICO 1........................................................................................................................ 57
TÓPICO 2 - RAMPA ................................................................................................................................ 59
1 INTRODUÇÃO ..................................................................................................................................... 59
2 PROCEDIMENTO EXPERIMENTAL ............................................................................................... 60
3 ATIVIDADES E QUESTIONÁRIO ................................................................................................... 64
RESUMO DO TÓPICO 2........................................................................................................................ 66
TÓPICO 3 - QUEDA LIVRE .................................................................................................................. 67
1 INTRODUÇÃO ..................................................................................................................................... 67
2 PROCEDIMENTO EXPERIMENTAL ............................................................................................... 67
3 ATIVIDADES E QUESTIONÁRIO ................................................................................................... 71
RESUMO DO TÓPICO 3........................................................................................................................ 76
TÓPICO 4 - LEI DE HOOKE ................................................................................................................. 77
1 INTRODUÇÃO ..................................................................................................................................... 77
2 PROCEDIMENTO EXPERIMENTAL ............................................................................................... 77
3 ATIVIDADES E QUESTIONÁRIO ................................................................................................... 85
RESUMO DO TÓPICO 4........................................................................................................................ 87
TÓPICO 5 - HIDROSTÁTICA .............................................................................................................. 89
1 INTRODUÇÃO ..................................................................................................................................... 89
2 PROCEDIMENTO EXPERIMENTAL ............................................................................................... 92
3 ATIVIDADES E QUESTIONÁRIO ................................................................................................... 96
RESUMO DO TÓPICO..........................................................................................................................100
TÓPICO 6 - DILATÔMETRO...............................................................................................................101
1 INTRODUÇÃO ...................................................................................................................................101
2 PROCEDIMENTO EXPERIMENTAL..............................................................................................102
3 ATIVIDADES E QUESTIONÁRIO..................................................................................................107
RESUMO DO TÓPICO 6.....................................................................................................................109
TÓPICO 7 - CALORIMETRIA.............................................................................................................111
1 INTRODUÇÃO....................................................................................................................................111
2 PROCEDIMENTO EXPERIMENTAL..............................................................................................113
3 ATIVIDADES E QUESTIONÁRIO..................................................................................................116
RESUMO DO TÓPICO 7......................................................................................................................119
IX
TÓPICO 8 - LEI DE OHM......................................................................................................................121
1 INTRODUÇÃO.....................................................................................................................................121
2 PROCEDIMENTO EXPERIMENTAL...............................................................................................123
3 ATIVIDADES E QUESTIONÁRIO...................................................................................................135
RESUMO DO TÓPICO 8........................................................................................................................139
TÓPICO 9 - ASSOCIAÇÃO DE DE RESISTORES...........................................................................141
1 INTRODUÇÃO.....................................................................................................................................141
2 PROCEDIMENTO EXPERIMENTAL...............................................................................................142
3 ATIVIDADES E QUESTIONÁRIO ..................................................................................................149
RESUMO DO TÓPICO 9........................................................................................................................152
REFERÊNCIAS.........................................................................................................................................153
X
1
UNIDADE 1
INTRODUÇÃO AO LABORATÓRIO DE 
FÍSICA INSTRUMENTAL 
OBJETIVOS DE APRENDIZAGEM
PLANO DE ESTUDOS
Com o estudo desta unidade, você será capaz de:
• reconhecer a importância de um laboratório experimental para a enge-
nharia;
• empregar o método científico na análise dos fenômenos físicos estudados 
no laboratório;
• utilizar corretamenteos instrumentos de medida e organizar os dados 
coletados numa tabela;
• estabelecer um critério no tratamento dos dados apresentados.
A primeira unidade está dividida em três tópicos, havendo, no final de cada 
um deles, uma atividade que ajudará o(a) acadêmico(a) a fixar as ideias 
apresentadas. Caso alguns conceitos não fiquem claros para você, aproveite 
as sugestões do Uni (remissão à leitura), que aparece ao longo do texto. A 
primeira unidade vai apenas introduzi-lo ao laboratório. Na segunda, serão 
apresentados alguns conceitos indispensáveis para a prática de laboratório. 
Por último, na terceira unidade, são apresentados alguns procedimentos 
experimentais, bem como atividades e questões direcionadas para cada 
experiência.
TÓPICO 1 – CONHECENDO UM LABORATÓRIO EXPERIMENTAL
TÓPICO 2 – PROCEDIMENTO EXPERIMENTAL
TÓPICO 3 – A AQUISIÇÃO DE DADOS
2
3
TÓPICO 1
UNIDADE 1
CONHECENDO UM 
LABORATÓRIO EXPERIMENTAL
1 INTRODUÇÃO
É natural que os seres humanos busquem explicações sobre o que veem, 
sentem e ouvem. E acrescente-se, também, a forma como a mente trabalha, o uso 
da inteligência para compreender as nossas experiências. 
Com frequência é suficiente dar um nome à situação sucedida. Por 
exemplo, um agricultor escuta um som forte proveniente do céu e diz “é um 
trovão”. Porém, nem sempre o nome nos dá uma informação completa, mesmo 
que seja tranquilizador o fato de sermos capazes de dar um nome, isto significa 
que já tivemos uma experiência similar e que podemos reconhecê-la. Indica que 
outras pessoas também já passaram pelo mesmo tipo de experiência.
A partir da nossa experiência, podemos concluir o que ocorrerá em 
seguida. O agricultor dirá “logo vai chover”. Somos capazes de organizar nossas 
percepções de forma que podemos reconhecê-las como modelos comuns e 
aprendemos a utilizar a informação que nos ajuda a compreender aquilo com 
que nos deparamos na vida cotidiana.
2 O QUE É UM LABORATÓRIO EXPERIMENTAL?
Teorias são desenvolvidas como respostas para perguntas do tipo por 
quê? Ou como? Observa-se uma sequência de acontecimentos com alguma 
regularidade em torno de duas, ou mais, variáveis e se pergunta por que isso se 
dá dessa maneira. Uma teoria consiste num conjunto de definições que descrevem 
o comportamento de variáveis e condições, abaixo das quais a teoria é aplicável. 
Finalmente, as predições devem poder contrastar com dados obtidos a partir de 
observações experimentais. 
 
A principal consequência da teoria é a previsão de acontecimentos que 
ainda não ocorreram. O laboratório é o lugar especialmente desenvolvido para 
efetuar experiências, cujos resultados vão não só demonstrar se uma teoria é 
falsa, como também sugerir onde se equivoca, e a melhor maneira de corrigi-la.
UNIDADE 1 | INTRODUÇÃO AO LABORATÓRIO DE FÍSICA INSTRUMENTAL 
4
3 A IMPORTÂNCIA DE UM LABORATÓRIO EXPERIMENTAL
A pergunta que segue logicamente dessa discussão a respeito de uma 
teoria é “quais são os critérios necessários para convencer uma pessoa que uma 
explicação está correta?” A resposta depende muito do tipo de pessoa. Para alguém 
que se inclina a aceitar uma explicação mística, basta coincidir a explicação com 
alguma citação em algum livro religioso, outros aceitarão facilmente uma ideia 
se for validada por alguém que considere instruído ou inteligente. Porém, esses 
argumentos não vão convencer um auditório científico.
 
Uma questão pode ter mais do que uma explicação científica. Às vezes, 
uma explicação pode incluir a outra ou completá-la. Vamos supor que, num 
período da história, uma certa teoria foi aceita e proporcione uma explicação 
válida para muitos casos. Suponhamos agora que essa mesma teoria tenha alguns 
defeitos que são reconhecidos por alguns cientistas mais tarde. Nesse caso, deve-
se propor uma nova teoria para eliminar esses defeitos.
 
Em primeiro lugar, a nova teoria deve ser tão boa quanto a primeira. 
Qualquer modificação deve ter em conta todas as informações das teorias já 
existentes. A teoria nova deve conduzir aos mesmos resultados obtidos com as 
teorias aceitas em todos os casos que já comprovaram sua utilidade.
 
Em segundo lugar, a nova teoria deve provar ser melhor que a antiga, não 
é suficiente que dê os mesmos resultados que a anterior. Em suma, deve propor 
uma inovação. 
 
Em terceiro lugar, deve ser possível obter consequências que diferem das 
demais teorias similares e, principalmente, estas consequências devem prestar-se 
à comprovação experimental.
 
Por último, a nova teoria deve ter um modelo matemático ou um enunciado 
universal de seus princípios que seja breve e consistente.
 
Uma outra questão relevante é a verificação de ensaios associados ao 
ramo da engenharia. O laboratório visa auxiliar o engenheiro a testar suas ideias 
por meio de protótipos e esquemas reduzidos aos elementos principais, antes da 
concretização do projeto propriamente dito.
5
RESUMO DO TÓPICO 1
Neste tópico, você viu que:
	Apresentamos o laboratório experimental e mencionamos a importância da 
linguagem científica na verificação de fenômenos físicos, através de dados 
coletados e comparados com modelos teóricos que podem definir uma linha 
de raciocínio válida. 
	Identificamos os principais passos para a verificação de uma ideia nova e 
sua aceitação no meio científico. Estabelecemos um caminho seguro para a 
preparação de um projeto de engenharia.
6
1 Defina um laboratório experimental e explique sua importância 
no meio científico.
AUTOATIVIDADE
7
TÓPICO 2
PROCEDIMENTO EXPERIMENTAL
UNIDADE 1
1 INTRODUÇÃO
Existem ramos da ciência em que a experimentação é desnecessária, 
porém, em Física, utilizamos o método científico para corroborar a teoria. O 
método científico é um conjunto de critérios e procedimentos que permitem 
explicar, de modo confiável, as leis e fenômenos naturais. 
