Buscar

Clonagem e Caracterização do Gene vip3A

Prévia do material em texto

1
UNIVERSIDADE ESTADUAL PAULISTA 
CÂMPUS DE JABOTICABAL 
 FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS 
 
 
 
CLONAGEM, CARACTERIZAÇÃO DO GENE vip3A DE Bacillus 
thuringiensis E TRANSFORMAÇÃO DE Agrobacterium 
tumefaciens 
 
 
Matheus de Oliveira Bazoni 
 Orientadora: Janete Apparecida Desidério Sena 
 
 
 
 
 
 
 
 
 
 
 
 
Jaboticabal – SP 
Agosto – 2006 
Dissertação apresentada à Faculdade de 
Ciências Agrárias e Veterinárias do 
Câmpus de Jaboticabal – UNESP, para 
obtenção do Título de Mestre em 
Agronomia – (Área de Concentração em 
Genética e Melhoramento de Plantas). 
 
 
2
Clonagem, Caracterização do gene vip3A de Bacillus thuringiensis e 
Transformação de Agrobacterium tumefaciens 
 
RESUMO - Bacillus thuringiensis é a bactéria mais utilizada no controle biológico de 
insetos praga. Algumas linhagens de B. thuringiensis produzem uma classe de proteínas 
chamadas Vips (proteína inseticida vegetativa). As Vips são produzidas e secretadas 
como proteínas solúveis na fase de crescimento vegetativo da bactéria. Em particular a 
proteína Vip3A possui atividade entomopatogênica contra insetos pragas, da ordem 
Lepidoptera, revelando alta bioatividade para: Agrotis ipsilon, Spodoptera frugiperda, entre 
outras espécies. Vip3A é codificada pelo gene vip3A(a) e pelo homologo vip3A(b) cuja 
seqüência prevê uma proteína com 791 aminoácidos, com 88.5 kDa. Neste trabalho foi 
isolado o gene vip3A de B. thuringiensis linhagem HD-125, por PCR utilizando iniciadores 
específicos, e clonado no vetor de expressão em plantas pGA748. A digestão com as 
enzimas XhoI e PstI permitiu a orientação correta de clonagem e o seqüenciamento dos 
clones positivos demonstraram que o gene vip3A foi clonado com sucesso. O 
seqüenciamento foi feito através da amplificações de regiões distintas do gene, região 
Vip5-Vip2 e Vip3-Vip6. A seqüência de nucleotídeos analisada pela ferramenta BLASTN 
indicou 93% de homologia para região Vip5-Vip2 e 85% para região Vip3-Vip6 quando 
alinhadas com a seqüência do gene vip3A(a) depositada no GenBank (acesso L48811). O 
filograma gerado pelo programa CLUSTALW demonstrou maior similaridade entre o gene 
vip3A(a) e o gene vip3A da linhagem B. thuringiensis HD-125 estudada neste trabalho. O 
vetor pGA748 contendo o gene vip3A na orientação correta de clonagem foi utilizado para 
transformar por eletroporação a linhagem GV3101 de Agrobacterium tumefaciens com 
grande eficiência. 
 
PALAVRAS – CHAVE: Eletroporação, Proteína vegetativa inseticida, PCR, gene vip3A. 
 
 
 
 
 
 
3
1. INTRODUÇÃO 
 
 
Desde as mais remotas eras o homem iniciou a luta contra as pragas. Os danos que 
elas causam à agricultura são de grande importância econômica acarretando enormes 
prejuízos, não somente às plantas, mas também aos animais domésticos e ao próprio 
homem. 
Os danos causados pelos insetos às plantas são variáveis e podem ser observados em 
todas as partes do tecido vegetal, algumas pragas podem ser citadas como as grandes 
responsáveis pelo prejuízo econômico de certos países. 
O uso abusivo de pesticidas químicos em diferentes culturas, vem ocasionado sérios 
danos ecológicos, deixando resíduos no solo, água e alimentos, tornando-os tóxicos para 
animais e humanos, além de atingir insetos não alvo, podendo assim acabar com 
populações benéficas para o ambiente. 
Além disso, a dependência de defensivos agrícolas oriundos do petróleo, o aumento da 
demanda de produtos livres de resíduos de agrotóxicos e os avanços científicos e 
tecnológicos obtidos pela recente introdução de ferramentas da biologia molecular, são 
fatores que impulsionaram a adoção e o uso do controle biológico como alternativa à 
utilização dos defensivos químicos. 
Em busca de métodos menos agressivos ao ambiente, de maior especificidade e 
eficiência no combate a insetos pragas, têm se iniciado sistemas de controle biológico 
utilizando microorganismos. Dentre os organismos empregados no controle biológico, 
Bacillus thuringiensis, se destaca por apresentar atividade entomopatogênica contra um 
largo espectro de hospedeiros pertencentes as ordens: Lepidoptera, Coleoptera, Diptera 
(LERECLUS et al., 1993), além de atingir também alguns invertebrados como 
nematóides, sarcomastigofora e platelmintos (FEITELSON et al., 1993). Este 
microorganismo pode ser isolado de vários ecossistemas como: solo, ambiente aquático, 
superfície de plantas, insetos mortos ou vivos e grãos estocados. 
B. thuringiensis é uma espécie bacteriana capaz de produzir, durante sua fase de 
esporulação, inclusões cristalinas de proteínas bioinseticidas que foram denominadas 
 
