Buscar

Processos Bioquímicos e Biofísicos em Animais (2)

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Objetivos
Módulo 1
Sangue
Descrever o processo de hematopoiese, de síntese e degradação da
hemoglobina, e de hemostasia.
Acessar módulo
Módulo 2
Equilíbrio hidroeletrolítico e sistemas tamponantes
Reconhecer a importância do equilíbrio hidroeletrolítico e dos sistemas
tamponantes do organismo animal.
Acessar módulo
Introdução
A bioquímica aplicada apresentará a você uma conexão entre a teoria e a sua aplicação prática envolvendo temas
de grande interesse na Medicina Veterinária, como a hematologia, os equilíbrios hidroeletrolíticos e acidobásico.
Ao longo deste conteúdo, você entenderá o motivo pelo qual, na maioria das vezes, associamos os quadros de
anemia à carência de ferro. Não é à toa que os animais aceleram a frequência respiratória diante de alguns estados
patológicos, assim como precisam ingerir água, mesmo sem a ativação do centro da sede.
Esses questionamentos e muitos outros serão abordados de forma clara e objetiva neste material que foi
desenvolvido para que você domine essas informações e faça a diferença em sua atuação profissional.
Sangue
Ao final deste módulo, você será capaz de descrever o processo de hematopoiese, de
síntese e degradação da hemoglobina, e de hemostasia.
Bioquímica
aplicada: Sangue e
equilíbrio hidroeletrolítico
Prof.ª Ursula Raquel do Carmo Fonseca da Silva
Descrição Bioquímica aplicada: processo de hematopoiese, equilíbrio hidroeletrolítico e equilíbrio acidobásico.
Propósito Compreender os processos bioquímicos que envolvem o sangue, a água corpórea, os eletrólitos e os sistemas
tamponantes do organismo é fundamental para correlacionar o padrão de normalidade aos quadros clínicos dos
animais em estados patológicos, o que é imprescindível durante a rotina do profissional clínico médico-veterinário.

1
dVídeos
Tecido sanguíneo
Aspectos gerais
O sangue é um tecido conjuntivo especializado que apresenta uma matriz extracelular fluida e é composto por uma
fração celular representada pelos elementos figurados (hemácias ou eritrócitos, leucócitos e plaquetas ou trombócitos) e
por uma fração líquida (plasma sanguíneo).
Composição do sangue.
Dentre as funções do sangue estão o transporte de nutrientes, o transporte de gases (principalmente O2 e CO2), o
transporte de hormônios, produtos metabólicos e de excreção das células para os órgãos excretores – como o rim, por
exemplo, e o controle da temperatura corporal e a defesa orgânica contra agentes patogênicos.
Hemácias, leucócitos e plaquetas na circulação sanguínea.
As hemácias apresentam como função a realização do
transporte de uma proteína denominada hemoglobina, a
qual transporta o oxigênio e gás carbônico. Os leucócitos
(neutrófilos, basófilos, eosinófilos, monócitos e linfócitos)
estão envolvidos na defesa do organismo e as plaquetas
estão relacionadas à hemostasia primária.
Já o plasma é composto por água (91%), proteínas (8%) e outras moléculas (1%).
Dentre as proteínas presentes no plasma estão a albumina (auxilia na pressão coloidosmótica e transporte de
moléculas), as globulinas (realizam transporte de moléculas e participam da defesa contra agentes patogênicos –
imunoglobulinas), o fibrinogênio e a protrombina (auxiliam na hemostasia) e o sistema complemento (participa das
defesas inatas e adquiridas).
As outras moléculas presentes no plasma incluem os eletrólitos (Na+, K+, Ca2+, Mg2+, Cl-, HCO3-, SO42- e PO43-), as
substâncias nitrogenadas não proteicas (ureia, ácido úrico e creatinina), os nutrientes (glicose, colesterol, triglicerídeos,
aminoácidos), as vitaminas (hidrossolúveis e lipossolúveis), os gases sanguíneos (O2, CO2 e N2) e as substâncias
reguladoras (enzimas e hormônios).
O volume de sangue corpóreo (volemia) corresponde à cerca de 7,5% do peso corporal do animal, e varia entre as
espécies, variando também em função da idade e das condições de saúde do indivíduo.
O tempo de vida das células sanguíneas também varia entre as espécies, além de variar de acordo com o tipo celular e,
em geral, é um período curto. Dessa forma, o sistema hematopoiético-lítico atua para manter a quantidade de células
sanguíneas estáveis. Esse sistema é composto por:
1. Medula óssea: responsável pela hematopoiese e o estoque de ferro (hemossiderina e ferritina).
2. Timo: diferenciação de linfócitos T.
3. Baço: produção de linfócitos B, reserva de hemácias, plaquetas e ferro, e destruição de hemácias velhas.
4. Sistema monocítico-fagocitário: hemocatarese, reserva de ferro e degradação de hemoglobina.
5. Fígado: produção de proteínas e fatores coagulantes, conversão de bilirrubina e reserva de vitamina B12 e de
Curiosidade
A cor do plasma sanguíneo é diferente entre as espécies animais, sendo límpido e incolor em caninos e felinos, e
ligeiramente amarelado em equinos e bovinos. A coloração amarelada do plasma dos herbívoros se deve aos pigmentos
caroteno e xantofila presentes nas plantas que compõem sua alimentação.

dVídeos
ferro.
6. Rins: síntese de eritropoetina e de trombopoetina, excreção de bilirrubina e degradação de hemoglobina
excretada.
7. Estômago e intestinos: auxílio na absorção de ferro e de vitamina B12.
Hemácias e hemoglobina
As hemácias são os glóbulos vermelhos do sangue, sendo
produzidas na medula óssea a partir da célula-tronco
pluripotente, de origem mesodérmica.
Apresentam como principal função a produção de
hemoglobina, que é a proteína responsável pelo
carreamento de oxigênio para todo o organismo.
As hemácias nos mamíferos são bicôncavas, anucleadas e desprovidas de mitocôndrias, e consequentemente, são
incapazes de realizar o ciclo de Krebs e a cadeia respiratória mitocondrial para a produção de ATP em níveis adequados.
Dessa forma, a produção energética desses glóbulos ocorre única e exclusivamente a partir da glicólise de forma
anaeróbica, levando à produção de lactato. O lactato, por sua vez, é utilizado na gliconeogênese hepática, sendo
responsável pela produção contínua de glicose a partir desta via do metabolismo dos carboidratos.
As hemácias precisam manter uma produção energética não só para a produção de ATP necessário para manter a
integridade estrutural e funcional deste glóbulo, mas também, com base em um desvio que ocorre na glicólise, há a
produção de um composto denominado 2,3-difosfoglicerato, necessário para o perfeito funcionamento das milhares de
moléculas de hemoglobina que são carreadas pelas hemácias e responsáveis pelo transporte dos gases sanguíneos. Na
imagem a seguir, podemos ver a composição do sangue com a proporção de cada elemento nos animais vertebrados.
Elementos constituintes do sangue em animais vertebrados.
Você sabia que o tempo de vida das hemácias também é diferente entre as espécies animais? Vamos ver estas
diferenças:
No interior das hemácias, está presente a hemoglobina, que é composta por quatro estruturas proteicas (globinas
contendo duas cadeias alfa e duas beta) ligadas a quatro estruturas não proteicas associadas ao ferro (grupos heme),
como na imagem a seguir.
Estrutura da hemoglobina.
Isso é importante porque o ferro é o responsável por transportar o gás oxigênio, pois esse íon se liga ao O2 com
facilidade. A ligação e a liberação do gás oxigênio do ferro são reguladas por mudanças na estrutura da hemoglobina
provocadas pela própria ligação desse gás ao grupo heme.
Variações na cadeia polipeptídica promovem a existência de três tipos de hemoglobinas: A HbA1, HbA2 e HBF.
Podemos perceber então que não há vida sem hemoglobina, já que o metabolismo celular para a produção de energia
está intimamente ligado à disponibilidade de O2 para a respiração celular.
A ligação da hemoglobina com o O2 forma o complexo oxihemoglobina (HbO2), que, quando alcança as células por meio
da vascularização sanguínea, libera o gás oxigênio, tornando o sangue rico em oxigênio (vermelho) em pobre em
Curiosidade
Em peixes, anfíbios, répteis e aves as hemácias são ovais ou elípticas e nucleadas. Entretanto, nos mamíferos, as hemácias
são arredondadas, bicôncavas,anucleadas com o tamanho variando em relação à espécie. Os cães apresentam a
morfologia muito semelhante aos humanos, e os caprinos a mais diferente.