Num laboratório de Física Instrumental, aplicamos o método experimental, 
que obedece a dois requisitos básicos. Primeiramente, os experimentos são 
sempre reprodutíveis por qualquer pessoa e em qualquer lugar, respeitadas as 
condições e métodos empregados. Segundo, toda proposição científica deve 
admitir experimentos que, caso não forneçam os resultados esperados, permitem 
refutar a hipótese levantada.
A Física busca desvendar os aspectos qualitativos e quantitativos dos 
fenômenos naturais. Assim, é fácil entender por que a Matemática é o principal 
instrumento do experimentador, pois trata-se de uma linguagem exata, unívoca e 
universal. Entretanto, a intuição não pode ser descartada porque, muitas vezes, a 
essência de um fenômeno não pode ser entendida apenas através de uma equação.
2 MÉTODO CIENTÍFICO
Não estamos querendo optar entre teoria e observações e sim entre 
teorias melhores ou piores para explicar as observações; os acontecimentos são 
intocáveis. No entanto, isso não quer dizer que as teorias são meros escravos 
das observações, pelo contrário quase todos os cientistas estão muito mais 
interessados na teoria do que nas observações. Vendo as práticas experimentais 
como meras demonstrações que permitem escolher entre uma teoria ou outra. 
Notamos que em todo processo, a capacidade interrogativa e criativa do ser 
humano está presente e atuante, criando um ciclo dinâmico de retroalimentação 
de novas dúvidas, novas observações e novas experimentações. Gerando 
resultados cada vez mais precisos e confiáveis, estabelecendo um acúmulo de 
conhecimentos contínuo.
UNIDADE 1 | INTRODUÇÃO AO LABORATÓRIO DE FÍSICA INSTRUMENTAL 
8
Nem sempre é clara a metodologia que se deve empregar num experimento. 
Há experiências que podem ser feitos numa certa ordem, outras em que esta 
ordem não está bem clara. Os resultados devem ser analisados por especialistas 
antes de serem publicados. E devem ser repetidos independentemente, sendo, 
porém, às vezes, obtidos os mesmos resultados. O método científico pode ser 
resumido nas seguintes etapas:
1 Levantar um problema sobre um fenômeno. 
2 Observar algo fazendo medidasdiversas.
3 Buscar uma teoria que o explique, relacionando os fatos observados com 
conceitos preestabelecidos.
4 Hipótese, fazer previsões utilizando essa teoria e os seus modelos.
5 Realizar experimentos para comprovar as previsões. 
6 Interpretar os dados obtidos e, se as previsões estão corretas, divulgar os 
resultados.
A seguir, na figura 1, encontramos um quadro ilustrando o método 
científico.
TÓPICO 2 | PROCEDIMENTO EXPERIMENTAL
9
FONTE: Disponível em: <www.um.es/docencia/barzana/II/Ii01.html> Acesso em: 12 out. 2007.
3 PROCEDIMENTO EXPERIMENTAL
Através da Física Teórica constroem-se modelos para explicar os 
fenômenos que são observados experimentalmente, procurando, a partir deles, 
predizer os resultados de novas experiências. A concordância das previsões do 
modelo com os resultados determinados de forma experimental é o critério final 
para o seu sucesso. Isto gera uma interação e realimentação contínua entre a 
teoria e a experiência, com desafios cada vez maiores visando a melhoria na área 
em questão.
FIGURA 1 – SEQUÊNCIA ILUSTRATIVA E SIMPLIFICADA DOS PASSOS DO MÉTODO 
CIENTÍFICO. OBSERVAÇÕES, PERGUNTAS, HIPÓTESES, EXPERIMENTAÇÃO, CONCLUSÕES, 
DOCUMENTAÇÃO, DESCOBRIMENTOS, NOVAS PERGUNTAS E SEGUIR APRENDENDO. 
UNIDADE 1 | INTRODUÇÃO AO LABORATÓRIO DE FÍSICA INSTRUMENTAL 
10
Nas aulas de laboratório, o acadêmico utiliza um roteiro, no intuito de 
direcioná-lo à busca das informações pertinentes à experiência. Este roteiro é 
o que denominamos procedimento experimental. Nele encontram-se todas as 
etapas e a sequência correta das medições que devem ser feitas, bem como a 
montagem do aparato experimental. 
Com ele, o acadêmico é capaz de verificar se todos os instrumentos listados 
encontram-se sobre a bancada e procede, em seguida, a montagem do mesmo, de 
acordo com as instruções contidas no texto. Em caso negativo, deve solicitar ao 
monitor o material ausente. 
É muito importante que, durante a montagem e execução da prática 
experimental, o acadêmico esteja totalmente envolvido com ele, evitando 
distrações. A concentração reduzirá radicalmente a margem de erro.
11
RESUMO DO TÓPICO 2
Neste tópico, você viu que:
	Estabelecemos os critérios básicos para o método científico utilizado no 
laboratório.
	Definimos as etapas do método científico.
	Encontramos um roteiro que permite seguir a metodologia correta para 
execução de um experimento e sua posterior análise.
12
Para exercitar seus conhecimentos adquiridos, resolva as questões a seguir: 
AUTOATIVIDADE
1 Você concorda que a matemática é um caminho seguro para o 
experimentador? O experimentador deve sempre descartar a 
intuição? Justifique. 
2 Explique cada uma das etapas do método científico. A meto-
dologia pode ser sempre nessa ordem? Por quê?
3 Qual é o critério final para o sucesso de uma experiência?
4 Fale sobre o procedimento experimental. Para que serve? De 
que maneira o acadêmico pode reduzir a margem de erro 
numa experiência?
13
TÓPICO 3
A AQUISIÇÃO DE DADOS
UNIDADE 1
1 INTRODUÇÃO
Para fazer uma análise sobre um experimento, é necessário comparar 
os dados coletados experimentalmente com as previsões propostas pela teoria 
para aquele tipo de fenômeno observado na execução da experiência. Cada 
instrumento de medida possui determinado grau de precisão, dependendo da 
menor divisão da escala. Observe a figura 2, a seguir. A primeira régua está 
graduada em 1cm. Se a medida estiver entre os valores anotados na escala, 
é preciso estimar o valor. Assim, a precisão fica comprometida. Na segunda 
régua, a graduação está em 5 mm, o que faz com que a estimativa seja um pouco 
mais fácil. No último caso, a graduação é em 1mm. A precisão, nesse caso, é 
muito maior que na primeira régua.
FONTE: A autora.
Uma régua graduada, por exemplo, serve para captar dados sobre as 
distâncias envolvidas no fenômeno e sua escala é dada em milímetros. Um 
termômetro serve para medir as temperaturas e a escala pode ser dada em graus 
Celsius. Num cronômetro, o tempo pode ser medido numa escala de décimos de 
segundo. É importante identificar a menor divisão da escala para poder estimar 
FIGURA 2 – EXEMPLO DE INSTRUMENTO DE MEDIÇÃO MOSTRANDO TRÊS ESCALAS 
DIFERENTES. O NÚMERO DE DIVISÕES AUMENTA DA PRIMEIRA RÉGUA PARA A ÚLTIMA. NA 
ÚLTIMA, NÚMERO MAIOR DE DIVISÕES, A PRECISÃO É MAIOR.
UNIDADE 1 | INTRODUÇÃO AO LABORATÓRIO DE FÍSICA INSTRUMENTAL 
14
o último algarismo significativo. O acadêmico também deve tomar cuidado com 
as conversões de unidades no momento em que está anotando os dados para não 
incorrer em resultados errôneos ao efetuar os cálculos.
2 DADOS MEDIDOS
A realização de medições é um aspecto muito importante, sendo 
fundamental na metodologia científica. Não existe observação ou análise sem 
medição. Assim, é de suma importância, o conhecimento das unidades de medida 
e dos instrumentos adequados ao tipo de medida que se pretende fazer. Deve-se, 
ainda, levar em conta que toda medição está sujeita a erros. Erros devidos aos 
defeitos do instrumento, erros devidos às falhas do operador e erros inerentes 
ao problema em foco. Disto segue a importância de procurar adquirir um bom 
embasamento teórico do fenômeno a ser estudado e conhecer bem os instrumentos 
e métodos a serem utilizados. 
Existem dois tipos de medidas: A “Medida Direta”, que é uma comparação 
puramente mecânica. Ex.: Medida de um comprimento com uma régua; e a 
“Medida Indireta”, que é a grandeza que se quer conhecer e é calculada a partir 
de medidas diretas. Ex.: Medida da densidade de um corpo: temos que fazer 
uma medida direta da massa e uma medida direta do volume do corpo para, em 
seguida, encontrar, através de um cálculo, a densidade (ρ = m/V).
O acadêmico deve ter o cuidado de anotar todos os dados medidos, 
mesmo os que são considerados anômalos ou esquisitos, devendo apenas se fazer 
uma pequena anotação ao lado, do tipo: “Nesta medida alguém esbarrou na mesa 
e isso pode tê-la afetado”. Ao corrigir um valor anotado (supostamente) errado, 
o acadêmico não deve usar a borracha para apagá-lo, passa apenas um risco por 
cima e anota o valor correto ao lado. Isso auxilia no caso de ter que voltar a esse 
valor por alguma suspeita de engano. É muito importante acrescentar sempre o 
valor da incerteza associado. 
