Logo Passei Direto
Buscar
Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Prévia do material em texto

Data
Nome do Aluno 
C A D E R N O
M1101
Turma
Nome da Escola
UTILIZE O LEITOR RESPOSTA ABAIXO DESSA LINHA ENQUADRANDO A CÂMERA APENAS NAS BOLINHAS
 A B C D E
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
MATEMÁTICA 2ª série do Ensino Médio
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO
3º Bimestre
BL01M11
01) (M110528H6) Carlos é piloto profissional de corridas e irá disputar uma prova automobilística nesse 
fim de semana. Quando seu carro apresenta falhas mecânicas e chove ao mesmo tempo, Carlos não 
consegue completar as corridas das quais participa. O engenheiro da equipe de Carlos informou que a 
probabilidade de seu carro apresentar falhas mecânicas durante essa prova é de 5%, e que a previsão de 
chuva para o dia em que essa prova ocorrerá é de 40%.
Qual é a probabilidade de Carlos completar essa prova nesse fim de semana?
A) 55%.
B) 57%.
C) 60%.
D) 95%.
E) 98%.
02) (M110572H6) Uma loja de roupas organizou uma promoção, na qual os clientes poderão retirar um cartão 
de uma urna para ganhar um prêmio após efetuarem suas compras em um determinado dia. Nessa urna, 
foram colocados 6 cartões de mesmo formato e tamanho, numerados de 1 a 6, que serão devolvidos 
à urna após cada retirada. Desses cartões, apenas o que contém o número 2 indica uma bolsa como 
prêmio e os demais indicam peças de roupas. Um grupo de 7 amigas vai fazer compras nessa loja nesse 
dia e vai participar dessa promoção, sendo que, 5 delas querem ganhar a bolsa.
Qual é a probabilidade de exatamente 5 dessas 7 amigas ganharem a bolsa nesse sorteio?
A) 7
5 6
1 5$c `m j
B) 6
1
6
55 2$` `j j
C) 7
5 6
1
6
55 2$ $c ` `m j j
D) 7
5 6
1
6
52 5$ $c ` `m j j
E) 5 6
1 2
6
5$ $ $^ ` ^ `h j h j
03) (M1118Q9SP) Pedro está colecionando figurinhas da Copa de Futebol de 2018. Ele tem 5 figurinhas 
repetidas de jogadores da França, 4 de jogadores da Dinamarca e 3 de jogadores do Brasil. Ele quer 
montar um pacote de figurinhas contendo 2 jogadores de cada um destes três times, de quantas maneiras 
ele pode fazê-lo?
A) 720
B) 180
C) 120
D) 90
E) 60
M1101
1
BL01M11
04) (M120652I7) Em comemoração ao Dia do Estudante, uma professora distribuirá, aleatoriamente, um 
bombom para cada um de seus alunos. Ao todo, ela levou 40 bombons para serem distribuídos, sendo 
5 de chocolate ao leite com recheio de morango, 8 de chocolate branco com recheio de brigadeiro, 12 de 
chocolate branco com recheio de morango e 15 de chocolate ao leite com recheio de brigadeiro.
Qual é a probabilidade do primeiro bombom distribuído ser um bombom com recheio de morango?
A) 
17
1 .
B) 
40
6 .
C) 
40
17 .
D) 
40
23 .
E) 
23
17 .
05) (M110573H6) Observe o Triângulo de Pascal apresentado abaixo.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
Por meio desse triângulo, é possível obter os coeficientes do desenvolvimento de (x + 3)4.
Qual é o termo central desse desenvolvimento? 
A) x4. 
B) 6x2. 
C) 9x3. 
D) 54x2. 
E) 90x2.
M1101
2
BL02M11
06) (M1119Q10SP) Um treinador de basquete deseja escolher 05 atletas para compor um time profissional, 
essa escolha deverá ser feita dentre os 10 integrantes da equipe do seu clube. De quantas maneiras 
diferentes o treinador poderá organizar seu time?