Caninos
120 dias.
Felinos
70 dias.
Equinos
150 dias.
Bovinos
160 dias.
Se a hemoglobina é o composto responsável por carrear o gás oxigênio, por que ela não se encontra livre
no sangue em vez de no interior das hemácias? 
dVídeos
oxigênio (vermelho arroxeado).
Assim como a eritrocitose fisiológica melhora o desempenho físico do animal, a diminuição da quantidade de hemácias
(eritropenia) provoca diminuição de hemoglobina, levando a uma hipóxia tecidual, que gera cansaço exagerado seguido
de apatia e aumento da frequência respiratória, para tentar melhorar a oferta de oxigênio aos tecidos. Essa é uma
condição patológica muito comum na clínica médico-veterinária, sendo conhecida como anemia, que provoca também
palidez das mucosas. Essa condição pode ser notada na imagem a seguir:
Paciente canino exibindo palidez de pele e mucosas em função de severa anemia.
A anemia pode ser provocada por alguns fatores, tais como: perda excessiva de sangue pelo animal como em uma
hemorragia; excesso de destruição de hemácias (hemólise), pela ação de hemoparasitos ou por falta de ferro para
produção de hemoglobina, por exemplo; diminuição da produção de hemácias, por patologias na medula óssea ou nos
rins, já que eles são responsáveis por produzir eritropoetina, hormônio que participa da hematopoiese.
Hematopoiese
Neste vídeo, a especialista Ursula Raquel Fonseca, responde às cinco perguntas mais procuradas na internet sobre a
hematopoiese.
Síntese e degradação de hemoglobina
Síntese de hemoglobina
Para que ocorra a produção de hemoglobina pelas hemácias, há necessidade de compostos denominados de porfirinas,
que atuam como intermediários na biossíntese do grupamento heme, que é formado pelo encontro de uma molécula de
succinil-CoA com uma molécula de glicina pela entrada de um átomo de ferro no interior da porfirina.
Por esse motivo, muitos leigos sempre associam os quadros de anemia, ou seja, uma menor quantidade de hemoglobina,
à falta de ferro, já que esse mineral faz parte da composição da molécula de hemoglobina. Outro ponto que merece
destaque ao se pensar em ferro é que, na diminuição dos níveis sanguíneos de hemoglobina, é comum a ocorrência de
palidez das mucosas e da pele.
As porfirinas mais importantes para a formação do grupo heme são uroporfirina, coproporfirina e protoporfirina.
Veja, a seguir, um esquema relacionado às etapas de formação do grupo heme, que representa o grupo prostético da
molécula de hemoglobina.
Etapas da biossíntese do grupo heme.
Você sabe qual é a relação entre a eritrocitose fisiológica e a alta performance de animais atletas? 

Saiba mais
As porfirinas formam compostos metabólicos importantes para o organismo, estando a maioria delas associadas a íons
metálicos, sendo chamadas de metaloporfirinas. Esses compostos possuem quatro anéis heterocíclicos (I, II, III, IV), que
estão ligados entre si por grupos meteno (-CH=).