Por exemplo, numa medição de comprimento em que a menor divisão da 
escala é o milímetro e a medida ficou numa região entre 5,5cm e 5,6cm, o aluno 
estima o último algarismo significativo (algarismo duvidoso); suponhamos 5,58cm 
por se encontrar mais próximo ao 5,6cm, a incerteza associada passa a ser ±0,05cm. 
Assim, a grandeza medida será escrita da seguinte forma, (5,58±0,05) cm.
3 TABELAS
Os dados coletados, para facilitar a análise através da construção de 
gráfico, são normalmente organizados em tabelas. Essas tabelas já se encontram 
previamente elaboradas no procedimento experimental, que o acadêmico 
utiliza como roteiro, bastando apenas preenchê-la corretamente com os dados 
observados nas medições. Esses dados podem ser reorganizados posteriormente 
numa nova tabela para uma análise específica de alguma grandeza, no momento 
TÓPICO 3 | A AQUISIÇÃO DE DADOS
15
em que o acadêmico resolve as atividades e responde às questões referentes a 
cada experimento. Essa nova tabela deve ser repassada para o programa Origin, 
respeitando algumas instruções que serão apresentadas na Unidade 2.
4 O TRATAMENTO DE DADOS
Depois de anotar os valores medidos (dados do experimento) na tabela, 
o acadêmico necessita analisar os resultados e chegar a conclusões através da 
comparação com o modelo teórico. Para tanto, o próximo passo é converter os 
dados num gráfico. Cada gráfico é governado por uma equação que pode ser 
comparada ao modelo matemático do problema estudado. Através do programa 
Origin, o acadêmico pode determinar os coeficientes da reta e encontrar as 
grandezas inerentes às questões apresentadas. Para finalizar, basta calcular a 
porcentagem de erro experimental,utilizando como referência um valor padrão 
determinado pela literatura.
Na próxima unidade, veremos passo a passo a construção do gráfico via 
Origin e o modo mais adequado de apresentar os resultados, além de algumas 
considerações relevantes sobre números significativos e o estudo da reta.
16
RESUMO DO TÓPICO 3
Neste tópico, você viu que:
	Vimos que a aquisição dos dados é parte fundamental do procedimento 
científico.
	Grafamos a necessidade de conhecer os instrumentos utilizados nas medições, 
bem como a escala de cada um para atentar à precisão do valor anotado.
	Definimos um procedimento de coleta de dados por meio da organização de 
tabelas.
	Determinamos a maneira adequada para fazer a análise do experimento.
17
Para exercitar seus conhecimentos adquiridos, resolva as questões a seguir:
AUTOATIVIDADE
1 Explique a maneira como a precisão pode estar relacionada às 
divisões de uma escala. Quais os cuidados que se deve ter na 
hora da medição?
2 Apresente os erros mais comuns numa medição. Como é pos-
sível evitá-los?
3 Diferencie medida direta de medida indireta. Dê um exemplo 
de cada uma.
4 Explique o que é a incerteza numa medida. De que forma se 
representa uma grandeza medida, considerando-se a incerteza 
associada?
5 Para que servem os dados medidos?
18
19
UNIDADE 2
TRATAMENTO DOS DADOS 
EXPERIMENTAIS
OBJETIVOS DE APRENDIZAGEM
PLANO DE ESTUDOS
A partir do estudo desta unidade, você será capaz de:
• reconhecer os algarismos significativos e fazer as operações básicas 
com eles;
• estudar a equação da reta, utilizando os seus coeficientes para encontrar 
grandezas físicas, comparando a equação com o modelo teórico;
• utilizar os dados coletados na tabela e construir um gráfico com o progra-
ma Origin;
• classificar os erros experimentais e calcular os erros aleatórios.
A Unidade 2 está dividida em quatro tópicos. Há, no final de cada tópi-
co, uma atividade que ajudará o acadêmico a fixar as ideias apresentadas. 
Apresentamos aqui os principais conceitos envolvidos na prática experi-
mental, resumindo os conteúdos que são indispensáveis para o bom anda-
mento da experiência.
TÓPICO 1 – ALGARISMOS SIGNIFICATIVOS
TÓPICO 2 – EQUAÇÃO DA RETA
TÓPICO 3 – CONSTRUÇÃO DE GRÁFICOS NO ORIGIN
TÓPICO 4 – ERROS DE MEDIDAS
20
21
TÓPICO 1UNIDADE 2
ALGARISMOS SIGNIFICATIVOS
1 INTRODUÇÃO
É natural, nos cálculos, obter-se tanto números muito grandes quanto 
muito pequenos. Em engenharia, usa-se representar estes números através da 
notação científica (valor vezes potência de 10). Por exemplo, o número 654.000.000 
pode ser escrito como 6,54 x 108. De modo análogo, o número 0,0000078 pode ser 
escrito como 7,8 x 10-6. O primeiro exemplo possui três algarismos significativos 
e o segundo possui dois algarismos significativos. O conceito de algarismos 
significativos permite introduzir, de um modo simples, a precisão de uma medida 
sem explicitar a sua incerteza. Permitindo ainda estimar a precisão de um valor 
que é calculado por combinação de diferentes tipos de medida, pois a incerteza 
de um valor, é propagada em todas as contas feitas com ele.
2 O QUE É ALGARISMO SIGNIFICATIVO?
Os algarismos significativos de um número são os dígitos diferentes de 
zero, contados a partir da esquerda até o último dígito diferente de zero à direita, 
caso não haja vírgula decimal, ou até o último dígito (zero ou não) caso haja uma 
vírgula decimal.
Exemplos:
5200 ou 5,2 x 103 (2 algarismos significativos)
5200 ou 5,200 x 103 (4 algarismos significativos)
62.090 ou 6,209 x 104 (4 algarismos significativos)
0,098 ou 9,8 x 10-2 (2 algarismos significativos) 
Precisamos levar em conta que todos os dígitos diferentes de zero são 
significativos Por exemplo: 6,2; 45 e 120 possuem dois algarismos significativos. 
Os zeros entre dígitos diferentes de zero também são significativos, por exemplo: 
408 e 1,05 possuem três algarismos significativos. Se existir uma vírgula decimal, 
todos os zeros à direita da vírgula decimal são significativos, por exemplo: 2,000 
e 55,60 possuem quatro algarismos significativos. 
O último dígito dos algarismos significativos do número geralmente é o 
algarismo duvidoso. Trata-se da fração avaliada, na qual reside a dúvida ou a 
incerteza da medida. 
UNIDADE 2 | TRATAMENTO DOS DADOS EXPERIMENTAIS
22
3 OPERAÇÕES COM ALGARISMOS SIGNIFICATIVOS
Ao fazermos as operações algébricas com os valores encontrados nas 
medições, precisamos levar em conta algumas considerações a respeito dos 
algarismos significativos. A primeira é de que a mudança de unidade não altera 
a contagem dos algarismos significativos. Na adição ou subtração de medidas, 
procure entre as parcelas aquela cujo último algarismo significativo ocupa a casa 
decimal mais elevada e despreze, no resultado final, os algarismos à direita desta 
casa. Exemplo: 438,38 + 21 ,8 + 0 ,287 + 3 ,14159 = 463 ,60859. Resultado: 463,6. 
Observe que a parcela 21,8 possui apenas um algarismo significativo 
após a vírgula. Assim, o resultado final também fica com apenas um algarismo 
significativo após a vírgula. Na multiplicação e divisão de medidas, o resultado 
também deverá conter algarismos significativos em número igual àquele existente 
no fator mais pobre. A multiplicação ou divisão de uma medida por uma constante 
não introduz mudanças na quantidade de algarismos significativos no resultado.
 
Como regra para o arredondamento, pode-se dizer o seguinte: quando 
o algarismo suprimido for maior ou igual a cinco, elevamos de uma unidade o 
algarismo anterior. Quando precisamos suprimir mais de um algarismo, a regra 
acima se modifica um pouco. Por exemplo, no número 463,60859, se quisermos 
substituir todos os cinco algarismos depois da vírgula por um único algarismo, 
devemos raciocinar da seguinte maneira: o número 60859 é menor que 65000. 
Portanto, arredondamos 60859 para 60000 (a outra opção seria 70000), de tal 
modo que teremos, agora, 463,60000 = 463,6. Assim, conseguimos evitar os erros 
de arredondamento em cascata, quando arredondamos várias vezes o último 
algarismo, até chegarmos ao número de algarismos desejado no resultado final.
23
RESUMO DO TÓPICO 1
Neste tópico, você viu que:
	Mostramos que, nos valores medidos, os algarismos corretos e o algarismo 
duvidoso constituem os “algarismos significativos”.
	Vimos que os algarismos significativos não têm nada a ver com a posição da 
vírgula. E que o algarismo zero, quando localizado à esquerda da vírgula, não 
constitui algarismo significativo.
	Apresentamos algumas regras para o arredondamento, e operações básicas 
com algarismos significativos.
24
AUTOATIVIDADE
Para exercitar seus conhecimentos adquiridos, resolva as questões a seguir: 
1 Explique o que são algarismos significativos.
2 Resolva, respeitando o número de algarismos significativos:
a) 3,27251 x 1,32 =
b) 63,72/23,1 = 
c) 0,451/2001 = 
d) 3 29,69 = 
e) 11,45+93,1+0,333 = 
25
TÓPICO 2UNIDADE 2
EQUAÇÃO DA RETA
1 INTRODUÇÃO
Os dados que coletamos nas experiências dão origem a gráficos que são 
governados por uma equação linear do tipo y(x) = a + bx, onde a é o coeficiente 
linear, b o coeficiente angular da reta, y é a variável dependente do parâmetro x, e 
x é a variável independente. Em todos os experimentos encontraremos grandezas 
comparando os coeficientes dessa equação com os coeficientes de modelos 
teóricos que descrevem o fenômeno estudado.