 
4
genericamente de proteína cristal (proteína Cry) ou delta-endotoxina codificada pelo 
gene cry. 
Segundo ESTRUCH et al., (1996), B. thuringinesis também produz uma classe de 
proteínas chamada Vip (Proteína Inseticida Vegetativa) sendo esta produzida e 
secretada como proteína solúvel na fase de crescimento vegetativo da bactéria. As Vips 
incluem as proteínas binárias Vip1 e Vip2 com especificidade para coleópteros e Vip3A 
com ação especifica para Lepidópteros, estas estão em amplo estudo devido a sua 
especificidade, alto potencial ativo e como alternativa para o controle da resistência de 
insetos às proteínas Cry. 
A proteína Vip3A é codificada pelo gene vip3A(a) e pelo homólogo vip3A(b), com 
88,5 kDa e 791 aminoácidos. As propriedades biológica e molecular dessas proteínas 
estabelece uma distinta classe de toxina inseticida, as quais diferem da família das 
delta-endotoxinas. Elas representam a segunda geração de toxinas inseticidas podendo 
ser usadas no controle de insetos pragas importantes, com grande eficiência. 
As aplicações da engenharia genética para a proteção de plantas têm permitido a 
introdução e expressão dos genes de proteínas Cry e Vip, em culturas de interesse 
econômico como milho, algodão, batata, tomate, entre outras; visando o controle das 
principais pragas que são a maior causa de perdas e danos nas mais importantes culturas 
do mundo. Algumas plantas transgênicas já foram produzidas como o “Milho Bt11” 
contendo a proteína cristal Cry1Ab, isolada da bactéria B. thuringiensis var. kurstaki HD-1 e 
recentemente, a Syngenta produziu o “Milho ICP4 Pacha”, contendo a proteína inseticida 
Vip3A, isolada da bactéria B. thuringiensis AB88, e introduziu o gene vip3A(a) de B. 
thuringiensis em plantas de algodão variedade Coker 312. 
Neste sentido, o presente trabalho teve por objetivo a amplificação e seqüenciamento 
do gene vip3A da linhagem B thuringiensis HD-125 bem como a clonagem deste no vetor 
de expressão em plantas pGA748 que foi utilizado para transformação de Agrobacterium 
tumefaciens linhagem GV3101, a qual poderá ser utilizada em programas de 
melhoramento genético de plantas dicotiledôneas e monocodiledôneas expressando a 
característica de resistência à pragas, como Spodoptera frugiperda, Agrotis ipisilon, 
Diatraea saccharalis, Anticarsia gemmatalis, entre outras espécies. 
 
 
5
2. REVISÃO DA LITERATURA 
 
 
2.1. Bactéria Bacillus thuringiensis 
 
Bacillus thuringiensis, é uma bactéria Gram-positiva, quimioheterotrófica, aeróbia 
facultativa, podendo também crescer em anaerobiose (ARANTES, 1989), cuja 
temperatura ideal de crescimento é 300C. Esta possui células vegetativas com formato 
de bastonetes e quando em condições inóspitas (geralmente desfavoráveis), 
desenvolvem um ciclo de esporulação típico dos bacilos, com esporos de formato 
elipsoidal, localizando-se na região central ou paracentral da célula. 
As linhagens de B. thuringiensis possuem um genoma variando de 2,4 a 5,7 
megabases (Mb) e alguns isolados possuem muitos elementos extracromossômicos, 
alguns circulares e outros lineares (CARLSON et al., 1994 e 1996). 
Esta bactéria produz uma inclusão protéica de formato cristalino, que confere a 
característica entomopatogênica.Este cristal, sintetizado durante a fase de esporulação, 
é formado por polipeptídeos denominados proteínas Cry ou δ-endotoxinas, que vão 
sendo acumuladas dentro da célula bacteriana, liberados juntamente com esporos no 
momento da lise celular 
B. thuringiensis também produz uma classe de proteínas chamadas Vips 
(proteínas inseticidas vegetativas) que são produzidas e secretadas durante a fase de 
crescimento vegetativo da bactéria (ESTRUCH et al., 1996) e também possui atividade 
entomopatogênica. 
 Muitas linhagens naturais de B. thuringiensis foram isoladas em várias áreas 
geográficas e de diferentes origens, incluindo grãos, solos, superfícies de plantas 
(MARTIN & TRAVERS, 1989; SMITH & COUCHE, 1991), insetos vivos ou mortos 
(BERNHARD et al., 1997, CHAUFAUX et al., 1997) e a partir de amostras de águas de 
rios e lagos (MEADOWS, 1993). 
 Dentre os organismos empregados no controle biológico, B. thuringiensis se 
destaca por produzir um número de toxinas inseticidas, incluindo, exotoxinas, 
 
 
6
enterotoxinas, Vips e endotoxinas. Apresentado atividade tóxica contra cerca de 130 
espécies de insetos das ordens Lepidóptera, Díptera e Coleóptera, estando também 
incluídas importantes pragas agrícolas brasileiras como Spodoptera frugiperda, Diatraea 
saccharalis e Anticarsia gemmatalis e vetores de doenças de importância mundial, 
pertencentes aos gêneros Aedes, Culex e Anopheles (LERECLUS et al., 1993), além de 
atingir também alguns invertebrados como nematóides, sarcomastigofora e platelmintos 
(FEITELSON et al., 1993). Os produtos à base de B. thuringiensis são inócuos a 
mamíferos e vertebrados, não apresentam toxicidade às plantas, não são poluentes e 
devido a sua grande especificidade, não atingem os inimigos naturais do inseto alvo 
(SMITS, 1997). 
Este bacilo é responsável por 90%-95% do mercado de bioinseticidas 
(VALADARES-INGLIS et al., 1998) e produtos à base deste são comercializados em 
todo mundo há mais de 50 anos (DIAS et al., 2002). 
 Algumas populações de pragas de culturas como Heliothis virescens, Plutella 
xylostella, Tricoplusia ni (ESTADA & FERRE, 1994), Spodoptera exigua (MOAR et al., 
1995), e S. littoralis (MÜLLER-COHN et al., 1996) têm apresentado elevados níveis de 
resistência a proteínas Cry de B. thuringiensis em laboratório. 
Grandes centros de pesquisas em todo o mundo estão buscando novas linhagens 
de B. thuringiensis com potenciais tóxicos diferentes das já conhecidas, 
Grupos como da FIOCRUZ do Rio de Janeiro – RJ (CAVADOS et al., 1998), EMBRAPA 
– milho e sorgo de Sete Lagoas – MG (VALICENTE et al., 2000) e da UNISINOS de São 
Leopoldo – RS (AZAMBUJA et al., 2001). 
 