dVídeos
Caso aconteçam alterações genéticas na biossíntese do grupo heme, pode ocorrer acúmulo de compostos envolvidos na
sua produção, principalmente na medula óssea e no fígado. De maneira geral, esses acúmulos são denominados de
porfirias, que podem levar à fotossensibilidade ou à ocorrência de lesões nervosas.
Degradação de hemoglobina
Como vimos, a hemácia tem tempo de vida variado de acordo com a espécie animal. Quando ela envelhece, passa pelo
processo de hemocaterese, que inclui a degradação da hemoglobina. Essa degradação é responsável pela produção de
um pigmento denominado urobilinogênio, cuja maior parte deve ser excretada pelas fezes.
Quando as hemácias são jovens, sua membrana celular é flexível, o que permite sua passagem pelos vasos sanguíneos
sinuosos do baço. Porém, à medida que as hemácias completam seu tempo de vida útil, algumas moléculas de
superfície começam a ser expostas, o que diminui a flexibilidade da sua membrana. Os macrófagos presentes no baço
não as reconhecem mais e iniciam a hemocaterese com a fagocitose dessas células
Vamos conhecer esse processo agora!
Vale destacar que, dessa pequena fração que retorna ao fígado, há passagem pela circulação sistêmica de cerca de 1 a
3% de urobilinogênio aos rins, determinando o aparecimento de pequena quantidade deste pigmento na urina.
O esquema a seguir mostra a degradação da protoporfirina IX.
Degradação da hemoglobina.
O acúmulo da fração direta, da fração indireta ou de ambas as frações de bilirrubina no sangue leva a uma condição
patológica definida como icterícia, que é clinicamente detectada pela coloração amarelada na pele e mucosas,
visualizada na imagem a seguir.
Gato apresentando icterícia por lipidose hepática.
O plasma sanguíneo apresenta coloração bastante amarelada. Cristais de bilirrubina podem ser eliminados na urina,
como observados a seguir.
Cristais de bilirrubina em amostra urinária de cão. Aumento: 40x.
Como a transformação da bilirrubina inclui sua passagem pelo fígado, o acúmulo de bilirrubina no sangue dos animais
pode acontecer de três diferentes maneiras: pré-hepática, hepática ou pós-hepática.
Icterícia pré-hepática (ou hemolítica)
Ocorre quando há destruição acentuada de
hemácias, normalmente levando ao acúmulo de
bilirrubina indireta no sangue. Algumas
hemoparasitoses, como a babesiose e a
anaplasmose, provocam esse tipo de icterícia.
Icterícia hepática (ou hepatocelular)
Ocorre quando há prejuízo no funcionamento
hepático, normalmente ligado à falha na
excreção da bilirrubina direta ou conjugada para
o intestino. Esse tipo de icterícia é encontrado em
quadros de hepatites, por exemplo.
Icterícia pós-hepática (ou obstrutiva)
Ocorre quando há quadros de obstruções do fluxo
biliar, determinando também o acúmulo de
bilirrubina direta ou conjugada no sangue. Isso
acontece em casos de litíases (cálculos) biliares e
de lipidose (principalmente, em gatos), por
exemplo.
 Após a fagocitose por macrófagos especializados, as hemácias são rompidas, liberando hemoglobina intracelular. Em seguida,
essa hemoglobina é clivada em duas frações: a heme, composta pelo ferro e pela protoporfirina IX, e a globina, composta pelas
quatro cadeias polipeptídicas.
 Os aminoácidos das cadeias polipeptídicas e o ferro são reaproveitados, sendo o ferro estocado no interior dos macrófagos na
forma de ferritina. Já a protoporfirina IX sofre uma série de transformações catalisadas por ações enzimáticas a fim de se tornar
um composto solúvel para que possa ser excretado.
 A protoporfirina IX, por ação da enzima heme oxigenase, dá origem a um pigmento verde chamado biliverdina, que, por ação da
enzima biliverdina redutase, é transformada em bilirrubina indireta ou não conjugada. A bilirrubina indireta é lipossolúvel e apolar,
sendo carreada no plasma sanguíneo por meio de proteínas transportadoras plasmáticas, predominantemente a albumina.
 A bilirrubina indireta presente no plasma sanguíneo é encaminhada ao fígado para sofrer ação da enzima UDP-
glicuroniltransferase, responsável por adicionar o ácido glicurônico à molécula da bilirrubina, convertendo-a em bilirrubina direta ou
conjugada, que é hidrossolúvel e polar. Essa fração de bilirrubina é lançada juntamente com a bile ao intestino, no qual, por ação de
enzimas bacterianas, é convertida em urobilinogênio, que, em sua maioria, é excretado diretamente nas fezes na forma de
estercobilinogênio. Uma pequena fração retorna ao fígado, por meio da circulação entero-hepática, para novamente ser excretado
pela bile.
dVídeos
Vale destacar que os equinos podem apresentar “icterícia fisiológica”, comum nessas espécies, a qual é induzida por
privação alimentar por intervalos relativamente curtos, devido a uma menor captação de bilirrubina pelos hepatócitos.
Hemostasia
De�nição
O processo de hemostasia corresponde ao conjunto de mecanismos bioquímicos e funcionais responsáveispor manter o
sangue fluido e no interior dos vasos. Assim, podemos concluir que existe um controle muito preciso do organismo entre
perder sangue (hemorragia) e coagular sangue (hemostasia). Esse controle ocorre pelo processo de hemostasia, que é
dividido em três tipos: hemostasia primária, secundária e terciária.
Esquema dos processos envolvidos na hemostasia.
Hemostasia primária
A hemostasia primária engloba a interação entre os vasos sanguíneos e as plaquetas. Havendo uma lesão endotelial,
fenômenos relacionados à chamada tromborresistência são quebrados. Assim, haverá, inicialmente, uma
vasoconstricção da musculatura lisa da parede do endotélio. Em função da exposição de estruturas subendoteliais, as
plaquetas são rapidamente atraídas para o local da lesão, ocorrendo a chamada adesão plaquetária.
Para que ocorra uma adesão consistente, há necessidade da participação do Fator de von Willebrand, que funciona
como uma espécie de “cimento”, permitindo a ligação entre as plaquetas e as estruturas subendoteliais. As plaquetas
são, então, ativadas, liberando uma série de substâncias no meio, as quais atraem mais plaquetas para a área da lesão,
ocorrendo a agregação plaquetária.
Esquema da adesão plaquetária.
Após a adesão e a agregação plaquetárias, há uma parada no tempo de sangramento, uma vez que se forma o tampão
plaquetário primário. Contudo, muitas vezes, quando a lesão é muito extensa, o próprio fluxo sanguíneo consegue
deslocar esse tampão do lugar e o sangramento reinicia.
Nesses casos, a hemorragia só é contida com a hemostasia secundária, ou seja, há necessidade da atuação dos fatores
de coagulação.
Hemostasia secundária
A hemostasia secundária é representada pela atividade dos fatores de coagulação. A maior parte desses fatores é de
proteínas pró-coagulantes presentes no plasma sanguíneo e produzidas pelo fígado (exceção dos fatores III e IV), sendo
lançadas na corrente sanguínea em forma de zimogênios (forma inativa).
Desse modo, os fatores e a coagulação são classificados como enzimas, fatores (XII, XI, X, IX, VII, II e XIII) ou como
cofatores (V, VIII e cininogênio de alto peso molecular - HMWK).
A hemostasia secundária tem início a partir de duas vias da coagulação: via intrínseca e via extrínseca. Ambas
convergem para a via comum.
Via intrínseca
Envolve elementos do sangue e aqueles que não
costumam estar presentes no espaço
intravascular.
Via extrínseca
Envolve a liberação do fator tecidual pelo tecido
vascular.
Via comum
Envolve a ativação do fator X.
Atualmente, existem dois modelos propostos para o sistema de coagulação: o modelo clássico da coagulação e o
modelo baseado em evidências. Vamos conhecê-los melhor a seguir.
Modelo clássico
Fazem parte do modelo clássico as vias intrínseca, extrínseca e comum. As vias intrínseca e extrínseca convergem para a
ativação de protrombina em trombina – via comum. Todo esse processo acontece de maneira muito rápida e
simultânea. Podemos dizer que a geração de trombina, proveniente de lesão tecidual, ocorre em duas “ondas”:
1ª onda
Para a iniciação da coagulação, na qual
concentrações bem baixas de trombina são
formadas – via extrínseca.
2ª onda
Para amplificação da cascata e formação de
concentrações maiores de trombina – via
intrínseca.

dVídeos
Agora, é muito importante que você acompanhe a explicação prestando atenção na imagem que acompanha, para
compreender o modelo clássico da cascata de coagulação.
Via extrínseca
Tem início a partir de uma sinalização que não se encontra
normalmente disponível na luz do vaso, que é o fator
tecidual (FT - tromboplastina tecidual – fator III). Esse fator
tecidual é liberado quando o tecido é lesionado, formando
um complexo com o fator VII, mediado por íons cálcio. O
complexo VIIa + FT irá agir sobre o fator X estimulando sua
ativação (fator Xa), que, por sua vez, ao ligar-se ao cofator
Va, age na conversão da protrombina em trombina (II – IIa).
 1 de 2 
A ativação do fator X em Xa representa a via comum do modelo clássico da coagulação.
Assim, podemos representar a cascata de coagulação por um “Y”, uma vez que as vias intrínseca e extrínseca estão
convergindo para esta via comum, que tem início com o fator X, o qual torna-se ativo e, juntamente com o fator V, o cálcio
e o FP3, ativa o fator II, que, em seguida, ativa o fator I.
O fator II, quando inativo, é denominado protrombina; quando ativo, se chama trombina. Já o fator I inativo é
denominado fibrinogênio, e quando ativo se chama fibrina. Com a ativação do fator I, o fibrinogênio é convertido em
fibrina, que tem a capacidade de formar o coágulo sanguíneo.
Modelo baseado em evidências
Com base no modelo clássico, e com o avanço dos estudos na área, hoje em dia acredita-se que, além dos fatores de
coagulação e das plaquetas, a coagulação seja um processo mais amplo e diversificado, que inclui componentes
celulares e moleculares. Além disso, tem-se suspeitado cada vez mais que a cascata de coagulação não siga vias tão
lineares, e sim vias com comunicações intermediárias.
Nesse novo modelo, acredita-se que o complexo VIIa + FT da via extrínseca do modelo clássico também possa atuar na
ativação da via intrínseca, e que a trombina pode se comportar como ativadora fisiológica do fator XI. Desse modo, as
fases iniciais induzidas pelo contato não seriam mais tão essenciais. No novo modelo, o maior desencadeador da
hemostasia seria o complexo VIIa + FT, que ocorre em três fases concomitantes: iniciação, amplificação e propagação.
A seguir vemos uma representação das etapas desse modelo:
Modelo de coagulação baseado em superfícies celulares compreendendo as fases de iniciação, amplificação e
propagação.
Hemostasia terciária e distúrbios da coagulação
Fibrinólise
Após a formação do coágulo de fibrina e a recuperação vascular, é de grande importância que esse coágulo seja desfeito
e que a circulação local seja restabelecida por completo.
Durante a formação do coágulo, grande quantidade de plasminogênio fica retida nele, junto com outras proteínas do
plasma. Desse modo, o tecido lesionado libera inibidores da fibrinólise, como o inibidor da fibrinólise ativável pela
trombina (TAFI) e o inibidor do ativador do plasminogênio (PAI-1), o que impede que o plasminogênio retido no coágulo
seja ativado.
Quando o sangramento é interrompido e o tecido se recupera da lesão, o endotélio vascular libera o ativador do
plasminogênio tecidual (AP-t), que converte o plasminogênio em plasmina. A plasmina, por sua vez, digere a fibrina e o
fibrinogênio, gerando os produtos de degradação de fibrina/fibrinogênio (PDF), removendo o coágulo sanguíneo e
restabelecendo o fluxo sanguíneo normal.
Observe a seguir um resumo do processo de hemostasia:
Estágio 1 - Agregação plauquetária
 1 de 5 
 