A) 2
B) 50
C) 252
D) 30240
E) 100000
07) (M120351I7) Uma professora dividiu sua turma em 12 grupos para a apresentação de um trabalho. Esses 
grupos receberam números de identificação de 1 a 12 para a realização de um sorteio que determinará a 
ordem das apresentações. Para esse sorteio, a professora colocou em uma urna 12 bolinhas numeradas 
também de 1 a 12, que serão retiradas aleatoriamente, determinando a ordem de apresentação dos 
grupos do primeiro ao último. Jurema é uma aluna dessa turma e deseja que seu grupo seja o primeiro a 
se apresentar.
Qual é a probabilidade do grupo de Jurema ser o primeiro a se apresentar?
A) 12
1 .
B) 11
1 .
C) 12
11 .
D) 12
12 .
E) 1
12 .
08) (M110574H6) Observe o binômio apresentado no quadro abaixo.
(x + 2)10
Qual é o 7º termo do desenvolvimento desse binômio?
A) 256x4.
B) 960x7.
C) 3 360x4.
D) 13 440x4.
E) 15 360x3.
09) (M110141I7) Em um sistema de segurança de um caixa eletrônico, é gerada, automaticamente, uma 
senha única de primeiro acesso para cada cliente. Essa senha é composta por 3 letras maiúsculas 
distintas, dentre as 26 letras do alfabeto.
Qual é a quantidade máxima de senhas diferentes que podem ser geradas nesse sistema de segurança?
A) 17 576.
B) 15 600.
C) 2 600.
D) 78.
E) 75.
M1101
3
BL02M11
10) (M110571H6) A fim de fazer um sorteio de brindes para seus 7 alunos, uma professora colocou em uma 
urna três fichas iguais, exceto pela cor, sendo uma azul e duas brancas. Se o aluno retirar a ficha azul, ele 
será presenteado com uma caneta e se retirar a ficha branca, com um lápis. Durante o sorteio, os alunos 
vão retirar uma ficha e, em seguida, colocá-la de volta na urna.
Qual é a probabilidade de exatamente 5 alunos serem presenteados com lápis?
A) 3
2 5
` j
B) 5 3
2$ ` j
C) 3
2
3
15 2$` `j j
D)
7
5 3
2
3
12 5$ $c ` `m j j
E)
7
5 3
2
3
15 2$ $c ` `m j j
M1101
4
BL03M11
11) (M110575H6) O 6° termo do desenvolvimento de um binômio é 56x3y5.
Qual é o 4º termo desse binômio?
A) 45x5y3.
B) 56x1y7.
C) 56x3y5.
D) 56x5y3.
E) 70x4y4.
12) (M1119Q7SP) Uma professora de arte propôs aos seus alunos a confecção de uma bandeira oficial para 
representar a escola. Todos os alunos confeccionarão um modelo que irá para votação de todos os alunos 
da escola. Veja o molde da bandeira:
A bandeira deve seguir alguns padrões, que é a utilização das cores do uniforme da escola: azul, amarelo, 
vermelho e verde nas suas cinco faixas. Porém, duas faixas consecutivas não podem ser pintadas com a 
mesma cor. Quantas possibilidades diferentes os alunos terão para escolher a sua bandeira?
A) 96
B) 120
C) 324
D) 1024
E) 1280
13) (M110568H6) Fábio é professor de matemática e aplicou um teste surpresa composto por 25 questões de 
múltipla escolha com 4 alternativas cada, das quais apenas uma é correta. 
Qual é a probabilidade de um aluno que marcar uma alternativa, aleatoriamente, em todas as questões, 
acertar exatamente 15 questões nesse teste aplicado por Fábio?