 
 
 
 
 
 
 
 
 
7
2.2. Proteína Vip3A 
 
A nova classe de proteínas chamada Vip, produzida por B. thuringiensis, 
diferentemente das δ-endotoxinas cuja expressão é restrita para esporulação, Vip3A são 
expressadas no estágio vegetativo de crescimento bem como durante à fase de 
esporulação. As proteínas Vips não possuem homologia com proteínas conhecidas. 
O gene vip3A tem dois homólogos, o gene vip3A(a) (proteína Vip3Aa) acesso 
L48811, isolado da linhagem B. thuringiensis. AB88 e o gene vip3A(b) (proteína Vip3Ab) 
acesso L48812, isolado da linhagem B. thuringiensis. AB424 cuja seqüência prevê uma 
proteína com 791 aminoácidos e massa molecular de 88,5 kDa sendo este secretado 
sem a porção N-terminal no fluído sobrenadante por culturas de B. thuringiensis 
(ESTRUCH et al., 1996). 
 A proteína Vip3A possui atividade inseticida contra um grande espectro de insetos 
praga de importância agronômica da ordem Lepidóptera e revela alta bioatividade para: 
lagarta-rosca (Agrotis ipsilon), lagarta-do-cartucho (Spodoptera frugiperda), lagarta-da-
beterraba (Spodptera exigua) (ESTRUCH et al., 1996), contra lagarta-da-maçã (Heliothis 
virescens), lagarta-da-espiga (Helicoverpa zea) (DOSS et al., 2002) e também contra 
lagarta-do-repolho (Trichoplusia ni), perfurador-da-folha-do-algodão (Bucculatrix 
thurberiella) e lagarta-da-vagem-da-soja (Pseudoplusia includens) (SYNGENTA, 2005). 
No caso de Agrotis ipsilon, Vip3A proporciona 260 vezes mais atividade inseticida que 
algumas proteínas Cry1A relatadas como sendo ativas contra esta praga (ESTRUCH et 
al., 1996; MACINTOSH et al., 1990). 
 Segundo AZOL (2006) a proteína Vip3A teve uma eficiência de 62% na 
mortalidade das larvas de Spodoptera frugiperda quando alimentadas com dieta artificial 
contendo a proteína Vip3A. 
Estas proteínas são aparentemente secretadas pela célula e por elas não 
formarem inclusões cristalinas são excluídas pela nomenclatura da proteína Cry 
(CRICKMORE et al., 1998). 
Diferentemente das proteínas Cry as quais unem-se em cristais insolúveis dentro 
da célula mãe, Vip3A é secretada como proteína solúvel por algumas linhagens de B. 
 
 
8
thuringiensis durante a fase vegetativa de crescimento, limitando sua aplicação no 
campo (ARORA et al., 2003). 
O gene vip3A codificador da proteína Vip3A inicia a expressão desta proteína 
durante a fase de crescimento vegetativo e continua ativamente expresso em culturas 
esporulantes. Altos níveis de expressão em combinação com alta estabilidade da 
proteína favorecem a produção de grandes somas de proteína nos sobrenadantes de 
culturas esporulantes (ESTRUCH et al., 1996). 
 A ação da proteína Vip3A tem sido examinada e demonstra iniciar sua atividade 
no epitélio intestinal do inseto assim como as proteínas Cry, porém devido a sua forma 
solúvel as proteínas Vips se ligam mais rapidamente aos receptores de membrana das 
células epiteliais do intestino do inseto susceptível e começa uma progressiva 
degeneração da camada epitelial (YU et al., 1997). 
A união das toxinas Cry à membrana epitelial das células do intestino médio se 
realiza através de receptores ou sítios de união específicos para cada uma delas 
(HOFMANN et al., 1988). As proteínas Cry após a ingestão, são solubilizadas, 
principalmente em função do pH intestinal do inseto (pH ~ 10), das características e 
composição do cristal liberando peptídeos sem atividade inseticida que recebem o nome 
de protoxinas. Existem evidências de que a velocidade de solubilização depende do pH. 
Ao mesmo tempo em que se solubilizam as protoxinas, estas são ativadas pela ação das 
proteases intestinais, principalmente as serinas. O produto ativo dessas toxinas, 
resultante de todos estes processos, ligam-se de maneira irreversível a receptores de 
membrana das células epiteliais do intestino do inseto, levando à formação de poros 
inespecíficos ou canais iônicos que alteram a permeabilidade destas células. Esta 
alteração promove a lise celular e a ruptura da integridade intestinal (LI et al., 1991; GILL 
et al., 1992). Todos esses processos tem como conseqüência uma parada alimentar, 
septicemia e morte da larva. 
As proteínas Vip possuem toxicidade da mesma magnitude como as das 
proteínas Cry contra insetos susceptíveis. O espectro inseticida das proteínas Vip inclui 
certas pragas importantes, as quais tem mostrado insensibilidade para as proteínas Cry 
(BHALLA et al., 2005). 
 