 
dVídeos
Distúrbios da coagulação
Na maioria das vezes, a observação criteriosa do médico-veterinário, analisando a natureza clínica dos distúrbios
hemorrágicos, pode auxiliar, de forma muito positiva, na identificação da natureza do problema, ou seja, se a causa da
hemorragia é por algo que esteja afetando a hemostasia primária, secundária ou terciária.
Os principais sinais clínicos associados a defeitos
hemostáticos primários, ou seja, relacionados à
hemostasia primária, são o aparecimento de áreas de
equimose, petéquias ou púrpuras.
Já os principais sinais associados a defeitos
hemostáticos secundários (relacionados à hemostasia
secundária) são hemartrose, hematoma e hemoptise.
Os sinais relacionados à hemostasia terciária (defeitos
hemostáticos terciários) são epistaxe (sangramento
nasal), hematêmese (presença de sangue no vômito),
hematoquezia (presença de sangue nas fezes), hematúria
(presença de sangue na urina), melena (fezes escuras e
com odor fétido), hemorragia prolongada ou espontânea.
Hematúria.
Particularidades da hemostasia
O uso de antagonistas da vitamina K (como, por exemplo, warfarin) resulta na falha da hemostasia secundária. Isso
ocorre porquenão haverá vitamina K suficiente para permitir uma carboxilação final nas moléculas desses fatores.
Desse modo, toda a cascata de coagulação fica prejudicada, podendo causar hemorragias de grandes proporções.
O cálcio (fator IV) é oferecido com base na dieta e apresenta função de cofator na cascata de coagulação, sendo
necessário nas três vias em quantidade muito pequena, logo não é possível haver hemorragia por deficiência desse fator,
pois ele exerce outras funções vitais, sendo necessário em quantidade superior àquela na coagulação sanguínea.
Hepatopatias graves correspondem à lesão de mais de
70% do fígado e determinam falha na produção dos
fatores de coagulação, causando hemorragias de grandes
proporções.
As hemofilias são raras em Medicina Veterinária, sendo
que a hemofilia clássica é a hemofilia A, que compreende
a deficiência de FVIII da coagulação sanguínea, sendo
uma doença decorrente de alterações nos genes
codificantes do FVIII que se localizam no cromossomo X.
Existem ainda relatos de hemofilia B, que é a deficiência
do fator IX, bem como de hemofilia C, que é a deficiência
ou anormalidade do fator XI.
Para o estabelecimento do diagnóstico de hemofilias, é de primordial importância, além do histórico detalhado de
anamnese, a realização de hemogramas e coagulogramas. O coagulograma é responsável pela caracterização do tempo
de coagulação, por meio dos fatores da via extrínseca e comum, bem como da via intrínseca e comum.
Vem que eu te explico!
Os vídeos a seguir abordam os assuntos mais relevantes do conteúdo que você acabou de estudar.
Módulo 1 - Vem que eu te explico!
Tecido sanguíneo
Módulo 1 - Vem que eu te explico!
Hemácias e hemoglobina
Módulo 1 - Vem que eu te explico!
Síntese e degradação de hemoglobina
Curiosidade
O primeiro relato de hemofilia em animais ocorreu em 1947, quando um criador de cães notou um sangramento prolongado
enquanto cortava as unhas de seu cão.



dVídeos
Avalie o módulo
Enviar
Equilíbrio hidroeletrolítico e sistemas
tamponantes
Ao final deste módulo, você será capaz de reconhecer a importância do equilíbrio
Vamos praticar alguns conceitos?
Falta pouco para atingir seus
objetivos.
Questão 1
Vimos que a hemácia tem tempo de vida variado de acordo com a espécie animal e, quando envelhece, passa pelo
processo de hemocaterese, que inclui a degradação da hemoglobina. Sobre esse assunto, analise as afirmativas a
seguir e assinale a alternativa correta.
A
Os macrófagos presentes na medula óssea são responsáveis pela fagocitose das hemácias
envelhecidas.
B
Alguns equinos podem apresentar “icterícia fisiológica” induzida por privação alimentar por intervalos
relativamente curtos.
C A biliverdina é convertida em bilirrubina indireta ou não conjugada, que é hidrossolúvel e polar.
D
A bilirrubina indireta é transformada no fígado em bilirrubina direta ou conjugada, que é lipossolúvel e
apolar.
E A bilirrubina direta é excretada do organismo apenas pelas fezes.
Responder
Questão 2
Vimos que a coagulação pode ser didaticamente dividida em hemostasia primária, secundária e fibrinólise. Sobre a
hemostasia secundária, analise as afirmativas a seguir e marque a alternativa correta.
I. A hemostasia secundária visa à resolução rápida da injúria vascular.
II. A hemostasia secundária consiste na conversão de fibrinogênio em fibrina mediada pela trombina.
III. Os fatores de coagulação envolvidos na hemostasia secundária são basicamente produzidos pelas plaquetas.
É correto o que se afirma em:
A II e III.
B I e II.
C I.
D II.
E III.
Responder