A) (0,25)15
B) (0,25)15 . (0,75)10
C) 25. (0,25)15 . (0,75)10
D)
25
15
c m. (0,25)10 . (0,75)15
E)
25
15
c m. (0,25)15 . (0,75)10
M1101
5
BL03M11
14) (M120108I7) Uma empresa está promovendo um processo seletivo para o qual se inscreveram 258 candidatos 
formados em administração e 63 formados em psicologia. Dentre os formados em administração, 77 são 
fluentes em língua inglesa e, dentre os formados em psicologia, 18 são fluentes nessa língua. Inicialmente, 
essa empresa convocará, de forma aleatória, para uma entrevista, somente os candidatos que são fluentes 
em língua inglesa.
Qual é a probabilidade de um candidato formado em psicologia ser o primeiro convocado para essa 
entrevista?
A) 321
18 .
B) 95
18 .
C) 321
63 .
D) 63
18 .
E) 321
95 .
15) (M110577H6) Observe o binômio apresentado no quadro abaixo.
(x + 5)6
Qual é o coeficiente do 3° termo do desenvolvimento desse binômio?
A) 75.
B) 125.
C) 375.
D) 2 500.
E) 9 375.
M1101
6
BL05M11
16) (M090921H6) O corpo humano tem muitas bactérias. De acordo com os dados divulgados em uma 
revista, só na pele, a quantidade presente de bactérias é em torno de 1 × 107 por centímetro quadrado. 
Ainda de acordo com essa revista, a medida da área de cada mão de um homem adulto é, em média, 
150 centímetros quadrados.
Com base nessas informações, em notação científica, as duas mãos de um homem adulto têm, em 
média, quantas bactérias?
A) 3 × 109.
B) 1,5 × 109.
C) 3 × 105.
D) 3,3 × 104.
17) (M090556H6) O batalhão do Corpo de Bombeiros de uma determinada cidade realizará um treinamento no 
qual parte da corporação desse batalhão deverá ir do topo de um prédioaté o prédio vizinho, caminhando 
sobre um cabo de aço completamente esticado e preparado para tal travessia. As alturas desses prédios, 
bem como a distância entre eles, estão representadas na figura abaixo.
Qual deverá ser a distância que parte dessa corporação caminhará sobre esse cabo de aço?
A) 9 m. 
B) 13 m.
C) 17 m.
D) 25 m.
18) (M090922H6) Jéssica precisa comprar um novo notebook doméstico para utilizar em seu trabalho. Ela decidiu 
que fará isso no ano de 2020 e está pesquisando modelos que possuam alta capacidade de armazenamento. 
Qual é uma capacidade de armazenamento de notebook doméstico que atende às necessidades de 
Jéssica?
A) 2 gigabytes.
B) 2 petabytes.
C) 2 quilobytes.
D) 2 terabytes.
M1101
7
BL05M11
19) (M080082H6) Observe a expressão algébrica dada no quadro abaixo.
7K² + 6K + 10K . 2K – 4K²
Uma possível simplificação para essa expressão algébrica é
A) 29K².
B) 3K² + 26K.
C) 23K² + 6K.
D) 20K² + 6K + 3.
20) (M090925H6) Maurício criou, recentemente, a página da internet de sua agência de viagens. Nessa página 
existe um cadastro para recebimento de promoções da agência, por meio do qual ele pode acompanhar 
desde o início as quantidades de novos cadastros. Nos 5 primeiros meses de funcionamento, essas 
quantidades de novos cadastros foram, em ordem, 50, 125, 150, 200 e 175. Maurício deseja organizar 
esses dados em um gráfico para acompanhar a evolução de novos cadastros, apresentando, inclusive, 
a média mensal desses dados.