 
9
LEE et al. (2003), compararam o modo de ação da proteína Vip3A com Cry1Ab 
em experimentos de ativação proteolítica, ligação a BBMV ("Brush Border Membrane 
Vesicles") e habilidade para formar poros em dois diferentes ensaios in vitro. Os autores 
verificaram que Vip3A difere em várias etapas, quanto ao modo de ação, utilizando um 
alvo molecular diferente e formando distintos canais iônicos, comparada à Cry1Ab. A 
interação das proteínas Vip com os receptores do intestino das larvas de diferentes 
lepidópteros tem colocado essas proteínas como uma segunda geração de toxinas de B. 
thuringiensis, com excelente potencial para o manejo da resistência dos insetos. 
 A descoberta da proteína vip3A foi muito importante para o controle biológico de 
insetos pragas, pois, segundo MONERAT & BRAVO (2000), atualmente não só se 
aproveitamas misturas de esporos e cristais, obtidos após o cultivo de B. thuringiensis, 
como também é possível utilizar o seu sobrenadante. 
 
 
2.3. Bactéria Agrobacterium tumefaciens 
 
As agrobactérias são microorganismos tipicamente do solo, aeróbias e Gram-
negativas. Não formam esporos e possuem forma de bacilo (Figura 1), medindo 0,6-1,0 
x 1,5-3,0 µm, movendo-se no solo por meio de flagelos. 
O gênero Agrobacterium está subdividido em cinco espécies que diferem entre si 
pela patogenicidade e pelo modo de infecção em diferentes plantas. Dessa forma, A. 
tumefaciens é o agente etiológico da galha-da-coroa (crown gall), (BRASILEIRO & 
CARNEIRO, 1998). 
 As agrobactérias ocorrem em todos os tipos de solos, cultivados ou não, onde são 
geralmente encontradas nas galhas ou em estreita associação com raízes ou no solo 
adjacente às plantas. As diferentes espécies do gênero Agrobacterium ocorrem em todo 
o mundo, mas são mais facilmente encontradas em regiões de clima temperado. 
Temperaturas acima de 34°C ou solos ácidos reduzem drasticamente suas chances de 
sobrevivência, enquanto solos arenosos podem em certas condições, favorecer a 
sobrevivência (LIPPINCOTT et al., 1981). 
 
 
10
 Mais de 600 espécies vegetais são conhecidamente susceptíveis à infecção por 
A. tumefaciens, pertencendo a maioria delas à classe das Angiospermas dicotiledôneas 
e Gyminospermas e, mais raramente, às Angiospermas monocotiledôneas (CLEENE & 
LEY, 1976). 
 
 
 
 
 
 
 
 
 
 
 
 
2.3.1. Interação Agrobacterium – hospedeiro 
 
A infecção de uma planta por Agrobacterium inicia-se pela penetração da bactéria 
no tecido vegetal através de uma lesão sofrida pela planta por tratos culturais, geadas, 
insetos, etc. As bactérias são atraídas pelas moléculas-sinal que são exsudadas pela 
célula lesada, em resposta ao ferimento, como, por exemplo, compostos fenólicos, 
açúcares e aminoácidos. Em contato com as células vegetais (Figura 1), as bactérias 
sintetizam microfibrilas de celulose, propiciando uma melhor fixação (LACORTE e 
MANSUR, 1993). 
 As moléculas-sinal vão ativar genes que estão localizados na região de virulência 
(região vir) do plasmídio Ti (de Tumor-inducing), que é um plasmídio de alto peso 
molécular (150 a 250Kb), presente em todas linhagens patogênicas de Agrobacterium. A 
região vir é um regulon composto de seis a oito operons, contendo, aproximadamente, 
25 genes. As diversas proteínas codificadas pelos genes vir vão promover a 
Figura 1. Fotomicrografia eletrônica de varredura mostrando a
ligação de A. tumefaciens às células vegetais. 
Imagem de Martha Hawes www. genomanewsnetwork.org/ 
 
 
11
transferência de uma outra região do plasmídio Ti da bactéria para a célula vegetal. 
Essa região, denominada T-DNA (de transferred DNA), é delimitada por duas 
seqüências repetidas de 25pb, conhecidas como extremidades direita e esquerda. Uma 
vez no núcleo da célula, o T-DNA é integrado, de forma estável, no genoma vegetal 
(BRASILEIRO, 1993). 
 A expressão de genes presentes no T-DNA, os oncogenes, interfere na 
biossíntese de hormônios, levando á formação da galha ou tumor. As únicas regiões do 
T-DNA essenciais para sua transferência são as seqüências de cerca de 25pb 
localizadas e suas extremidades. Assim, os genes presentes no T-DNA podem ser 
deletados ou manipulados por engenharia genética de maneira a portar genes de 
interesse, sem alterar o processo de transferência. A região vir do plasmídio Ti, também 
é essencial para transferência pois esta região contém genes cujos produtos vão 
promover a transferência do T-DNA (WALDEN et al., 1990; HOOYKAAS & 
BEIJERSBERGEN, 1994; ZUPAN & ZAMBRYSKI, 1995). 
 A preparação de uma linhagem de A. tumefaciens para ser utilizada como vetor 
para a transformação de plantas inclui duas etapas distintas. 
 Na primeira é preciso obter as linhagens “desarmadas”, linhagens nas quais o T-
DNA original, com os oncogenes, foi deletado por meio de um processo de dupla 
recombinação (ZAMBRYSKI et al., 1983). 
 A segunda etapa envolve a preparação de um vetor contendo o T-DNA com os 
genes de interesse. Por causa do seu tamanho (~200 Kb), o plasmídio Ti não pode ser 
manipulado diretamente. Dessa forma, plasmídios menores (vetores) são utilizados, pois 
são mais fáceis de manipular. Esses vetores para transformação contêm as 
extremidades do T-DNA, entre as quais os genes de interesse são clonados. Graças a 
ele, foram obtidas plantas de batata resistentes a viroses (LAWSON et al., 1990), 
algodoeiros resistentes a insetos (PERLAK et al., 1990), tomates de amadurecimento 
tardio (HAMILTON et al., 1990) plantas de canola macho estéreis (MARIANI et al., 
1992), entre outros exemplos. 
 