2
dVídeos
hidroeletrolítico e dos sistemas tamponantes do organismo animal.
Introdução ao equilíbrio hidroeletrolítico
A importância da água para a célula
Os seres vivos, diferentemente da matéria inerte, são constituídos por moléculas complexas que interagem entre si.
Desse modo, esses seres podem extrair, transformar e utilizar a energia que encontram no meio ambiente em benefício
próprio, seja na forma de nutrientes químicos seja em luz solar, fato não observado nos seres inanimados. A unidade que
está nos bastidores de toda a justificativa para essas marcantes diferenças é a célula.
As células estão imersas em meios aquosos.
São constituídas também, internamente, por grande
quantidade de água, tendo-se cuidado no que diz respeito
à separação eficaz entre os compartimentos intra e
extracelular, já que ambos não são hermeticamente
fechados.
É de extrema importância manter o equilíbrio dos compartimentos intra e extracelular, tanto em volume quanto em
composição bioquímica, o que inclui os eletrólitos, para que os eventos fisiológicos que mantêm a vida sejam
garantidos.
Os eletrólitos são minerais que apresentam carga elétrica quando dissolvidos em líquidos corporais. Como a água é o
principal componente dos compartimentos intra e extracelular, sendo considerada um solvente universal, os eletrólitos se
encontram dissolvidos nesse líquido.
Composição dos líquidos intra e extracelular
A distribuição de água no organismo é intracelular e extracelular. De maneira geral, a proporção média de água do
organismo é de aproximadamente 60 a 70%, sendo composta por cerca de 35% de líquido intracelular e 25% de líquido
extracelular. Este, por sua vez, contém 19% de líquido intersticial, 4,5% de água do plasma sanguíneo e 1,5% de água
transcelular (líquor, lágrimas e secreção das glândulas intestinais, por exemplo).
A composição dos compartimentos de água é bastante variada. O plasma sanguíneo é rico em proteínas, e os líquidos
intra e extracelular se diferenciam em sua composição iônica. Para uma perfeita compreensão dos eventos fisiológicos
necessários à homeostase, é preciso conhecermos como os eletrólitos, que são sais inorgânicos que participam de
eventos fisiológicos intra e extracelulares, estão distribuídos entre ambos os compartimentos no organismo.
Os eletrólitos são adquiridos a partir da dieta e absorvidos
pelo trato digestivo, havendo excreção da concentração
em excesso, por: urina, fezes, suor, saliva e bile.
Quando absorvidos, sofrem pouco ou nenhum
processamento hepático, sendo transferidos aos tecidos
periféricos para exercer suas funções fisiológicas. As
diferenças na composição entre o líquido intra e o
Compartimentos líquidos do organismo e seu equilíbrio.
Saiba mais
O organismo precisa manter os eletrólitos em equilíbrio, para que, mesmo com grande variação na entrada e saída de água
no organismo, as concentrações dos eletrólitos nos compartimentos corporais não sofram grandes variações. Caso haja
variações, precisam ser imediatamente corrigidas, em busca do retorno à homeostase. Esse mecanismo se dá por meio das
regulações do equilíbrio hidroeletrolítico e acidobásico.

Curiosidade
Animais jovens possuem uma porcentagem de água corpórea maior que a dos adultos.

dVídeos
extracelular são mantidas ativamente pela membrana
plasmática, que é semipermeável.
Alterações do volume de água e do teor salino são
contrabalanceadas por meio da sede, determinando um
aumento ou uma redução de sais e água, assim como
poderá ocorrer também a regulação da diurese pelos rins,
aumentando ou reduzindo a excreção salina e de água.
O sódio, que existe principalmente no compartimento extracelular, determina o volume extracelular. Já no líquido
intracelular, há predomínio de potássio. O controle da concentração desses eletrólitos é realizado principalmente pela
bomba de sódio-potássio ATPase.
Observe, na imagem, que existe maior concentração de sódio no meio extracelular (MEC) e maior concentração de
potássio no meio intracelular (MIC), graças à ação da bomba de Na+-K+ ATPase.
Transporte ativo de sódio e potássio.
Os íons cloreto e bicarbonato, sendo este último o único íon que pode ser tanto formado como excretado com grande
rapidez pelo organismo, apresentam as suas concentrações dependentes das concentrações de sódio.
Distúrbios hidroeletrolíticos
Conceitos iniciais
Como aprendemos, a concentração deeletrólitos (sódio, potássio, cálcio, cloreto, magnésio, fosfato e bicarbonato) e de
água deve se manter em equilíbrio entre os meios intra e extracelular. Portanto, qualquer prejuízo no controle do equilíbrio
eletrolítico no interior da célula determina uma perda significativa no funcionamento das rotas metabólicas. Dessa
maneira, recursos serão desviados para alcançar a homeostase em detrimento das demais funções orgânicas, tais como
crescimento e produção.
Os distúrbios eletrolíticos surgem quando o nível de algum dos eletrólitos não está na faixa normal. Na maioria dos
casos, os distúrbios ocorrem pelo aumento da concentração do eletrólito quando há ingestão excessiva ou redução na
eliminação de um eletrólito, ou pela diminuição da sua concentração quando há ingestão diminuída ou eliminação
excessiva dele.
Sódio
Esse eletrólito tem maior concentração no líquido extracelular, participando da regulação da osmolaridade.
O sódio é o principal cátion no meio extracelular e o responsável por regular a distribuição de água no organismo, a
pressão osmótica. Além disso, é importante para atividade neuromuscular e ação da bomba de sódio-potássio.
A regulação da concentração de sódio e de água corpórea é realizada pelos rins. Participam desse processo a
aldosterona e o peptídeo natriurético atrial.
De forma simplificada, a aldosterona promove retenção de sódio enquanto o peptídeo natriurético atrial promove sua
excreção. Vamos entender melhor as alterações da concentração plasmática de sódio:
Exemplo
Se o excesso de sódio for excretado pelos rins, geralmente o cloreto vai acompanhar essa excreção. Como também haverá
excreção de cloreto, pode ocorrer uma condição de alcalose (aumento do pH sanguíneo) por acúmulo de bicarbonato, com o
propósito de manter a eletroneutralidade do líquido extracelular.

Atenção!
O médico-veterinário clínico deve estar atento a quadros que envolvam vômitos, diarreias ou aumento do volume de urina,
que são os principais responsáveis pela perda de eletrólitos e água, ou seja, pela alteração do balanço hidroeletrolítico
fisiológico. Assim, é muito importante que o médico-veterinário realize a dosagem de eletrólitos de seus pacientes para que
possa auxiliar na correção de qualquer desbalanço.

Mas o que é osmolaridade? 
dVídeos
É o aumento da concentração plasmática de sódio e pode ser resultado do aumento de sua ingestão ou da perda excessiva de água,
como em casos de hiperadrenocorticismo, restrição da ingestão de água, diabetes insipidus e insuficiência renal, por exemplo. Nesses
casos, os pacientes costumam apresentar aumento da sede, fraqueza, irritabilidade, depressão, ataxia, mioclonias e coma.
Potássio
Diferentemente do sódio, o potássio está mais concentrado no meio intracelular (95%), sendo responsável pela
manutenção do volume intracelular e do potencial de membrana.
A regulação da concentração de potássio entre os meios intra e extracelular se dá pela bomba de sódio-potássio ATPase.
Os desequilíbrios entre essas concentrações levam a alterações neurológicas e musculares. Já a regulação da
concentração de potássio no plasma sanguíneo é feita pelos rins e conta com a participação da aldosterona.
As alterações na concentração de potássio no plasma são chamadas hipocalemia ou hipercalemia. Podemos
compreendê-las melhor a seguir.
Também chamada de hipopotassemia, é o nome dado à diminuição da concentração de potássio no plasma sanguíneo. Pode ocorrer
pela ingestão insuficiente, perda excessiva ou redistribuição do potássio extracelular, como em casos de anorexia, vômitos, diarreia,
poliúria, tratamento diurético ou insulínico, por exemplo. O animal nessa situação apresenta fraqueza muscular, poliúria, polidipsia,
letargia, íleo paralítico, ventroflexão de pescoço em gatos, dentre outros sinais.
Cães da raça Akita apresentam grande quantidade de
potássio no interior de suas hemácias, portanto quadros
de hemólise podem provocar hipercalemia. Por essa razão,
bancos de sangue não costumam estocar bolsas de
sangue total ou de hemácias de cães dessa raça.
Cálcio
O cálcio apresenta uma maior concentração na matriz óssea (99%), estando presente também na membrana plasmática
e no retículo endoplasmático das células corpóreas (0,9%) e no compartimento extracelular (0,1%).
Mais da metade do cálcio extracelular encontra-se em sua forma ativa, enquanto o restante liga-se à albumina ou a
ânions, formando o citrato, fosfato, bicarbonato e lactato, por exemplo. A regulação da concentração de cálcio entre
esses compartimentos ocorre pelo paratormônio (produzido pelas glândulas paratireoides), pela calcitonina (produzida
pela glândula tireoide) e pela vitamina D (proveniente da ingestão).
As alterações na concentração de cálcio são chamadas hipocalcemia e hipercalcemia.
Hipocalcemia
É a diminuição da concentração de cálcio
plasmática. Ocorre devido a doenças hepáticas,
patologias renais, má absorção intestinal,
hipertireoidismo em gatos e obstrução uretral,
por exemplo. Os sinais clínicos de hipocalcemia
incluem irritabilidade, marcha rígida,
hipertermia, tremores, tetania e convulsões.
Hipercalcemia
É o aumento da concentração de cálcio no
plasma e pode ser induzida por
hiperparatireoidismo, intoxicação por vitamina
D, insuficiência renal e tumores, e acarreta
quadro de poliúria, polidipsia, vômitos, fraqueza
muscular, bradicardia e depressão do SNC.
Um exemplo de consequência provocada pela deficiência de cálcio no sangue animal é a tetania puerperal ou febre do
leite, que acomete principalmente cadelas e vacas no período pós-parto, durante a lactação.
Cloreto
Hipernatremia Hiponatremia
Hipocalemia Hipercalemia