2 CÁLCULO DA EQUAÇÃO DA RETA
Para encontrar os parâmetros a e b da reta y = a + bx basta considerar que a 
é o valor da ordenada y da reta para o qual a abscissa x é nula e que b representa 
a inclinação da reta. 
Como a equação da reta nos deixa dois parâmetros a serem determinados 
(a e b), podemos utilizar o método da geometria analítica. Isto é, tomamos dois 
pontos (x e y) e escrevemos a equação da reta para cada um deles. Com isso 
teremos duas equações e dois parâmetros para determinar. Portanto, basta 
resolver o sistema para obtermos a e b. Não é necessário (nem desejável) queos pontos escolhidos da reta correspondam exatamente a um ou outro dos seus 
dados. O importante é que os pontos escolhidos estejam bem afastados, e sobre 
a reta, para evitar que pequenos erros nas suas coordenadas acarretem grandes 
diferenças nos cálculos dos coeficientes. Veja o gráfico da figura 3.
Sejam os pontos escolhidos P1(x1,y1) e P2(x2,y2). Então, 
 y1 = a + bx1 
 y2 = a + bx2
UNIDADE 2 | TRATAMENTO DOS DADOS EXPERIMENTAIS
26
FONTE: A autora.
Por outro lado, o(a) acadêmico(a) não precisa se preocupar com esses 
cálculos, pois os coeficientes a e b são calculados automaticamente pelo programa 
Origin. Ao dar o comando fit linear no menu analysis, abre-se uma janela que 
apresenta os valores. Observe a figura 4.
FONTE: Programa Origin.
FIGURA 3 – UMA RETA PASSANDO PELOS PONTOS P1 E P2
FIGURA 4 – RESULTADOS DA REGRESSÃO LINEAR,
TÓPICO 2 | EQUAÇÃO DA RETA
27
OBS:Observe que o valor para a, o coeficiente linear, é 10 e o valor de b, o 
coeficiente angular, é 5.
Observando a figura 4 acima, a primeira linha mostra a data e a hora 
da compilação do programa, em seguida aparece uma equação linear como 
referência. Na quinta e na sexta linha, encontramos os valores dos parâmetros a = 
10 e b = 5. Substituindo esses valores na equação da reta, encontramos: y = 10 + 5x.
 
No próximo tópico, aprenderemos como construir um gráfico a partir dos 
dados coletados utilizando o programa Origin.
28
RESUMO DO TÓPICO 2
Neste tópico, você viu que:
	Mostramos que a equação y(x) = a + bx descreve o comportamento da reta de um 
gráfico.
	Vimos que os coeficientes a e b da reta podem ser determinados através de 
alguns cálculos simples.
	Apresentamos uma alternativa eficaz para determinar esses coeficientes 
empregando um programa de computador.
29
AUTOATIVIDADE
Para exercitar seus conhecimentos adquiridos, resolva as questões a seguir:
1 Dê a equação que descreve a reta de um gráfico. Quem é a 
variável independente dessa equação, e a variável dependente? 
Quais são os coeficientes?
2 A partir dos dados abaixo escreva a equação da reta y = a + bx, 
substituindo o coeficiente linear a e o coeficiente angular b.
30
31
TÓPICO 3
CONSTRUÇÃO DE GRÁFICOS 
NO ORIGIN
UNIDADE 2
1 INTRODUÇÃO
Para facilitar a análise dos dados coletados experimentalmente, 
empregamos o programa Origin para construir os gráficos. O processo poderia ser 
feito manualmente, num papel milimetrado, porém, a análise requereria muitos 
cálculos para fazer a linearização dos valores. Desejamos evitar esse trabalho 
porque acreditamos que existem questões mais relevantes no nosso estudo. 
O(a) acadêmico(a) poderá se aperfeiçoar nas ferramentas do programa 
explorando as possibilidades através de tentativa e erro. Nós vamos nos restringir 
a alguns comandos básicos indispensáveis para o bom andamento da disciplina.
2 COMO FAZER UM GRÁFICO 
A PARTIR DO PROGRAMA
Vamos utilizar como exemplo os dados do movimento de uma partícula 
que está se movendo com uma certa aceleração constante, que pretendemos 
determinar através do gráfico. A equação que determina esse tipo de movimento 
é v = v0 + at, onde v é a velocidade da partícula, v0 é a velocidade inicial, a é a 
aceleração e t é o tempo.
 
Para tanto, anotamos a velocidade da partícula a cada dois segundos e 
organizamos os dados numa tabela.
FONTE: A autora
TABELA 1 – VELOCIDADE DA PARTÍCULA EM FUNÇÃO DO TEMPO.
32
UNIDADE 2 | TRATAMENTO DOS DADOS EXPERIMENTAIS
Passamos agora esses valores para o Origin, tomando o cuidado de colocar 
os valores da variável independente na coluna para x (coluna da esquerda) e os 
valores da variável dependente na coluna para y (coluna da direita). Observe o 
resultado na figura 5.
FONTE: Programa Origin.
Em seguida, selecionamos com o shift as duas colunas, e no menu plot 
selecionamos o comando scatter. O programa abre uma janela com o gráfico, 
figura 6. Note os pontos da reta na figura 6. Para colocar os títulos dos eixos x 
e y, clique duas vezes com o mouse em cima de “Y Axis Title” e depois digite 
“velocidade (m/s)”. Para arrumar o título do eixo x, clique em cima de “X Axis 
Title”, depois escreva na janela que abrir “tempo (s)”.
FONTE: Programa Origin.
FIGURA 5 – REPRESENTAÇÃO DOS VALORES DO TEMPO (VARIÁVEL INDEPENDENTE) NA 
COLUNA A(X) E DOS VALORES DA VELOCIDADE (VARIÁVEL DEPENDENTE) NA COLUNA B(X).
FIGURA 6 – GRÁFICO VELOCIDADE (M/S) X TEMPO (S).
TÓPICO 3 | CONSTRUÇÃO DE GRÁFICOS NO ORIGIN
33
Muito bem! Só falta traçar a reta e encontrar os coeficientes. Agora 
precisamos ir até o menu Analysis e selecionar a opção fit linear. Observe que, na 
figura 7, aparece uma janela com a reta no gráfico e uma janela com os parâmetros 
a e b da reta y = a + bx. Tome cuidado: se a janela do gráfico ficar oculta basta 
arrastar a outra janela para o lado.
FONTE: Programa Origin.
Precisamos comparar a equação do Origin y = a + bx com a equação que 
governa o movimento estudado v = v0 + at. Antes, substituímos os valores dos 
parâmetros fornecidos pelo programa, em que a = 10 e b = 5. Encontramos, assim, 
y = 10 + 5x. Agora, vamos comparar as duas equações:
Assim, podemos afirmar que v0 = 10 m/s é a velocidade inicial da partícula 
e 5 m/s2 é a sua aceleração.
FIGURA 7 – RESULTADO DA LINEARIZAÇÃO. À ESQUERDA ESTÁ O GRÁFICO DA VELOCIDADE COM A 
RETA QUE GOVERNA O MOVIMENTO DA PARTÍCULA. À DIREITA ESTÃO OS PARÂMETROS A E B DA RETA.
34
RESUMO DO TÓPICO 3
Neste tópico, você viu que:
	Mostramos como utilizar o programa Origin para construir um gráfico cuja 
reta é governada pela equação y(x) = a + bx.
	Aprendemos a extrair os coeficientes das informações fornecidas na linearização 
executada pelo programa.
	Vimos como temos que comparar a equação da reta com o modelo teórico para 
encontrar as grandezas procuradas na experiência.
35
AUTOATIVIDADE
Para exercitar seus conhecimentos adquiridos, resolva as questões a seguir:
1. Considerando as tabelas do programa Origin, em qual das 
colunas devemos colocar os valores da variável independente, 
e os da variável dependente?
2. Comparando as equações a seguir, com a equação Y(x) = a + bx, 
identifique o que se pede:
a) v(t) = v0 + at 
Variável dependente:_________ 
Variável independente:________ 
Coef. Linear:________________ 
Coef. Angular: ______________
b) V(i) = Ri (Exemplo : Y(x) = a + bx → V(i) = 0 + Ri ) 
Variável dependente: ________
Variável independente: _______
Coef. Linear: _______________
Coef. Angular: ______________
c) Fe(x) = kx 
Variável dependente:_________ 
Variável independente:________ 
Coef. Linear:________________
Coef. Angular: ______________
d) S(t) = S0 + vt 
Variável dependente:_________ 
Variável independente:________ 
Coef. Linear:________________ 
Coef. Angular: ______________
e) L(Δt) = L0 + αL0Δt 
Var. dep.:___________________ 
Var. indep.:_________________ 
Coef. Linear:________________ 
Coef. Angular: ______________
36
f) E(Vf) = dfgVf 
Variável dependente:_________ 
Variável independente:________ 
Coef. Linear:________________ 
Coef. Angular: ______________
37
TÓPICO 4
ERROS DE MEDIDAS
UNIDADE 2
1 INTRODUÇÃO
Nas experiências que vamos realizar, procuramos definir o valor de 
uma grandeza que já foi determinada alguma vez na história, e seu valor já 
se encontra largamente divulgado na literatura científica. Esse valor conhecido 
é chamado de valor padrão e o valor determinado a partir da experiência é 
denominado valor medido. Em outras ocasiões, não temos nenhum valor de 
referência, então, devemos substituir o valor padrão pelo valor mais provável, 
que se trata da média aritmética das medidas. Na maior parte das vezes os 
dois valores não correspondem exatamente, podendo divergir pouco ou muito. 