 
 
 
12
2.4. Produção de proteínas inseticidas de B. thuringiensis em plantas 
 
Em plantas geneticamente modificadas com genes de B. thuringiensis, as 
lagartas, ao se alimentarem do tecido foliar, ingerem a proteína B. thuringiensis que atua 
nas células epiteliais do tubo digestivo das mesmas (MEYERS et al., 1997). A proteína 
B. thuringiensis promove a ruptura osmótica irreversível das células e causa a morte dos 
insetos, antes que os mesmos consigam causar danos econômicos à cultura 
(PIETRANTONIO et al., 1993; GILL, 1995). 
As primeiras publicações relatando a obtenção de plantas transgênicas contendo o 
gene da δ-endotoxina de B. thuringiensis. incluem os trabalhos de VAECK et al. (1987), 
BARTON, WHITELEY e YANG (1987), ADANG et al. (1987), e FISCHOFF et al. (1987). Os 
três primeiros grupos publicaram experimentos usando fumo transgênico, enquanto 
FISCHOFF et al. (1987) publicaram resultados com tomates transgênicos transformados 
via Agrobacterium usando um vetor T-DNA. 
 Plantas transgênicas de fumo foram obtidas por transformação de discos foliares de 
Nicotiana tabacum var. Petit Havana SR1. As plantas transformadas com as fusões δ-
endotoxina-neo e com as construções contendo o gene δ-endotoxina truncado produziram 
75-100% de mortalidade em larvas de Manduca sexta (Lepidoptera). Os transformantes 
contendo as construções com fusão traducional produziram uma alta freqüência de plantas 
exibindo 70-100% de mortalidade contra Manduca, enquanto o gene da endotoxina 
truncado não fusionado apresentou níveis semelhantes de toxicidade mas em uma menor 
porcentagem de transformantes. 
 BARTON, WHITELEY e YANG (1987) estudaram a expressão de um fragmento 
aminoterminal do gene cryIA(a) de B. thuringiensis var. kurstaki HD-1 em fumo transgênico. 
Transformantes foram obtidos em Nicotiana tabacum cv. Havana 425 usando um vetor 
binário de A. tumefaciens. Eles obtiveram plantas transgênicas usando construções com o 
gene da δ-endotoxina completo ou com o gene truncado codificando para uma proteína de 
644 aminoácidos. Ambos os genes foram dirigidos por uma seqüência promotora 35 S 
(CaMV), incluindo uma região não traduzida do AMV RNA 4 e a região 3’ de poliadenilação 
da nopalina sintetase. Nenhuma das plantas regeneradas a partir de calos transformados 
 
 
13
com o gene completo produziram níveis detectáveis de CryIA(a), mRNA ou atividade 
inseticida. 
 FISCHOFF et al. (1987) publicaram a primeira transformação de tomate via 
Agrobacterium tumefaciens com o gene cryIA(b) de B. thuringiensis var. kurstaki HD-1. 
Duas versões truncadas do gene B. thuringiensis. foram usadas; uma codificando para 
uma proteína de 646 aminoácidos e a outra codificando para uma proteína de 725 
aminoácidos. Cada versão foi dirigida pelo promotor CaMV 35S e a região 3’ de 
poliadenilação do gene da nopalina sintetase. A expressão dos fragmentos aminoterminal 
da δ-endotoxina produziu plantas com alto nível de atividade contra Helicoverpa zea e 
Heliothis virescens, as quais requerem altos níveis de proteínas de B.t. para mortalidade. A 
progênie das plantas demonstraram um padrão de herança típico de gene dominante 
Mendeliano. 
 Os testes de campo descritos por WARREN et al. (1992) e CAROZZIet al. (1991) 
consistiram de seis linhagens de fumo transgênicos expressando uma proteína CryIA(b) 
truncada de 645 aminoácidos de B. thuringiensis var. kurstaki HD-1 inserido em um único 
locus do genoma do fumo. Das seis linhagens testadas, cinco forneceram controle contra 
Manduca sexta e Heliothis virescens. 
Os autores também observaram que os níveis de δ-endotoxina aumentaram durante 
o desenvolvimento da planta, com um substancial aumento no tempo de florescimento, 
com cerca de 0,01% da proteína solúvel total. 
A Syngenta produzio o “Milho ICP4 Pacha”-Syngenta”, contendo a proteína 
inseticida Vip3A, isolada da bactéria Bacillus thuringiensis AB88, e recentemente 
introduziu o gene vip3A(a) que codifica essa proteína inseticida em plantas de algodão, 
Gossypium hirstum variedade Coker 312 utilizando a linhagem GV3101 de A. tumefaciens, 
a metodologia e resultados não foram publicados, SYNGENTA (2005). 
 