Saiba mais
A diminuição da ingestão de alimentos no período pré-parto, associada ao aumento da necessidade de cálcio para a
produção do colostro e leite, provoca diminuição súbita dos níveis de cálcio no período puerperal, o que acarreta inicialmente
tetania e tremores musculares, seguidos de decúbito e fraqueza muscular severa, podendo levar ao coma seguido de morte.
Por isso, o manejo nutricional de fêmeas prenhes realizado pelo médico-veterinário é tão importante!

dVídeos
A concentração plasmática de cloreto é influenciada pela concentração de sódio e bicarbonato. As alterações na
concentração de cloreto no plasma sanguíneo são chamadas hipercloremia e hipocloremia.
Hipercloremia
É o aumento da concentração de cloreto no
plasma sanguíneo. Pode ocorrer em casos de
acidose metabólica, intoxicações por
etilenoglicol e salicilatos, diarreias, terapia com
cloreto de amônio em gatos ou
hiperfluidoterapia, podendo levar à fraqueza.
Hipocloremia
É a diminuição de cloreto no plasma sanguíneo
e geralmente está associada à alcalose
metabólica causada por vômitos agudos e
terapia diurética, por exemplo, podendo levar à
fraqueza e a espasmos musculares.
Magnésio
A maior parte do magnésio é encontrada nos ossos enquanto no sangue há uma pequena concentração desse eletrólito.
Além de o magnésio ser necessário para a formação saudável de dentes e ossos e para a função fisiológica de nervos e
músculos, diversas enzimas o utilizam para seu funcionamento, além de ele participar do metabolismo do potássio e do
cálcio. As alterações dos níveis de magnésio são a hipermagnesemia e a hipomagnesemia, conforme vemos a seguir:
Hipermagnesemia
É o aumento dos níveis de magnésio no
sangue. Essa condição costuma ocorrer em
quadros de insuficiência renal, constipação e
ingestão excessiva de magnésio, por exemplo,
provocando diminuição das respostas pós-
sinápticas na junção neuromuscular,
acometendo principalmente os sistemas
cardiovascular, muscular e nervoso.
Hipomagnesemia
É a diminuição dos níveis de magnésio no
sangue e costuma estar relacionada à
insuficiência renal, à insuficiência de ingestão
de magnésio, a quadros de má absorção
intestinal, dentre outros casos. Os sinais
clínicos incluem tetania, tremores e
fasciculações musculares.
A tetania das pastagens é umacondição clínica encontrada em bovinos que se alimentam em pastagens com
predomínio de gramíneas com baixo teor de fibras e magnésio e alta concentração de proteínas. O quadro ocorre
também em animais que se alimentam de pastagens adubadas com fertilizantes ricos em nitrogênio e potássio, pois
eles provocam uma diminuição da concentração de cálcio e magnésio nas plantas, já que o potássio e o magnésio
concorrem pelos mesmos sítios de absorção nas plantas.
Da mesma maneira, a digestão dos altos níveis de proteínas presentes em forragens mais novas provoca o aumento da
concentração de amônia no rúmen, o que acarreta redução da absorção do magnésio.
Podemos então perceber a importância da atuação do médico-veterinário não somente no manejo nutricional dos
animais, mas também na avaliação e escolha de plantas forrageiras para nutrição de animais de produção.
Fósforo
Quase todo fósforo existente no organismo está na forma de fosfato ou associado ao oxigênio.
A maior concentração de fosfato corpóreo encontra-se nos ossos, e o restante no meio intracelular, participando da
produção de energia para a célula. A condição de aumento de fosfato no sangue é chamada de hiperfosfatemia e sua
diminuição de hipofosfatemia.
Em animais jovens, a hiperfosfatemia pode ser fisiológica devido à ação do hormônio do crescimento, que aumenta a
reabsorção renal de fósforo para o crescimento ósseo.
Casca de ovo com deformidade.
Já a hiperfosfatemia patológica pode estar relacionada
com hipervitaminose D, intoxicação por jasmim em cães e
gatos, ingestão alimentar em excesso, tumores ósseos,
insuficiência renal aguda, dentre outras causas, podendo
ocorrer sinais neuromusculares.
A hipofosfatemia está relacionada com a ingestão
deficitária de fósforo ou vitamina D, ou ainda com a
ingestão excessiva de cálcio. Pode causar fragilidade
óssea, raquitismo em jovens e deficiência da
mineralização dos ossos (osteomalácia) em adultos, além


Saiba mais
Os sintomas da tetania das pastagens incluem hiperirritabilidade, contrações musculares involuntárias, sialorreia e ranger
dos dentes, incoordenação, hiperestesia, tetania, espasmos musculares e convulsões.

dVídeos
de retardo no crescimento e deformação na casca dos
ovos em aves.
Bicarbonato
Devido à sua importância na regulação do equilíbrio acidobásico, estudaremos o bicarbonato junto com os sistemas de
tamponamento orgânicos.
Sistemas de tamponamento orgânicos
pH
Algumas substâncias têm a capacidade de se ionizar quando dissolvidas em água, produzindo prótons (H+) ou íons
hidroxila (OH-).
Assim, as soluções compostas por essas substâncias podem ser classificadas em ácidas (contêm maior quantidade de
H+) ou básicas (contêm maior quantidade de OH-) de acordo com a escala de pH.
Essa escala varia de zero a 14 e uma solução neutra, ou
seja, com equivalência entre prótons e hidroxilas, tem pH
igual a sete.
Valores menores que sete indicam uma solução ácida e os
maiores que sete indicam uma solução básica ou alcalina.
Assim como toda solução, o sangue não é uma exceção!
O sangue possui uma faixa de pH considerada fisiológica, entre 7,35 e 7,45 (ligeiramente alcalino), na qual os processos
metabólicos ocorrem adequadamente, culminando na disponibilização de quantidades apropriadas de gás oxigênio para
os tecidos orgânicos.
Porém, como as reações químicas celulares são capazes de gerar uma elevada quantidade de íons H+, o equilíbrio
acidobásico se perde e o sangue pode ter sua faixa fisiológica de pH alterada, prejudicando os processos metabólicos e,
portanto, a homeostase. Para que isso não aconteça, o organismo conta com alguns sistemas e órgãos que buscam
manter o equilíbrio acidobásico sanguíneo e, portanto, seu pH fisiológico. Esses sistemas são denominados sistemas de
tamponamento orgânicos ou de sistemas-tampão ou ainda de tampões biológicos, enquanto esses órgãos são
chamados de emunctórios.
Tampões biológicos
Um sistema-tampão pode ser formado a partir de um ácido fraco e de seu sal, sendo capaz de retirar e liberar H+ dos
compartimentos orgânicos no sentido de manter a faixa fisiológica do pH sanguíneo.
No organismo, existem tampões extracelulares e intracelulares. O principal tampão extracelular é o bicarbonato, já os
tampões intracelulares incluem a hemoglobina, o fosfato e as proteínas.
No sistema-tampão bicarbonato, o íon bicarbonato pode ser formado ou removido do organismo com grande rapidez,
possibilitando a manutenção do pH sanguíneo dentro da normalidade. Mas como isso acontece?
Nesse sistema, o gás carbônico (dióxido de carbono) proveniente da respiração celular se associa à água do plasma
sanguíneo, produzindo ácido carbônico que, por ação da enzima anidrase carbônica, se dissocia em próton e
bicarbonato. Na imagem a seguir, podemos ver o funcionamento desse sistema.
Sistema-tampão bicarbonato.
Já no sistema-tampão hemoglobina, a hemácia transporta em seu interior o H+ para que esse íon não permaneça livre
Saiba mais
As relações de cátions e ânions de algumas dietas, especialmente para vacas leiteiras no período de transição, têm sido
pensadas para auxiliar alguns distúrbios metabólicos que acometem esses animais. Por exemplo, dietas aniônicas (ânions
em maior quantidade que cátions) têm sido utilizadas em vacas no pré-parto no sentido de reverter e prevenir distúrbios
relacionados com o cálcio. Essas dietas determinam uma pequena redução no pH sanguíneo, ocasionando uma leve
acidose metabólica que, por sua vez, favorece a ação de hormônios que liberam cálcio dos ossos e aumentam a sua
absorção.