Essa divergência entre o valor encontrado a partir da experiência e o valor 
padrão recebe o nome de erro experimental. Vamos tratar desse assunto agora, 
evidenciando três espécies de erros.
2 ERROS EXPERIMENTAIS
As causas de erro de medida podemser de natureza da grandeza a 
ser medida, do método de medida, da habilidade do experimentador e dos 
instrumentos de medida que podem apresentar diferentes fidelidades e poder 
de resolução. Os erros podem ser de três tipos: o erro grosseiro, o erro sistemático 
e o erro acidental (ou aleatório).
Os erros grosseiros caracterizam-se pelo engano na leitura, engano de 
unidade, erro de cálculo e deficiência técnica, como por exemplo o manuseio 
inábil do instrumento.
Os erros sistemáticos caracterizam-se pelo erro de calibração do 
instrumento, deslocamento do zero da escala, consequências de variações 
térmicas e paralaxe. Os erros sistemáticos são causados por fontes identificáveis, 
e, em princípio, podem ser eliminados ou compensados. Erros sistemáticos 
fazem com que as medidas feitas estejam consistentemente acima ou abaixo 
do valor real, prejudicando a exatidão da medida, olhe o primeiro esquema 
ilustrativo da figura 8.
38
UNIDADE 2 | TRATAMENTO DOS DADOS EXPERIMENTAIS
Os erros aleatórios caracterizam-se pela avaliação do algarismo 
duvidoso, condições flutuantes, como por exemplo a temperatura do ambiente e 
natureza da grandeza a ser medida. Os erros aleatórios referem-se às flutuações, 
para cima ou para baixo, que fazem com que aproximadamente a metade das 
medidas de uma mesma grandeza numa mesma situação experimental esteja 
desviada para mais, e a outra metade esteja desviada para menos. Os erros 
aleatórios afetam a precisão da medida. Observe a figura 8, esquema do centro. 
Nem sempre é possível identificar as fontes de erros aleatórios.
FONTE: CRUZ, Carlos Henrique de Brito; FRAGNITO, Hugo Luís. Guia para Física Experimental. 
Caderno de Laboratório, Gráficos e Erros. Versão 1.1, revista por CHBC e HLF em setembro de 
1997. IFGW, Unicamp, 1997.
Os pontos representam os dados medidos e o alvo representa o valor padrão. 
No primeiro caso temos erros sistemáticos, no segundo temos erros 
aleatórios e por último ilustramos um resultado desejável. 
3 CÁLCULO DO VALOR MAIS PROVÁVEL E O 
CÁLCULO DO ERRO
Como os erros aleatórios tendem a desviar aleatoriamente as medidas 
feitas, se forem realizadas muitas medições, aproximadamente a metade das 
medidas estará acima e metade estará abaixo do valor correto. Por isso, o valor 
mais provável de uma medida é a média aritmética das medidas
onde xi é o resultado da i-ésima medida e N é o número total de medidas feitas.
Exemplo 1: Numa experiência foram encontrados vários valores para a velocidade, 
conforme a tabela a seguir: 
FIGURA 8 – ESQUEMA ILUSTRATIVO DE MEDIDAS.
TÓPICO 4 | ERROS DE MEDIDAS
39
FONTE:A autora.
TABELA 2 – DADOS OBSERVADOS.
Vamos encontrar o valor mais provável, utilizando a definição (1),
Assim, encontramos para valor mais provável da velocidade: 6,9 m/s.
O desvio de uma medida dx é o quanto o valor desta medida se encontra 
longe do valor real. Por exemplo, quando anotamos uma medida da distância com 
uma régua milimetrada, avaliamos o desvio como o erro provável máximo, sendo 
a metade da menor divisão da escala. Podemos escrever a grandeza medida mais 
o desvio estimado, 26,0mm ± 0,5mm. O desvio médio de uma série de medidas 
é igual à média aritmética da soma dos valores absolutos dos desvios que afetam 
cada medida. Desse modo, podemos definir o desvio médio como segue,
O cálculo da incerteza de uma medida pode possuir vários processos e 
requer um profundo conhecimento estatístico do fenômeno. No entanto, existe 
um consenso de que o “desvio padrão S representa bem a incerteza de uma 
medida.” O desvio padrão S é calculado da seguinte maneira,
40
UNIDADE 2 | TRATAMENTO DOS DADOS EXPERIMENTAIS
Assim, escrevemos o valor da grandeza, resultante de uma série de medições do 
seguinte modo,
Chegamos, finalmente, ao cálculo do erro percentual ou erro relativo, que é o erro 
que afeta a grandeza medida, expresso como porcentagem do valor medido da 
grandeza. Portanto, temos que
Exemplo 2: Vamos calcular o erro na aceleração da gravidade, medido 
experimentalmente, 9,3 m/s2. Sabendo que o valor teórico é 9,8m/s2, substituímos 
na fórmula (3).
Assim, podemos concluir que o erro na medida é de aproximadamente 5%.
41
RESUMO DO TÓPICO 4
Neste tópico, você viu que:
	 Mostramos como utilizar o programa Origin para construir um gráfico cuja 
reta é governada pela equação y(x) = a + bx.
	Aprendemos a extrair os coeficientes das informações fornecidas na linearização 
executada pelo programa.
	Vimos como temos que comparar a equação da reta com o modelo teórico para 
encontrar as grandezas procuradas na experiência.
42
AUTOATIVIDADE
Resolva as questões a seguir:
4 Calcule o erro relativo, utilizando o valor médio encontrado no 
exercício anterior, sabendo que o valor padrão da aceleração é 
9,8 m/s2.'
FONTE: A autora.
TABELA 3 – DADOS OBSERVADOS.
1 Diferencie valor padrão, valor medido e valor mais provável.
2 Cite e defina os três tipos de erros experimentais.
3 Encontre o valor médio da aceleração através dos dados da 
tabela abaixo.
43
UNIDADE 3
EXPERIMENTOS
OBJETIVOS DE APRENDIZAGEM
PLANO DE ESTUDOS
A partir desta unidade, você será capaz de:
• construir gráficos com os dados coletados e interpretar os resultados con-
frontando os dados com a teoria;
• identificar causas de erros e escolher os modelos que mais se encaixam 
com os fenômenos físicos, criando estratégias de ação e análise para situa-
ções reais.
A Unidade 3 está dividida em nove tópicos. Na introdução, você revisa seus 
conhecimentos sobre o assunto abordado na experiência relacionando as 
grandezas bem como seus modelos teóricos, esta parte é apenas uma visão 
resumida para direcioná-lo, não dispensa o estudo em casa dos livros su-
geridos nas referências. Em seguida é apresentado o procedimento que tem 
por objetivo direcionar os passos necessários a coleta dos dados. Por fim, na 
conclusão, o acadêmico responde às questões e atividades propostas.
TÓPICO 1 – TRILHO DE AR
TÓPICO 2 – RAMPA
TÓPICO 3 – QUEDA LIVRE
TÓPICO 4 – LEI DE HOOKE
TÓPICO 5 – HIDROSTÁTICA
TÓPICO 6 – DILATÔMETRO
TÓPICO 7 – CALORIMETRIA
TÓPICO 8 – LEI DE OHM
TÓPICO 9 – ASSOCIAÇÃO DE RESISTORES
44
45
TÓPICO 1
TRILHO DE AR
UNIDADE 3
1 INTRODUÇÃO
Em Mecânica, estudamos o movimento retilíneo, em que o corpo se 
desloca apenas em trajetórias retas. Assim, a aceleração e a velocidade, se variarem, 
o fazem apenas em módulo ou sentido, jamais em direção. Os movimentos 
retilíneos dividem-se em movimento retilíneo uniforme (MRU) e o movimento 
retilíneo uniformemente variado (MRUV).
No movimento retilíneo uniforme (MRU), o vetor velocidade é constante 
no decorrer do tempo (não varia em módulo, sentido ou direção) sendo, portanto, 
a aceleração, nula. O corpo se desloca a distâncias iguais, em intervalos de tempo 
iguais. Note que, uma vez que não há aceleração, sobre qualquer corpo em MRU 
a resultante das forças aplicadas é nula (F = ma = 0), caracterizando a primeira lei 
de Newton - Lei da Inércia. Uma das características dele é que sua velocidade, em 
qualquer instante, é igual à velocidade média,
FONTE: A autora.
Do movimento do corpo da figura acima, temos
a velocidade do corpo é de 5m/s e é constante, ou seja, o corpo percorreu a mesma 
distância no mesmo intervalo de tempo.
A função horária representa o endereço do corpo no tempo, ou seja, ela 
fornece a sua posição em qualquer tempo. A função horária x = f(t) é dada como segue,
FIGURA 9 - O CORPO SE DESLOCA NUMA TRAJETÓRIA RETILÍNEA COM VELOCIDADE 
CONSTANTE CARACTERIZANDO UM MRU.
UNIDADE 3 | EXPERIMENTOS
46
Onde, x é a posição, x0 é a posição inicial, v é a velocidade e t o tempo.