 
 
 
 
 
 
14
3.OBJETIVOS 
 
✔ Amplificação via PCR do gene vip3A da linhagem B. thuringiensis HD-125 com o uso de 
iniciadores específicos; 
 
✔ Seqüenciamento do gene vip3A; 
 
✔ Subclonagem do gene vip3A no vetor de expressão em plantas pGA748, sob o 
controle do promotor CaMV 35S; 
 
✔ Transformação de A. tumefaciens linhagem GV3101/pMP90. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
4. MATERIAL E MÉTODOS 
 
 
 Neste trabalho foi utilizada a linhagem B. thuringiensis, HD-125 (Lepidóptero 
específico), gentilmente cedida pela Embrapa, Sete Lagoas, MG. A linhagem B. 
thuringiensis tenebrionis como referência de controle negativo (coleóptero específico), 
obtida do “Bacillus Genetic Stock Center” da Universidade Estadual de Ohio, Columbus, 
USA e a linhagem “desarmada” GV3101/pMP90 de A. tumefaciens, as amostras 
encontram-se em manutenção no Laboratório de Genética de Bactérias e Biotecnologia 
Aplicada do Departamento de Biologia Aplicada à Agropecuária, FCAV – UNESP, 
Jaboticabal, São Paulo, Brasil. 
 
 
4.1. Extração do DNA genômico para reações de PCR 
 
 O DNA total de cada amostra foi obtido através da utilização do Kit InstaGene 
Matrix (Bio-Rad), seguindo instruções do fabricante. As colônias isoladas foram obtidas 
pela inoculação por estriamento de uma alíquota da solução estoque de esporos, em 
placas de Petri, contendo meio de cultura NA (“Nutriente Ágar”-Difco), incubadas em 
BOD a 30°C por aproximadamente 20 hs. Uma colônia foi suspensa em tubos de 
microcentrífuga contendo 1,0 ml de água Milli-Q estéril e centrifugadas em centrífuga 
Eppendorf por 1 min a 15294 xg. O sobrenadante foi descartado e o precipitado 
ressuspenso em 200 µl da resina InstaGene Matrix (esta em constante agitação em 
agitador). As suspensões obtidas foram incubadas a 56°C por 25 min, depois os tubos 
agitados em vórtex por 10 s. e incubados a 100º C por 8 min. A seguir os tubos foram 
novamente agitados em vórtex por 10 s. e centrifugados em microcentrífuga por 2 min a 
15294 xg. O sobrenadante (contendo o DNA) foi transferido para outro tubo de plástico 
previamente esterilizado. 
 As amostras de DNA foram armazenadas a -20º C até sua utilização. 
 
 
 
16
4.2. Determinação da presença do gene vip3A 
 
 Para o isolamento e confirmação da presença do gene vip3A na linhagem HD 
125, foi utilizado o par de iniciadores (primers) descritos por LOGUERCIO et al. (2002), 
cujas seqüências estão apresentadas na Tabela 1. 
 
Tabela 1. Iniciadores específicos para o gene vip3A. 
Iniciadores Seqüências 
 Vip5 5”ATGACCAAGAATAATACTAAATTAAGC3’(d) 
 Vip 2 5’TCTGGGCACAATAATTTATCC3’(r) 
 
 
 Vip 3 
 Vip 6 
 5’CAGGACATGCATTGATTGG3’(d) 
 5’GATCTTACTTAATAGAGACATGC3’(r) 
 
(d): direto; (r): reverso 
 
As reações para amplificação do gene completo partindo do “start codon” até o 
“stop codon” foram feitas utilizando-se o par de iniciadores Vip5 e Vip6, conduzidas em 
um volume de 20 µL, contendo aproximadamente 30 ng de DNA; 250 µM de uma 
solução de dNTPs; 2,0 mM de MgCl2; solução tampão para reação de PCR [1X]; 0,2 µM 
de cada um dos iniciadores; 1,0 U da enzima Taq DNA polimerase (Gibco-BRL) e água 
Milli-Q estéril para completar o volume da reação. Em todas as reações de amplificação 
foi feito um controle negativo, substituindo o volume de DNA por água Milli-Q estéril. 
 As reações foram conduzidas em aparelho termociclador (PTC-100 
Programmable Thermal Controller – MJ Research, inc.) com circuito Hot Bonnet 
utilizando o seguinte programa: um passo de desnaturação de 2 min a 94oC e 30 ciclos 
consistindo de um passo de desnaturação por 30 s. a 94oC; pareamento por 45 s. a 
 
 
17
53oC, uma extensão de 1 min e 30 s. a 72oC e no fim dos 30 ciclos foi programada uma 
extensão a 72oC por 5 min. 
Após o término das reações de amplificação, 4 µL de azul de bromofenol (0,5% 
de azul de bromofenol em glicerol 50%) foi adicionado à 4 µL de cada amostra e logo 
após aplicadas em gel de agarose 1,5%, contendo (0,5 µg/ml) de brometo de etídio e 
submetido a corrida eletroforética por aproximadamente 2 hs a 70 V em tampão TEB 
[1X] (89 mM de Tris; 89 mM de ácido bórico e 2,5 mM de EDTA, pH 8,2). Os fragmentos 
de DNA amplificados foram visualizados pela incidência de luz UV e documentados em 
um fotodocumentador modelo GEL DOC 2000 (BIO-RAD). 
 