Mas qual é a grande importância da existência desses sistemas-tampão? 
dVídeos
no plasma e não provoque alteração do pH sanguíneo. Nos alvéolos pulmonares, a alta concentração de gás oxigênio
proveniente da respiração pulmonar desloca o H+ da hemoglobina para se associar a ela e ser então transportado às
células para participar da respiração celular. O H+ deslocado permaneceria livre no plasma sanguíneo, o que diminuiria
seu pH. Porém, esse próton se associa ao bicarbonato, formando ácido carbônico, que se dissocia em água e gás
carbônico, que é eliminado durante a expiração.
A equação química e a esquematização que resumem a interação entre esses dois sistemas tampão são apresentadas a
seguir.
Tampão bicarbonato.
O tampão fosfato é importante pela sua alta concentração no interior das células, e o tamponamento ocorre pela
dissociação ou associação de prótons ao ácido fosfórico ou seus ânions derivados. A perda de íon hidrogênio o
transforma em dihidrogenofosfato que, quando perde um íon hidrogênio, se transforma em hidrogenofosfato que, por
sua vez, se transforma em fosfato pela perda de um íon hidrogênio, como mostra a equação química a seguir.
Tampão fosfato.
Portanto, esse sistema pode doar ou captar íons hidrogênio livres, contribuindo para a regulação do pH.
O sistema-tampão relacionado às proteínas ocorre porque elas são compostas por aminoácidos que, por sua vez, são
formados por um grupamento amino e um carboxila. Desse modo, nas extremidades da cadeia polipeptídica, esses
grupamentos podem se dissociar e liberar um próton ou podem recebê-lo, o que ocorre em função do pH do meio.
Tampão proteínas.
Controles respiratórios e renais do pH sanguíneo
Órgãos emunctórios
Os órgãos emunctórios que participam do equilíbrio acidobásico sanguíneo são os pulmões, com a excreção de dióxido
de carbono, e os rins, com a excreção ou retenção de prótons e ácido carbônico, como podemos ver a seguir.
Participação pulmonar e renal no equilíbrio acidobásico orgânico.
Controle respiratório do pH
Como sabemos, a respiração pulmonar auxilia no controle do pH sanguíneo, pois realiza excreção de gás carbônico. A
seguir, vamos compreender melhor como funciona este mecanismo:
A diminuição da concentração de CO2 desloca a reação para a produção de CO2.
Quando ocorre aumento da frequência respiratória (taquipneia), a concentração sérica de dióxido de carbono diminui.
Assim, areação é deslocada para a produção de H2CO3 a partir de H+ e HCO3-, reduzindo assim a concentração de prótons
no plasma e tornando o pH mais básico.
 1 de 2 
Como forma compensatória para o retorno do pH sanguíneo, em uma situação de diminuição do pH (acidose), o
organismo estimula o centro respiratório que promove taquipneia, ocorrendo maior eliminação de CO2 pelos pulmões. Já
a elevação do pH (alcalose) estimula o centro respiratório que induz bradipneia, ocorrendo maior retenção de CO2.
Ao mesmo tempo, em casos de acidose, a hemoglobina diminui sua afinidade pelo oxigênio, permanecendo mais tempo
ligada aos íons H+, o que diminui a concentração desses íons livres no sangue circulante. Já nos casos de alcalose,
ocorre uma elevação na afinidade da hemoglobina pelo oxigênio, o que determina um aumento de íons H+ livres no
sangue.
Algumas condições patológicas que interferem direta ou indiretamente no controle respiratório do animal podem
contribuir para a diminuição do pH sanguíneo (acidose respiratória) ou para o seu aumento (alcalose respiratória).
A acidose respiratória corresponde à diminuição do pH do sangue causada pelo acúmulo de dióxido de carbono em
decorrência de um mau funcionamento pulmonar ou de bradipneia, como em casos de enfisema, bronquite crônica,
pneumonia grave, edema pulmonar, asma e patologias neurais ou musculares localizadas na caixa torácica que
comprometam a mecânica respiratória.
Atenção!

 
dVídeos
A alcalose respiratória corresponde à elevação do pH do sangue causada pela redução de dióxido de carbono em
decorrência de um mau funcionamento pulmonar ou de taquipneia, como ocorre em situações de medo, ansiedade, dor,
calor e febre.
Controle renal do pH
Além da compensação pulmonar, os rins, quando não são a causa desencadeante do distúrbio do equilíbrio acidobásico,
vão auxiliar de forma muito eficiente o controle do pH sanguíneo, evitando variações bruscas incompatíveis com a
manutenção da saúde ou mesmo com a vida do animal.
De uma maneira geral, os rins conseguem efetuar a nível tubular a troca entre Na+ e H+, conseguem promover a secreção
tubular de K+, a reabsorção tubular de HCO-3 e ainda atuam na produção do íon amoníaco, que carreia H+ e pode ser
sintetizado pela célula tubular renal a partir do metabolismo da glutamina.
Assim, nos casos de acidose respiratória, os sistemas
fosfato e bicarbonato atuam na excreção renal de H+ e
reabsorção de Na+ e ocorre o aumento da produção do íon
amoníaco pela célula tubular dos rins.
Já nos casos de alcalose, os sistemas fosfato e
bicarbonato atuam nas trocas entre Na+ por H+,
conservando o íon H+, e não ocorre a formação do íon
amoníaco a partir do metabolismo da glutamina pelos
rins.
Podemos concluir que os rins auxiliam no tamponamento
do pH por meio da bomba de troca de Na+- H+, pela
excreção de ácidos tituláveis como sulfatos e fosfatos e,
ainda, pelo mecanismo de produção do amoníaco NH4+ a
partir do metabolismo da glutamina, auxiliando na
excreção de H+, como vemos na imagem.
Mecanismo de compensação de pH exercido pelos rins.
Mecanismos de compensação dos distúrbios acidobásicos
Como já comentamos, quando ocorre situações de acidose metabólica (aumento da acidez plasmática pelo acúmulo de
ácidos não voláteis provenientes do metabolismo celular que causam a redução dos níveis de bicarbonato plasmático ou
então pela perda de bicarbonato para meio extracelular) ou respiratória, ou de alcalose metabólica (aumento primário na
concentração sanguínea de bicarbonato) ou respiratória, mecanismos de compensação são ativados para que o
equilíbrio acidobásico biológico retorne o mais breve possível a fim de evitar maiores danos à saúde do animal.
Mecanismo de compensação do equilíbrio ácido-base biológico.
Quer saber mais sobre como funcionam os mecanismos de compensação de distúrbios acidobásico? Assista ao vídeo a
seguir!
Mecanismos de compensação dos distúrbios acidobásico
Confira os mecanismos renais e pulmonares empregados para compensar a alcalose e a acidose respiratórias e
metabólicas.
Procedimentos sedativos que induzem sedação profunda promovem redução na frequência respiratória, podendo levar a
quadro de acidose respiratória, assim como a colocação de talas torácicas muito apertadas.