O movimento retilíneo uniformemente variado (MRUV) é aquele em 
que o corpo sofre aceleração constante. Para que o movimento continue sendo 
retilíneo, a aceleração deve ter a mesma direção da velocidade. Se aceleração tem 
o mesmo sentido da velocidade, o movimento é chamado de Movimento Retilíneo 
Uniformemente Acelerado. Se a aceleração tem sentido contrárioda velocidade, 
o movimento é chamado de Movimento Retilíneo Uniformemente Retardado. A 
aceleração do corpo pode ser determinada encontrando a razão entre a variação 
da velocidade pela variação do tempo,
Desta equação podemos deduzir uma equação para a velocidade, cujo resultado é,
Onde, v é a velocidade, v0 é a velocidade inicial, a é a aceleração e t o tempo.
A função horária x = f(t) do movimento de um corpo com aceleração 
constante e trajetória retilínea (MRUV) é,
Onde, x é a posição, x0 é a posição inicial, v0 é a velocidade inicial, a é a aceleração 
e t o tempo.
2 PROCEDIMENTO EXPERIMENTAL
MRU – Movimento Retilíneo Uniforme
Material Necessário:
• trilho de ar;
• cronômetro digital com fonte de DC (0 - 12 V);
• sensor START (S1) com suporte fixador;
• sensor STOP (S2) com suporte fixador;
• eletroímã com dois bornes e suporte fixador;
• chave liga desliga com 4 bornes;
• roldana raiada com 02 micro rolamentos e suporte fixador;
• 1 massa aferida de 10 g;
• 2 massas aferidas de 20 g;
• porta-pesos (5g);
TÓPICO 1 | TRILHO DE AR
47
• cabos de ligação especial com 6 pinos banana;
• fonte de fluxo de ar e mangueira;
• carrinho e acessórios.
Procedimentos:
1- Verificar se o experimento está montado conforme o esquema a seguir.
FONTE: A autora.
FIGURA 10 – ESQUEMA DA MONTAGEM DO EXPERIMENTO MRU – MOVIMENTO RETILÍNEO 
UNIFORME.
UNIDADE 3 | EXPERIMENTOS
48
2- Para completar a montagem do equipamento, devemos observar se o trilho 
está exatamente na horizontal.
3- Observar se o eletroímã está conectado corretamente no extremo do trilho e 
fazer um ajuste para que o centro do carrinho fique numa posição inicial igual 
a 0,200m.
4- Posicionar o primeiro sensor que aciona o cronômetro na posição x0 = 0,300m 
(posição inicial) e verificar se está conectado ao terminal START (S1) do 
cronômetro. A medida 0,100m fica compreendida entre o meio do sensor ao 
centro do carrinho (manter constante esta medida).
5- Posicionar o segundo sensor, que desliga o cronômetro, na posição x = 0,400m 
(posição final) e verificar se está conectado ao terminal STOP (S2) do cronômetro.
6- Verificar se a roldana está presa na outra extremidade do trilho.
7- Verificar se o eletroímã está ligado à fonte de tensão em série, com a chave liga 
e desliga.
8- Fixar o carrinho no eletroímã e ajustar a tensão aplicada ao eletroímã para que 
o carrinho não fique muito fixo. 
9- Prender uma extremidade do barbante ao carrinho.
10- Colocar uma massa de 35 g na outra extremidade do barbante.
(OBS. O comprimento do barbante é fundamental para este experimento. O 
seu comprimento deve garantir que a massa da ponta toque o chão antes que o 
carrinho passe pelo primeiro sensor).
FONTE: A autora.
FIGURA 11 – ESQUEMA DA MONTAGEM DO EXPERIMENTO MRU – MOVIMENTO 
RETILÍNEO UNIFORME.
TÓPICO 1 | TRILHO DE AR
49
11- Desligar o eletroímã liberando o carrinho e anotar na tabela o tempo indicado 
pelo cronômetro.
12- Repetir os procedimentos 8, 9, 10 e 11, três vezes e anotar os valores de tempo 
na tabela.
13- Reposicionar o segundo sensor para x = 0,500m e repetir os procedimentos 12.
14- Reposicionar o segundo sensor para x = 0,600m e repetir os procedimentos 12.
15- Reposicionar o segundo sensor para x = 0,700m e repetir os procedimentos 12.
16- Reposicionar o segundo sensor para x = 0,900m e repetir os procedimentos 12.
17- Reposicionar o segundo sensor para x = 1,000m e repetir os procedimentos 12.
FONTE: A autora.
TABELA 4 – DADOS OBSERVADOS.
18- Reposicionar o segundo sensor para x = 0,400m.
19- Colocar uma massa de 55 g na outra extremidade do barbante.
(OBS. O comprimento do barbante é fundamental para este experimento. O 
seu comprimento tem que garantir que a massa da ponta do toque o chão antes 
que o carrinho passe pelo primeiro sensor).
20- Desligar o eletroímã, liberando o carrinho e anotar na tabela o tempo indicado 
pelo cronômetro.
21- Repetir os procedimentos 8, 9, 18 e 11 três vezes e anotar os valores de tempo 
na tabela.
22- Reposicionar o segundo sensor para x = 0,500 m e repetir os procedimentos 20.
UNIDADE 3 | EXPERIMENTOS
50
23- Reposicionar o segundo sensor para x = 0,600m e repetir os procedimentos 20.
24- Reposicionar o segundo sensor para x = 0,700m e repetir os procedimentos 20.
25- Reposicionar o segundo sensor para x = 0,800m e repetir os procedimentos 20.
26- Reposicionar o segundo sensor para x = 0,900m e repetir os procedimentos 20.
27- Reposicionar o segundo sensor para x = 1,000m e repetir os procedimentos 20.
FONTE: A autora.
TABELA 5 – DADOS OBSERVADOS.
MRUV – MOVIMENTO RETILÍNEO UNIFORMEMENTE ACELERADO
Material Necessário:
• trilho de ar;
• cronômetro digital com fonte de DC (0 - 12 V);
• sensor STOP (S2) com suporte fixador;
• eletroímã com dois bornes e suporte fixador;
• chave liga desliga com quatro bornes,
• roldana raiada com dois microrrolamentos e suporte fixador;
• 1 massa aferida de 10 g;
• 2 massas aferidas de 20 g;
• porta-pesos (5 g);
• cabos de ligação especial com seis pinos banana;
• fonte de fluxo de ar e mangueira;
• carrinho e acessórios.
Procedimentos:
1- Verificar se o experimento esta montado conforme o esquema a seguir.
TÓPICO 1 | TRILHO DE AR
51
FONTE: A autora.
2- Para completar a montagem do equipamento, devemos observar se o trilho 
está exatamente na horizontal.
3- Verificar se o cronômetro está conectado à chave liga/desliga.
4- Posicionar o segundo sensor S2 (STOP) que desliga o cronômetro de modo a 
existir entre ele e a posição de repouso do carrinho uma distância Δx igual a 
0,100 m. (este deslocamento deve ser medido entre o pino central do carrinho e 
o centro do sensor (S2) STOP).
5- Verificar se a roldana está presa à outra extremidade do trilho.
FIGURA 12 – ESQUEMA DA MONTAGEM DO EXPERIMENTO MRUV – MOVIMENTO RETILÍNEO 
UNIFORMEMENTE ACELERADO.
UNIDADE 3 | EXPERIMENTOS
52
6- Verificar se o eletroímã está ligado à fonte de tensão em série com a chave liga 
e desliga.
7- Fixar o carrinho no eletroímã e ajustar a tensão aplicada ao eletroímã para que 
o carrinho não fique muito fixo.
8- Prender uma extremidade do barbante ao carrinho.
9- Colocar uma massa de 35 g na outra extremidade do barbante.
(OBS. - O comprimento do barbante é fundamental para este experimento. O 
seu comprimento tem que garantir que a massa da ponta não toque o chão 
antes que o carrinho passe pelo sensor S2).
FONTE: A autora.
10- Zerar o cronômetro.
11- Desligar o eletroímã liberando o carrinho e anotar na tabela o tempo indicado 
pelo cronômetro.
12- Repetir os procedimentos três vezes e anotar os valores de tempo na tabela.
13- Reposicionar o segundo sensor para Δx = 0,200 m e repetir os procedimentos.
14- Reposicionar o segundo sensor para Δx = 0,300 m e repetir os procedimentos.
15- Reposicionar o segundo sensor para Δx = 0,400 m e repetir os procedimentos.
16- Reposicionar o segundo sensor para Δx = 0,500 m e repetir os procedimentos.
FIGURA 13 – ESQUEMA DA MONTAGEM DO EXPERIMENTO MRU – MOVIMENTO RETILÍNEO 
UNIFORME.
TÓPICO 1 | TRILHO DE AR
53
17- Reposicionar o segundo sensor para Δx = 0,600 m e repetir os procedimentos.
18- Reposicionar o segundo sensor para Δx = 0,700 m e repetir os procedimentos.
19- Reposicionar o segundo sensor para Δx = 0,800 m e repetir os procedimentos.
FONTE: A autora.
TABELA 6 – DADOS OBSERVADOS.
20- Reposicionar o segundo sensor para Δx = 0,100 m.
21- Colocar uma massa de 55g na outra extremidade do barbante.
(OBS. - O comprimento do barbante é fundamental para este experimento. O seu 
comprimento tem que garantir que a massa da ponta não toque o chão antes que 
o carrinho passe pelo sensor S2).
22- Desligar o eletroímã liberando o carrinho e anotar na tabela o tempo indicado 
pelo cronômetro.
23- Repetir os procedimentos três vezes e anotar os valores de tempo na tabela.
24- Reposicionar o segundo sensor para Δx = 0,200 m e repetir os procedimentos.