 
4.3. Clonagem dos produtos amplificados 
 
Os produtos resultantes da amplificação com os iniciadores citados na tabela 1, 
foram ligados ao vetor de clonagem pGEM-T Easy (PROMEGA) (figura 2). A ligação do 
inserto ao vetor seguiu a proporção de 4:1, respectivamente, sendo a adição de 1 µL da 
enzima T4 DNA ligase (3 U/µL), 50ng do vetor pGEM-T Easy, tampão apropriado, 200 
ng de produto da PCR e água Milli-Q estéril num volume total de 10 µL. As ligações 
foram incubadas a 4°C por uma noite. Após a incubação, a solução foi utilizada para a 
transformação de células de Escherichia coli DH10B competentes. 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.4. Produção de células competentes para transformação 
 
Para os experimentos de transformação da linhagem de E. coli DH10B, foi 
necessária a obtenção de células competentes conforme descrito por HANAHAN et al. 
(1983), com modificações como se segue : 
A partir de um pré-inóculo de 10 mL em meio SOB (LB contendo KCl 25 mM; MgCl2 
10mM; MgSO4 10mM), incubado durante 16 hs a 37°C sob agitação (250 rpm), foi 
inoculado um frasco contendo 100 mL de meio SOB, o qual foi incubado a 37°C sob 
agitação com freqüentes medidas de densidade óptica, até obtenção de D.O600nm entre 
0,35 e 0,6. 
Atingindo este ponto, a cultura foi transferida para 2 tubos Falcon de 50 mL, 
resfriada em gelo por 10 min e centrifugada a 5.000 xg por 10 min a 4°C. Após a 
centrifugação, o sobrenadante foi descartado e os tubos mantidos invertidos por alguns 
minutos para eliminação do restante do sobrenadante. 
Figura 2. Vetor de clonagem pGEM-T Easy utilizado para a clonagem do gene vip 
3A de B. thuringiensis linhagem HD-125. 
 
 
19
Decorrido este tempo, a massa de células foi ressuspendida em 1/3 do volume 
inicial do cultivo (33 ml) em solução RF1 (acetato de potássio 30 mM; cloreto de rubídio 
100 mM; cloreto de manganês 50 mM; cloreto de cálcio 10 mM e glicerol 15%; pH 5,8 
ajustado com ácido acético 0,2 M). Os volumes dos dois tubos foram concentrados em 
um único tubo o qual foi incubado em gelo por 15 min e novamente centrifugado a 5000 
xg a 4°C, o sobrenadante foi desprezado. 
Em seguida, as células foram ressuspendidas em tampão RF2 (MOPS-3-ácido[n-
morfolino] propano-sulfônico 10 mM; cloreto de rubídio 10 mM; cloreto de cálcio 75 mM; 
glicerol 15%; pH 6,8 foi ajustado com NaOH 2N), em 1/12,5 do volume original (8,0 ml), 
sendo então, incubadas em gelo por 15 min. 
A suspensão de células foi distribuída em alíquotas de 200 µl em tubos de 
microcentrífuga previamente resfriados. Estas alíquotas foram congeladas em gelo seco 
e álcool e em seguidaarmazenadas à -80ºC. 
 
 
4.4.1. Transformação de células competentes de E. coli 
 
No experimento de transformação foi utilizado o protocolo de HANAHAN et al. 
(1983) como se segue: Tubos contendo células competentes foram removidos do freezer 
e mantidos em gelo para descongelamento lento. O volume de 200 µl de células 
competentes foi adicionado em um tubo de microcentrífuga (1,5 ml) juntamente com 20µl 
da reação de ligação, seguindo-se agitação suave e incubação em banho de gelo por 30 
min. 
Após este tempo, a suspensão de células foi submetida a tratamento de choque 
térmico pela transferência do tubo para um banho-maria a 42ºC por 90 s., transferindo-se 
novamente para o gelo mantendo-se assim por 2 min. 
Em seguida, foram adicionados a cada tubo 800 µl de meio SOC (meio LB, 25mM 
KCl; 10mM MgCl2; 10mM MgSO4; 20mM de glicose), seguindo-se incubação sob 
agitação a 110 rpm por 1 h a 37ºC. Decorrido esse tempo, uma alíquota de 80 µl da 
 
 
20
cultura foi transferida para placas contendo meio LB Àgar com 50 µg/ml de ampicilina e 
60 µl de X-Gal a 2%. As placas foram incubadas em estufa a 37ºC por 16 hs. Os clones 
transformantes que desenvolveram a coloração branca foram selecionados e estas 
colônias foram transferidas de forma organizada para placas de 96 poços, contendo LB 
suplementado com ampicilina, para crescimento a 37ºC, posterior estocagem em glicerol 
(40%) e manutenção a -80ºC. 
 
 
4.5. Extração de DNA plasmidial dos transformantes 
 
A extração de DNA plasmidial dos clones foi realizada em placas de 96 poços, 
inoculando-se 10 µl de cada colônia estocada em 1,0 ml de meio LB com ampicilina (50 
µg/mL) em cada poço. As placas foram incubadas a 37°C por 22 hs, sob agitação a 220 
rpm. As placas foram centrifugadas a 3.220 xg em microcentrífuga durante 5 min e o 
sobrenadante foi descartado. 
As massas de células obtidas foram ressuspendidas em 240 µl de GTE (Glicose 50 
mM, Tris-HCl pH 8,0 25 mM; EDTA 10 mM), sendo as amostras de DNA coletadas por 
centrifugação e os “pellets” após secos foram ressuspendidos em solução de RNAse (10 
mg/ml), aos quais foram adicionados 60 µl de solução de lise (NaOH 4M; SDS 10%). As 
placas foram agitadas por inversões suaves e incubadas por 10 min. 
 Decorrido o tempo, foram adicionados 60 µl de solução de neutralização (Acetato 
de potássio 3M pH 5,8), seguindo-se suaves agitações por inversão, (foi observado, 
nesta fase, a formação de um precipitado branco). 
 Após a neutralização, as placas foram centrifugadas rapidamente e incubadas por 
30 min em estufa a 90°C após esse período as placas foram esfriadas em gelo por 10 
min. Os sobrenadantes foram coletados e transferidos para novas placas onde foram 
adicionados 110 µl de isopropanol gelado, após centrifugar 45 min a 3.220 xg, o 
sobrenadante foi descartado. Foram adicionados 200 µl de Etanol 70% gelado seguindo 
de nova centrifugação por 5 min a 3.220 xg descartando o sobrenadante. As placas 
 
