Buscar

Aula 10 Teorema de Green

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Disciplina: Análise Matemática para
Engenharia II
Aula 10: Teorema de Green
Apresentação
Nesta última aula, retornaremos ao cálculo das integrais de linha, agora, apresentando uma nova abordagem para resolução
desse tipo de integral, o Teorema de Green.
Esse teorema serve, dentre outras coisas, para facilitar os cálculos que por muitas das vezes acabam se tornando
demasiadamente extensos e cansativos.
Para isso, usaremos, também, os conceitos estudados nas aulas sobre integrais em formatos cartesianos e polares.
Objetivos
• Compreender o Teorema de Green;
• Aplicar esse teorema para resolução de integral de linha.
Teorema de Green
Alguns casos das integrais de linhas em campos escalares são demasiadamente cansativos em suas resoluções, pois,
dependendo do caso devemos calcular uma curva C como sendo a soma de outras curvas e para isso precisamos parametrizar
cada caminho, achar cada limite de integração.
A integral de linha sobre uma curva C será a soma das integrais de linha C + C + C +...+ C , isso já foi visto na Aula 8 em um dos
exemplos apresentados.
O Teorema de Green nos ajuda a resolver problemas desse tipo de uma maneira bem mais simples, facilitando bastante os
cálculos.
1 2 3 n
Esse teorema tem por �nalidade relacionar as integrais de linha sobre uma curva fechada
com as integrais duplas, delimitadas pela região do plano, podendo as mesmas serem em
forma cartesiana ou até mesmo polar.
O Teorema de Green pode ser apresentado da seguinte maneira:
Onde:
C é curva plana simples D a região delimitada por C, A e B derivadas parciais de primeira ordem contínuas sobre uma região
aberta que contém D.
 Adx + Bdy = (  − )dA∫
c
∬
D
∂B
∂x
∂A
∂y
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A Figura abaixo serve para exempli�car isso.
Representação da área de integração
Existem outras formas de demonstrar o Teorema de Green, como as representações 1 e 2 abaixo:
 Adx + Bdy∮
c
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Essa representação serve para enfatizar que a integral é calculada sobre uma curva fechada C, onde a sua orientação é positiva.
O limite da região de integração é representado por D, onde sua denotação se dá por ��, com isso podemos reescrever o Teorema
de Green do seguinte modo:
  ( − )dA =  Adx + Bdy [2]∬
D
∂B
∂x
∂A
∂y ∮aD
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Vejamos as aplicações desse teorema em problemas de integral de linhas.
Exemplo 1
Calcule a integral de linha ∫ � ��+4���� onde C é um triângulo de vértices (0,0), (1,0), (0,1).
Resolução:
Como podemos transformar uma integral de linha, que esteja fechada em C em uma onde possa ser utilizado o Teorema de
Green, é isso que será feito.
c
4
O Teorema de Green se apresenta assim:
 Adx + Bdy = (  − )dA∫
c
∬
D
∂B
∂x
∂A
∂y
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Com isso, temos que:
�=� e �=4��4
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Calculando a derivada parcial, encontramos:
= 0   e   = 4y ∂A∂y
∂B
∂x
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Agora, como iremos utilizar uma integral dupla, precisamos achar os limites de integração. Para facilitar o cálculo vamos analisar
a �gura do triângulo com os vértices que foram dados.
Fica fácil de identi�car que os limites em x estão entre 0 e 1; já para os limites de y temos que ele começa em 0 e vai até y = 1 – x,
como podemos ver na próxima �gura.
Com esses dados podemos calcular a integral dupla, �cando da seguinte maneira:
 ( − )dA∬
D
∂B
∂x
∂A
∂y
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Substituindo os valores já encontrados na integral, temos:
(y − 0)  dydx∫ 10 ∫ 1−x0
4ydydx∫ 10 ∫
1−x
0
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Integrando y e substituindo os valores, achamos:
  dx ∫ 10
4y2
1
1−x
0
   dx   ∫ 10 2y
2
1−x
0
2 (1 − x) dx  ∫ 10  
2
2 (1 − 2x + )  dx ∫ 10 x
2
(2 − 4x + 2 )  dx∫ 10 x
2
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Integrando x e substituindo pelos limites, temos:
2x − +4x
2
2
2x3
3
1
0  
2 ⋅ 1 − +   4⋅1
2
2
2⋅13
3
2 − 2 + =23
2
3
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Exemplo 2
Calcule a integral de linha ∫ � > ��+� �� onde C é um triângulo de vértices (0,0), (1,0), (0,1).
Resolução:
Os vértices desse triângulo são os mesmos do exemplo 1, isso já serve para facilitar os limites de integração na hora de
convertermos a integral de linha para integral dupla. Como iremos utilizar o Teorema de Green para resolução dessa integral,
temos:
c
2 2
A = y e B = x2 2
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Calculando a derivada parcial, encontramos:
 e = 2y ∂A∂y = 2x
∂A
∂y
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Os limites de integração, por ser tratar das mesmas coordenadas, já foram calculados: 0 ≤ � ≤ 1 e 0 ≤ � ≤ 1 − �.
Com esses dados então, podemos calcular a integral dupla, �cando da seguinte maneira:
Substituindo os valores já encontrados na integral, temos:
(2x − 2y)dydx∫ 10 ∫ 1−x0
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Integrando y e substituindo os valores, encontramos:
2xy −  dx∫ 10
2y2
2
1−x
0
  2xy −  dx  ∫ 10 ( )y
2  1−x0
  2x(1 − x) − (1 − x   dx  ∫ 10 )
2
2x − 2 − (1 − 2x + ) dx ∫ 10 x2 x2
2x − 2 − ( ) dx ∫ 10 x
2 1 + 2x − x2
(4x − 3 − 1) dx∫ 10 x2
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Integrando x e substituindo pelos limites, temos:
−   − x4x
2
2
3x3
3
1
0
− − 1   4⋅1
2
2
3⋅13
3
2 − 1 − 1 = 0
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Esses dois primeiros exemplos resolvidos transforma as integrais de linha em integrais duplas em formato cartesiano. Vejamos
agora alguns exemplos onde as integrais duplas estejam em formato polar.
Exemplo
Antes de continuar seus estudos, veja mais alguns exemplos <./galeria/aula10/anexo/Exemplos.pdf> .
Com esses exemplos esperamos que o Teorema de Green possa ajudar a resolver problemas envolvendo as integrais de linhas.
Para isso se faz necessário que os conteúdos vistos na aula de integrais duplas (coordenadas cartesiana e polares) sejam
revisitados, como forma de acelerar o processo de resolução das integrais.
https://estacio.webaula.com.br/cursos/go0024/galeria/aula10/anexo/Exemplos.pdf
https://estacio.webaula.com.br/cursos/go0024/galeria/aula10/anexo/Exemplos.pdf
https://estacio.webaula.com.br/cursos/go0024/galeria/aula10/anexo/Exemplos.pdf
https://estacio.webaula.com.br/cursos/go0024/galeria/aula10/anexo/Exemplos.pdf
https://estacio.webaula.com.br/cursos/go0024/galeria/aula10/anexo/Exemplos.pdf
https://estacio.webaula.com.br/cursos/go0024/galeria/aula10/anexo/Exemplos.pdf
Com esse conteúdo, chegamos ao �nal da disciplina de Análise Matemática para Engenharia II. Estamos certos de que os
exemplos abordados, as formas apresentadas de resolução e os materiais disponíveis podem ajudar no desenvolver do seu
curso.
Atividades
1. Calcule a integral de linha ∫ 3� ��+2� ��, onde C é um triângulo de vértices (0,0), (1,0), (0,1). O resultado éc 2 2
a) − 73
b) − 13
c) − 53
d) − 23
e) − 43
2. Calcule a integral de linha ∫ (4�−2�)��−(�−5��)��, sendo C o círculo � +� =9. O resultado é:� 2 2
a) −�
b) −2�
c) −3�
d) −4�
e) −5�
3. Calcule ∮ � ��+3���� em que C é a fronteira da região semianular contida no semiplano superior entre os círculos � +� =4 e
� +� =9. O resultado é:
�
2 2 2
2 2
a) 5π2
b) 7π2
c) 5π3
d) 5π4
e) 5π6
4. Calcule a Integral ∮ (�−� )��−(�+∛ln)��, onde C é a circunferência � +� =1. O resultado é:� ln� 2 2
a) −�
b) −2�
c) −3�
d) −4�
e) −5�
5. Uma de�nição de quando e como se deve usar o Teoremade Green está melhor representada na seguinte resposta:
a) Pode ser utilizada em qualquer tipo de integral de linha.
b) Pode ser utilizada em qualquer integral de linha em campo algébrico.
c) Pode ser utilizada em qualquer integral de linha em campo vetorial.
d) Não se pode utilizar em integral de linha.
e) Deve ser utilizada em uma integral de linha de curva fechada onde haja uma área limitada para sua integração.
NotasReferências
BROCHI, A. Cálculo Diferencial e Integral II (livro proprietário). Rio de Janeiro: SESES, 2015.
FINNEY, R. L.; WEIR, M. D.; GIORDANO, F. R. (Ed.). Cálculo George B. Thomas. São Paulo: Pearson, 2009. v. 1 e 2.
FLEMMING, D. M., GONÇALVES, M. B. Cálculo B. 2. ed. São Paulo: Pearson, 2007
MORETTIN, P. A.; HAZZAN, S.; BUSSAND, W. O. Cálculo: funções de uma e várias variáveis. São Paulo: Saraiva. 2013
STEWART, James. Cálculo Volume 2. São Paulo: Cegage Learning, 2013.
Explore mais
Objeto de aprendizagem:
• Campo vetorial <https://www.geogebra.org/m/NWMprFVN#material/xZWdwrjY> .
Leia os textos e assista aos vídeos :
• Uns exemplos do Teorema de Green; <https://www.ime.usp.br/~sylvain/Green.pdf>
• Teoremas de Green, de Stokes e da divergência. <https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-
and-stokes-theorem>
https://www.geogebra.org/m/NWMprFVN#material/xZWdwrjY
https://www.geogebra.org/m/NWMprFVN#material/xZWdwrjY
https://www.geogebra.org/m/NWMprFVN#material/xZWdwrjY
https://www.geogebra.org/m/NWMprFVN#material/xZWdwrjY
https://www.geogebra.org/m/NWMprFVN#material/xZWdwrjY
https://www.geogebra.org/m/NWMprFVN#material/xZWdwrjY
https://www.ime.usp.br/~sylvain/Green.pdf
https://www.ime.usp.br/~sylvain/Green.pdf
https://www.ime.usp.br/~sylvain/Green.pdf
https://www.ime.usp.br/~sylvain/Green.pdf
https://www.ime.usp.br/~sylvain/Green.pdf
https://www.ime.usp.br/~sylvain/Green.pdf
https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem
https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem
https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem
https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem
https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem
https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem
https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem
https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem
https://pt.khanacademy.org/math/multivariable-calculus/greens-theorem-and-stokes-theorem

Outros materiais