25- Reposicionar o segundo sensor para Δx = 0,300 m e repetir os procedimentos.
26- Reposicionar o segundosensor para Δx = 0,400 m e repetir os procedimentos.
27- Reposicionar o segundo sensor para Δx = 0,500 m e repetir os procedimentos.
28- Reposicionar o segundo sensor para Δx = 0,600 m e repetir os procedimentos.
29- Reposicionar o segundo sensor para Δx = 0,700 m e repetir os procedimentos.
30- Reposicionar o segundo sensor para Δx = 0,800 m e repetir os procedimentos.
UNIDADE 3 | EXPERIMENTOS
54
FONTE: A autora.
TABELA 7 – DADOS OBSERVADOS. 
3 ATIVIDADES E QUESTIONÁRIO.
1. Defina movimento retilíneo uniforme.
2. Defina velocidade e dê a sua unidade no sistema internacional de 
medidas.
3. Defina movimento retilíneo uniformemente variado.
4. Defina aceleração e dê a sua unidade no sistema internacional 
de medidas.
5. Qual a diferença entre um movimento acelerado e um retardado.
6. Com os dados da tabela 4, construir o gráfico x x tm, e determinar 
a velocidade do carrinho pela inclinação da reta.
TÓPICO 1 | TRILHO DE AR
55
15. Com os dados da tabela 7, construir o gráfico x x tm. Qual a 
aparência da curva?
16. Com os dados da tabela 7, construir o gráfico v x tm, e determinar 
a aceleração do carrinho pela inclinação da reta.
7. Com os dados da tabela 4, construir o gráfico v x tm, e determinar 
a aceleração do carrinho pela inclinação da reta.
8. Com os dados da tabela 5, construir o gráfico x x tm, e determinar 
a velocidade do carrinho pela inclinação da reta.
9. Com os dados da tabela 5 construir o gráfico v x tm, e determinar 
a aceleração do carrinho pela inclinação da reta.
10. Considerando dentro da tolerância de erro (5%) nos valores 
encontrados nas tabelas 4 e 5, pode-se afirmar que a velocidade 
permaneceu constate em cada caso? Em caso negativo, explique.
11. Com os dados da tabela 6, construir o gráfico x x tm. Qual a 
aparência da curva?
12. Com os dados da tabela 6, construir o gráfico v x tm, e determinar 
a aceleração do carrinho pela inclinação da reta.
13. Com os dados da tabela 6, construir o gráfico x x tm2, e determinar 
a aceleração do carrinho pela inclinação da reta.
14. Considerando dentro da tolerância de erro (5%) nos valores encontrados 
nos itens 12 e 13, pode-se afirmar que a aceleração permaneceu constate, 
em cada caso acima? Em caso negativo, explique.
UNIDADE 3 | EXPERIMENTOS
56
17. Com os dados da tabela 7, construir o gráfico x x tm2 e determinar 
a aceleração do carrinho pela inclinação da reta.
18. Considerando dentro da tolerância de erro (5%) nos valores encontrados nos 
itens 16 e 17, pode-se afirmar que a aceleração permaneceu constate em cada 
caso? Em caso negativo, explique.
19. O que o grupo e você acharam do experimento? Pode ser melhorado? Em 
caso afirmativo, de que maneira poder-se-ia proceder?
57
RESUMO DO TÓPICO 1
Neste tópico, você viu que:
	Com o estudo desta unidade, você teve oportunidade de aprofundar seus 
conhecimentos sobre os movimentos retilíneos. Pôde comprovar, na prática, a 
diferença entre um movimento retilíneo uniforme e um movimento retilíneo 
uniformemente variado.
	Você pôde verificar o princípio da inércia e o princípio fundamental enunciado 
por Isaac Newton. Percebeu, ainda, a presença da aceleração em um sistema 
com uma força resultante não nula.
	Viu, através dos gráficos, como a velocidade varia com a presença de uma 
aceleração diferente de zero.
58
59
TÓPICO 2
RAMPA
UNIDADE 3
1 INTRODUÇÃO
A introdução referente ao MRU é encontrada na introdução do Tópico 1. 
Vamos dar sequência ao conteúdo, apresentando o conceito de energia mecânica.
A energia tem um conceito muito abrangente e, por isso, muito abstrato 
e difícil de ser definido em poucas palavras. Usando a experiência do nosso dia 
a dia, poderíamos dizer que a energia é algo que é capaz de originar mudanças 
no mundo. A queda de um corpo. A correnteza de um rio. A rachadura em uma 
parede. O vôo de um pássaro. A remoção de uma colina. A construção de uma 
represa. Em todos esses casos podemos notar a presença da energia.
Vamos nos restringir aqui à definição de energia, em mecânica (EM), como 
a capacidade de realizar trabalho. Um conceito completo inclui outras áreas como 
calor, luz, eletricidade, etc. Por enquanto, basta pensar na energia, como algo que 
pode ser transferido por meio de forças. A energia mecânica total de um sistema 
é a soma da energia potencial (EP) com a energia cinética (EC), isto é, EM = EP + EC. 
E no caso de um sistema conservativo, a energia mecânica obedece ao princípio 
de conservação, EMi = EMf. Lembrando das definições estudadas na disciplina de 
Física Geral, podemos escrever
60
UNIDADE 3 | EXPERIMENTOS
onde, na energia mecânica inicial tomamos os valores iniciais da 
velocidade vi e da altura hi e, na energia mecânica final, seus valores finais, vf e 
hf. Lembrando que a unidade da energia no SI é o Joule (J).
2 PROCEDIMENTO EXPERIMENTAL
MRU – Movimento Retilíneo Uniforme e Energia Mecânica
Material Necessário:
• rampa;
• cronômetro digital com fonte de DC (0 – 12V);
• sensor STOP (S2), com suporte fixador;
• sensor START (S1), com suporte fixador;
• eletroímã com suporte fixador;
• chave liga/desliga;
• cabos de Ligações;
• 2 Esferas.
ESFERA 1 (esfera maior)
Procedimentos:
1- Verificar se o experimento está montado conforme a figura a seguir.
TÓPICO 2 | RAMPA
61
FONTE: A autora.
2- Para completar a montagem do equipamento, devemos observar se o trilho 
está exatamente na horizontal.
3- Observar se o eletroímã está conectado corretamente no extremo do trilho.
4- Observar se o primeiro sensor (S1), que aciona o cronômetro, está na posição x0 
= 0,000 m (posição inicial) e conectado ao cabo terminal START do cronômetro.
5- Observar se o segundo sensor (S2), que desliga o cronômetro, está na posição x 
= 0,100 m (posição inicial) e conectado ao cabo terminal STOP do cronômetro.
6- Verificar se o eletroímã está ligado à fonte de tensão em série, com a chave liga 
e desliga.
7- Medir a massa da esfera 1 e fixá-la ao eletroímã já ligado.
8- Desligar o eletroímã, liberando a esfera e anotar o tempo indicado pelo 
cronômetro na tabela 7.
9- Repetir o procedimento 8, cinco vezes, e anotar os valores de tempo na tabela 7.
10- Reposicionar o segundo sensor para x = 0,200 m e repetir os procedimentos 8 e 9.
11- Reposicionar o segundo sensor para x = 0,300 m e repetir os procedimentos 8 e 9.
FIGURA 14 – ESQUEMA DA MONTAGEM DO EXPERIMENTO MRU – MOVIMENTO RETILÍNEO 
UNIFORME E ENERGIA MECÂNICA
62
UNIDADE 3 | EXPERIMENTOS
12- Reposicionar o segundo sensor para x = 0,400 m e repetir os procedimentos 8 e 9.
13- Reposicionar o segundo sensor para x = 0,500 m e repetir os procedimentos 8 e 9.
FONTE: A autora.
TABELA 8 – DADOS OBSERVADOS. 
ESFERA 2 (esfera menor)
Procedimentos:
1- Verificar se o experimento está montado conforme a figura a seguir.
FONTE: A autora.
FIGURA 15 – ESQUEMA DA MONTAGEM DO EXPERIMENTO MRU – MOVIMENTO RETILÍNEO 
UNIFORME E ENERGIA MECÂNICA
TÓPICO 2 | RAMPA
63
2- Para completar a montagem do equipamento, devemos observar se o trilho está 
exatamente na horizontal.
3- Observar se o eletroímã está conectado corretamente no extremo do trilho.
4- Observar se o primeiro sensor (S1), que aciona o cronômetro, está na posição x0 = 
0,000 m (posição inicial) e conectado ao cabo terminal START do cronômetro.
5- Observar se o segundo sensor (S2), que desliga o cronômetro, está na posição x = 
0,100 m (posição inicial) e conectado ao cabo terminal STOP do cronômetro.
6- Verificar se o eletroímã está ligado à fonte de tensão em série com a chave liga e 
desliga.
7- Medir a massa da esfera 2 e fixá-la no eletroímã já ligado.
8- Desligar o eletroímã liberando a esfera e anotar o tempo indicado pelo cronômetro 
na tabela 9.
9- Repetir o procedimento 8, cinco vezes e anotar os valores de tempo na tabela 9.
10- Reposicionar o segundo sensor para x = 0,200 m e repetir os procedimentos 8 e 9.
11- Reposicionar o segundo sensor para x = 0,300 m e repetir os procedimentos 8 e 9.
12- Reposicionar o segundo sensorpara x = 0,400 m e repetir os procedimentos 8 e 9.
13- Reposicionar o segundo sensor para x = 0,500 m e repetir os procedimentos 8 e 9.