dVídeos
Na prática clínica médico-veterinária, o exame de eleição para o diagnóstico e a investigação dos distúrbios acidobásicos
é a gasometria (ou hemogasometria), que é utilizada na avaliação, no monitoramento e no diagnóstico de doenças,
principalmente as de natureza respiratória e metabólica. Esse exame fornece informações concretas sobre a oxigenação
e ventilação do paciente, possibilitando a avaliação e a identificação de seu estado clínico, bem como a orientação da
melhor conduta terapêutica a ser adotada.
Esse exame é realizado por meio de um gasômetro. Os principais parâmetros analisados são saturação de oxigênio
(SatO2), pressão parcial do gás carbônico (pCO2), concentração de bicarbonato (H2CO3) e pH. Também fornece
resultados sobre concentração de eletrólitos sanguíneos, tais como sódio, potássio e cloreto.
Vem que eu te explico!
Os vídeos a seguir abordam os assuntos mais relevantes do conteúdo que você acabou de estudar.
Módulo 2 - Vem que eu te explico!
Introdução ao equilíbrio hidroeletrolítico
Módulo 2 - Vem que eu te explico!
Distúrbios hidroeletrolíticos
Módulo 2 - Vem que eu te explico!
Sistemas de tamponamento orgânicos


Vamos praticar alguns conceitos?
Falta pouco para atingir seus
objetivos.
Questão 1
Qual cátion é responsável por quase a metade da osmolaridade do plasma e desempenha um papel central na
manutenção da distribuição de água?
A Cálcio
B Potássio
C Sódio
D Bicarbonato
E Cloro
Responder
Questão 2
Anormalidades no equilíbrio acidobásico corporal são sempre acompanhadas por alterações características nas
concentrações plasmáticas de eletrólitos. O distúrbio acidobásico caracterizado pela redução da concentração sérica
de bicarbonato causada por aumento primário da produção de ácidos é:
A Acidose metabólica.
B Acidose respiratória.
C Alcalose metabólica.
D Alcalose respiratória.
E Alcalose metabólica e respiratória.
dVídeos
Avalie o módulo
Enviar
Considerações �nais
Ao longo deste conteúdo, estudamos os constituintes do tecido sanguíneo, as principais funções das células sanguíneas
e a importância do sistema hematopoiético-lítico na produção e degradação das hemácias. Além disso, vimos que,
dependendo da espécie, a coloração do plasma e a sobrevida das hemácias na corrente sanguínea varia, podendo estas
sobreviver dias ou até mesmo anos, como acontece com os répteis.
Estudamos também que as hemácias apresentam em seu interior a hemoglobina, importante molécula que transporta o
gás oxigênio e o gás carbônico e que, além de suprir o organismo com os gases essenciais da respiração, tem uma
contribuição para manutenção do pH sanguíneo em uma faixa estável. Vimos que a degradação da hemoglobina gera a
bilirrubina direta e indireta e que, dependendo do tipo de desbalanço que acontecer nesse metabolismo, pode levar a um
quadro de icterícia nos animais.
Visitamos a composição dos compartimentos líquidos do corpo, compreendendo os principais eletrólitos e a importância
do balanço hidroeletrolítico, como também as principais classificações e etiologias dos distúrbios hidroeletrolíticos.
Por fim, aprendemos sobre os distúrbios do equilíbrio acidobásico, muito presentes em diversas patologias, e
conhecemos as causas, os tipos de distúrbios e os mecanismos de compensação gerados fisiologicamente por cada
distúrbio específico.
Todas essas informações que estudamos são empregadas na atuação do médico-veterinário, tanto na área da clínica
médica quanto na produção e reprodução animal.
Podcast
Ouça um pouco mais sobre a correlação entre as doenças carenciais e os eletrólitos em animais.
00:00 13:30
1x
Referências
FERREIRA, C. N. et al. O novo modelo da cascata de coagulação baseadonas superfícies celulares e suas implicações.
Revista Brasileira de Hematologia e Hemoterapia, v. 32, n. 5, pp. 416-421, 2010.
FRANCO, R. F. Fisiologia da coagulação, anticoagulação e fibrinólise. Medicina, v. 34, pp. 229-237, jul./dez., 2001.
GROTTO, H. Z. W. Fisiologia e metabolismo do ferro. Revista Brasileira de Hematologia e Hemoterapia, v. 32, supl. 2, pp.
8-17, 2010.
HALL, J. E. Guyton: Tratado de Fisiologia Médica. Rio de Janeiro: Elsevier, 2011.
HOFFBRAND, A. V.; MOSS, P. A. H. Fundamentos em hematologia [recurso eletrônico]. 6. ed. Porto Alegre: Artmed, 2013.
MARKUS, R. P. Fisiologia: Os sistemas respiratório e excretor. São Paulo: USP, 2022.
MAURER, M. H. Fisiologia humana ilustrada. 2. ed. São Paulo: Manoele, 2014.
MEYER, D. J.; COLES, E. H.; RICH, L. J. Medicina de laboratório veterinária: interpretação e diagnóstico. São Paulo: Roca,
1995.
SILVA, M. N.; MONTEIRO, M. V. B. Hematologia veterinária: produção de material didático. Belém: EditAed, 2017.
Explore +
Para aprofundar seus conhecimentos sobre a temática:
Leia o artigo Equilíbrio ácido-base e hidroeletrolítico em equinos submetidos à simulação de enduro FEI, de Bernardi, et
al. 2018. Lá você entenderá como a concentração dos principais eletrólitos variam no exercício e quais os benefícios do
metabolismo aeróbio para os animais durante o enduro, uma modalidade que requer alta exigência metabólica para a
manutenção do equilíbrio do organismo.
Leia o livro Hematologia veterinária: Produção de material didático, de Malena Noro Silva (2017). Lá você poderá se
aprofundar mais sobre as características e morfologia das células pertencentes ao sistema sanguíneo dos animais.
Leia o artigo: Deficiências minerais em animais de fazenda, principalmente bovinos em regime de campo, de Tokarnia,
Döbereiner e Peixoto (2000), e o documento da Embrapa: Principais deficiências minerais em bovinos de corte I,
elaborado por Sheila da Silva Moraes (2001), para entender como a deficiência dos minerais em bovinos com dieta
exclusiva de pasto causam alterações patológicas que podem levar a morte do animal.
 Baixar conteúdo
Responder



dVídeos
https://stecine.azureedge.net/repositorio/00212sa/04251/index.html
javascript:CriaPDF()

Continue navegando