O gráfico mais adequado para o objetivo de Maurício é
A)
50
75
125
150
Q
u
a
n
ti
d
a
d
e
 d
e
 n
o
v
o
s
 c
a
d
a
s
tr
o
s
Mês de funcionamento
175
200
25
0
1° mês
225
2° mês 3° mês 4° mês 5° mês
100
Média mensal
140
Novos cadastros no site B)
1° mês
2° mês
3° mês
4° mês
5° mês
Novos cadastros no site
50
125
150
200
175
150
Média mensal
140
C)
50
75
125
150
Novos cadastros no site
Q
u
a
n
ti
d
a
d
e
 d
e
 n
o
v
o
s
 c
a
d
a
s
tr
o
s
Mês de funcionamento
175
200
25
0
1° mês
225
2° mês 3° mês 4° mês 5° mês
100
Média mensal
150
D)
50 75 125 150
Quantidade de novos cadastros
M
ê
s
 d
e
 f
u
n
c
io
n
a
m
e
n
to
175 200250
1° mês
225100
Média mensal
150
2° mês
3° mês
4° mês
5° mês
Novos cadastros no site
M1101
8
BL09M11
21) (2010_MAT_EM3_H17_0695) Observe a reta numérica.
Assinale a alternativa que mostra a intersecção do intervalo [-2,3] com o intervalo [0,5].
A) [-2,0]
B) [-2,5]
C) [0,3]
D) [0,5]
E) [1,3]
22) (2012_MAT_EM3_H28(HO281)_023) A figura mostra uma das etapas da construção de um telhado de um 
galpão, onde estão sendo colocadas ripas de madeira, conforme figura.
6 m
8 m
Ripa de
madeira
No projeto original, a altura teria 6 metros, mas, por motivos técnicos, terá que ser reduzida em 2 metros, 
portanto o comprimento da ripa, em metros, passará a ser de
A) 3 5 .
B) 4 5 .
C) 5 5 .
D) 6 5 .
E) 7 5 .
23) (2010_MAT_EM3_H14_0400) Um feirante coloca à venda todas as frutas que trouxe em seu caixote. Nesse 
caixote existem 108 frutas, entre bananas, peras e maçãs. A quantidade de bananas é igual ao triplo da 
quantidade de peras, e a quantidade de peras, por sua vez, é igual ao dobro da quantidade de maçãs. Se, 
ao final da feira, todas as frutas foram vendidas, podemos afirmar que o feirante vendeu
A) 12 bananas.
B) 24 bananas.
C) 30 bananas.
D) 60 bananas.
E) 72 bananas.
M1101
9
BL09M11
24) (2012_MAT_EM3_H33_0469) Uma companhia de seguros fez um estudo e determinou que a probabilidade 
de uma pessoa ter um acidente enquanto pratica skate é 0,02.
Isso significa que, durante a prática de skate,
A) Em média, 98 em cada 100 praticantes não sofrem nenhum acidente.
B) Em média, 20 em cada 100 praticantes sofrem um acidente.
C) 80% dos praticantes de skate não sofrem nenhum acidente.
D) 20% dos praticantes sofrem um acidente durante a prática de skate.
E) 10% dos praticantes sofrem pelo menos um acidente.
25) (2010_MAT_EM3_H36_0273) Observe o gráfico abaixo; ele apresenta a evolução da produção semanal de 
arroz e de feijão, de uma empresa de grãos:
Podemos afirmar que
A) a produção de arroz sempre foi maior do que a de feijão.
B) a produção de feijão cresceu durante mais de 5 semanas.
C) houve momentos em que as produções de ambos os grãos cresceram.
D) da quinta para a sexta semana as produções de arroz e feijão caíram.
E) a produção de feijão teve mais crescimento do que a produção de arroz.
26) (2014_MAT_EM3_VUN_0017) Uma função exponencial f(x) = ax é crescente quando a > 1, decrescente 
quando 0 < a < 1.
A função exponencial decrescente é
A) f(x) = 3x.
B) f(x) = 3
2 x
` j .
C) f(x) = 5x.
D) f(x) = 5
7 x
` j .
E) f(x) = 7x.
M1101
10

Mais conteúdos dessa disciplina