FONTE: A autora.
TABELA 9 – DADOS OBSERVADOS. 
64
UNIDADE 3 | EXPERIMENTOS
3 ATIVIDADES E QUESTIONÁRIO
1. Defina movimento retilíneo uniforme.
2. Defina velocidade e qual é a sua unidade no sistema internacional 
de medidas.
3. Conceitue energia cinética e energia potencial gravitacional e 
quais são suas unidades no sistema internacional de medidas.
4. Com os dados da tabela 8, construir o gráfico x x tm, e determinar 
a velocidade da esfera pela inclinação da reta.
5. Com os dados da tabela 9, construir o gráfico x x tm, e determinar 
a velocidade da esfera pela inclinação da reta.
6. Considerando dentro da tolerância de erro (5%) nos valores 
encontrados nas tabelas 8 e 9, pode-se afirmar que a velocidade 
permaneceu constate em cada caso? Em caso negativo, explique.
7. A massa ou o tamanho das esferas interferiram no experimento? 
Comente.
8. Determine a energia potencial gravitacional de cada esfera no 
ponto de lançamento, em relação ao plano horizontal da calha.
65
9. Pelo princípio da conservação da energia, a energia cinética da 
esfera na parte horizontal da calha é igual à energia potencial 
gravitacional da esfera no ponto de lançamento. Com o valor da 
energia potencial gravitacional encontrado no item 8, determine 
a velocidade de cada esfera, na parte horizontal da calha. Existe alguma 
diferença entre os valores encontrados neste item e os do item 4? Em caso 
afirmativo, explique.
10. O que o grupo e você acharam do experimento? Pode ser melhorado? Em caso 
afirmativo, de que maneira isso poderia ser feito?
66
RESUMO DO TÓPICO 2
Neste tópico, vimos:
	Energia mecânica relacionada aos movimentos estudados no tópico anterior.
	Definimos, também, energia potencial e energia cinética.
	Exploramos o conceito de conservação da energia mecânica em sistemas 
conservativos.
67
TÓPICO 3
QUEDA LIVRE
UNIDADE 3
1 INTRODUÇÃO
Uma vez que nas proximidades da Terra o campo gravitacional pode ser 
considerado uniforme, a queda livre dos corpos, em regiões próxima à Terra, é 
um movimento retilíneo uniformemente variado, ignorando-se os efeitos da força 
de arrasto. Podemos escrever a equação horária para queda livre como sendo,
onde, y é a posição vertical, y0 é a posição vertical inicial, v0 é a velocidade inicial, 
g é a aceleração da gravidade e t o tempo.
2 PROCEDIMENTO EXPERIMENTAL
Material necessário:
• cronômetro digital;
• sensores para acionamento e parada do cronômetro;
• trilho vertical em alumínio, com tripé;
• eletroímã com cabos de ligação e interruptor;
• 2 Esferas de aço.
ESFERA 1 (esfera maior)
As definições de MRUV e Energia Mecânica são encontradas nas introduções 
do Tópico 1 e 2.
UNI
UNIDADE 3 | EXPERIMENTOS
68
Procedimentos;
1- Verificar se o experimento está montado conforme a figura a seguir.
FONTE: A autora.
2- Verificar se o eletroímã está acoplado na extremidade do trilho e conectado aos 
bornes da fonte DC, existente no próprio cronômetro, intercalado com a chave 
liga/desliga no circuito.
3- Observar se o cabo START (S1) do cronômetro está ligado na chave liga e desliga.
4- Observar se o sensor STOP (S2) está 10 cm abaixo da esfera quando presa ao 
eletroímã (prestar atenção no diâmetro da esfera e na posição em que ela para 
a contagem do tempo).
5- Verificar se o cabo do sensor STOP (S2) está conectado ao terminal do cronômetro.
6- Ligar o cronômetro na tomada (prestar atenção com a tensão na tomada).
7- Ligar o eletroímã.
FIGURA 16 – ESQUEMA DA MONTAGEM DO EXPERIMENTO QUEDA LIVRE.
TÓPICO 3 | QUEDA LIVRE
69
8- Medir a massa da esfera 1 e colocá-la em contato com o eletroímã.
9- Desligar o eletroímã, liberando a esfera, fazendo a leitura e anotando na tabela 
10 o tempo gasto para percorrer a distância vertical em questão.
10- Repetir os procedimentos 7, 8 e 9 cinco vezes.
11- Reposicionar o sensor STOP 20 cm abaixo da esfera quando presa ao eletroímã.
12- Repetir os procedimentos 7, 8 e 9 cinco vezes.
13- Reposicionar o sensor STOP 30 cm abaixo da esfera quando presa ao eletroímã.
14- Repetir os procedimentos 7, 8 e 9 cinco vezes.
15- Reposicionar o sensor STOP 40 cm abaixo da esfera quando presa ao eletroímã.
16- Repetir os procedimentos 7, 8 e 9 cinco vezes.
17- Reposicionar o sensor STOP 50 cm abaixo da esfera quando presa ao eletroímã.
18- Repetir os procedimentos 7, 8 e 9 cinco vezes.
19- Reposicionar o sensor STOP 60 cm abaixo da esfera quando presa ao eletroímã.
20- Repetir os procedimentos 7, 8 e 9 cinco vezes.
FONTE: A autora.
TABELA 10 – DADOS OBSERVADOS. 
UNIDADE 3 | EXPERIMENTOS
70
ESFERA 2 (esfera menor)
Procedimentos;
1- Verificar se o experimento está montado conforme a foto a seguir:
FONTE: A autora.
2- Verificar se o eletroímã esta acoplado à extremidade do trilho e conectado aos 
bornes da fonte DC, existente no próprio cronômetro, intercalado com a chave 
liga/desliga no circuito.
3- Observar se o cabo START (S1) do cronômetro está ligado à chave liga e desliga.
4- Observar se o sensor STOP (S2) está 10 cm abaixo da esfera, quando presa ao 
eletroímã (prestar atenção no diâmetro da esfera e na posição em que ela para 
a contagem do tempo).
5- Verificar se o cabo do sensor STOP (S2) está conectado ao terminal do cronômetro.
6- Ligar o cronômetro à tomada (prestar atenção para a tensão na tomada).
7- Ligar o eletroímã.
FIGURA 17 – ESQUEMA DA MONTAGEM DO EXPERIMENTO QUEDA LIVRE.
TÓPICO 3 | QUEDA LIVRE
71
8- Medir a massa da esfera 2 e colocá-la em contato com o eletroímã.
9- Desligar o eletroímã, liberando a esfera, fazendo a leitura e anotando na tabela 
11 o tempo gasto para percorrer a distância vertical em questão.
10- Repetir os procedimentos 7, 8 e 9 cinco vezes.
11- Reposicionar o sensor STOP 20 cm abaixo da esfera, quando presa ao eletroímã.
12- Repetir os procedimentos 7, 8 e 9 cinco vezes.
13- Reposicionar o sensor STOP 30 cm abaixo da esfera, quando presa ao eletroímã.
14- Repetir os procedimentos 7, 8 e 9 cinco vezes.
15- Reposicionar o sensor STOP 40 cm abaixo da esfera, quando presa ao eletroímã.
16- Repetir os procedimentos 7, 8 e 9 cinco vezes.
17- Reposicionar o sensor STOP 50 cm abaixo da esfera, quando presa ao eletroímã.
18- Repetir os procedimentos 7, 8 e 9 cinco vezes.
19- Reposicionar o sensor STOP 60 cm abaixo da esfera, quando presa ao eletroímã.
20- Repetir os procedimentos 7, 8 e 9 cinco vezes.
FONTE: A autora.
TABELA 11– DADOS OBSERVADOS. 
3 ATIVIDADES E QUESTIONÁRIO
1 Com os dados da tabela 10, calcular a aceleração da gravidade para 
cada medida e a velocidade da esfera ao passa pelo sensor STOP.
UNIDADE 3 | EXPERIMENTOS
72
FONTE: A autora.
TABELA 12 – DADOS OBSERVADOS. 
Com os dados da Tabela 12:
FONTE: A autora
TABELA 13 – DADOS OBSERVADOS. 
2. Calcular a Energia Potencial Gravitacional (Ep) da Esfera presa ao 
eletroímã em relação ao sensor STOP, para cada medida e anotar 
na tabela 13.
3. Calcular a Energia Cinética (Ecv) da esfera em função da velocidade 
da mesma ao passar pelo sensor STOP, para cada medida e anotar 
na tabela 13.
4. Calcular a Energia Cinética (Ecp) da esfera em função da Energia 
Potencial Gravitacional da mesma, calculada no item 2, e anotar 
na tabela 13.
5. Calcular o erro percentual entre os valores encontrados nos itens 
4 e 5 e anotar na tabela 13.
TÓPICO 3 | QUEDA LIVRE
73
6. Construir os seguintes gráficos:
FONTE: A autora
TABELA 14 – DADOS OBSERVADOS. 
Com os dados da Tabela 14:
• Altura x tempo (Y x t) – gráfico 01
• Altura x tempo2 (Y x t2) – gráfico 02
• Altura x velocidade (Y x v) – gráfico 03
• Altura x Ener. Potencial (Y x Ep) – gráfico 04 
7. Determinar, através da inclinação da reta do gráfico 2, a aceleração 
da gravidade.
8. Determinar, através da inclinação da reta do gráfico 4, o coeficiente 
angular da reta e dizer qual é o seu significado físico.
9. Com os dados da tabela 11, calcular a aceleração

Continue navegando