 
21
secaram em fluxo laminar por 20 min. As amostras de DNA plasmidial foram 
ressuspendidas em 20 µl de água Milli-Q estéril e mantidas congeladas a -20°C. 
Após a extração do DNA dos clones, a verificação da presença de plasmídeos e a 
determinação da quantidade de DNA, foram feitas pela aplicação do material obtido em 
gel de agarose 0,8%. Para tanto, 2 µL da solução de DNA, juntamente com 2 µL de 
tampão de corrida (azul de bromofenol/glicerol) foram aplicados em canaletas do gel de 
agarose 0,8% contendo tampão TEB e submetidos a uma corrida eletroforética por cerca 
de 1 hora a 70 V. A quantificação do DNA obtido foi feita utilizando-se do plasmídeo 
pGEM3Z em diferentes concentrações: 50, 100 e 200 ng, como padrão da análise e 
documentados em fotodocumentador. 
 
 
4.6.Digestão do DNA 
 
Para liberação dos fragmentos inseridos no vetor pGEM-T Easy foi utilizado 0,4 µl 
da enzima EcoRI; 20 µl de DNA; 5 µl de tampão para a enzima [10x] e água Milli-Q 
estéril para completar o volume final de 50 µl. 
As reações foram mantidas a 37°C por 1 h e 30 min. Para verificação dos 
tamanhos dos fragmentos obtidos nas reações de digestão foi utilizado uma amostra de 
DNA com fragmentos de tamanhos conhecidos, múltiplos de 1kb (1kb Plus DNA 
Ladder), produzida pela Gibco-BRL, o qual serviu como referência de migração 
eletroforética. Os géis de agarose foram visualizados sob luz UV e fotodocumentados 
em equipamento fotodocumentador (Gel Doc 2000 - BIO-RAD). 
 
 
4.7. Seqüenciamento dos clones positivos 
 
Para o seqüenciamento foram selecionados ao acaso alguns clones positivos 
para presença do gene vip3A resultantes da transformação de E.coli DH10B com vetor 
de clonagem pGEM –T. Estes foram submetidos a reações de amplificação de duas 
regiões distintas do gene (Figura 3) a região Vip5-Vip2 e a região Vip3-Vip6 utilizando os 
 
 
22
pares de iniciadores específicos Vip5 e Vip2 para a primeira região e Vip3 e Vip6 para a 
segunda região (Tabela 1). A reação consistiu de 2 µl de “Big Dye Terminator” (Perkin 
Elmer), 2 µl de tampão para Big Dye, 2 µl de cada um dos iniciadores, 100 ng de DNA (2 
µl) e água Milli-Q estéril para completar o volume de 10 µl. As amplificações foram 
realizadas conforme o seguinte programa: 2 min a 94°C seguindo de 30 ciclos de: 30 s. 
a 94°C, 45 s. a 53°C, 1 min a 72°C e no final dos 30 ciclos foi programado uma extensão 
a 72°C por 5 min. 
 
 
 
 
 
 
 
 
 
 
 
Após a amplificação foi feita a purificação da PCR através da adição de 80 µl de 
isopropanol 75% em cada tubo, incubação a temperatura ambiente por 15 min e 
centrifugação a 3.220 xg por 45 min a 20°C. O sobrenadante foi descartado e o DNA 
lavado com 150 µl de etanol 70%, centrifugado a 3.220 xg por 5 min a 20°C este 
procedimento foi repetido por mais duas vezes. Após a última lavagem, os tubos foram 
mantidos a temperatura ambiente, por 20 min, para secagem das amostras e posterior 
ressuspensão em 2 µl de tampão de carregamento (0,2 ml EDTA 25mM, pH 8,0; 50 
mg/ml Blue Dextran; 1,0 ml formamida deionizada). As amostras foram submetidas à 
desnaturação por 2 min a 96°C. 
A eletroforese foi realizada em seqüenciador automático “ABI PRISM 377 DNA 
sequencing Analysis”, após a obtenção das seqüências, as mesmas foram submetidas à 
► 
► ◄ 
◄ 
vip2
1.21 Kb
Gene vip3A 
2.37 Kb 
ATG 
1.31 Kb 
Vip5 
Vip3 vip6 
0.15Kb
Figura 3. Esquema da posição das regiões Vip5-Vip2 e Vip3-Vip6 no gene 
vip3A. 
 
 
23
análise de qualidade de bases pelo “software” Bioedit e, posteriormente, foi feito o 
alinhamento múltiplo com outras seqüências através do programa CLUSTALW, 
(THOMPSON et al., 1994) www.ebi.ac.uk/clustalw/. 
 
 
4.8. Seleção e eluição dos fragmentos de DNA do gel 
 
 Após a digestão do DNA, a seleção e recuperação dos fragmentos de tamanho 
desejado para a subclonagem foram feitos pela visualização em gel de agarose de baixo 
ponto de fusão (LMP) com concentração de 1,0 % em tampão TAE (Tris-Base 2M, 
Acetato 1M, EDTA 0,1M) tendo como marcador (1kb Plus DNA Ladder). Depois de 
determinada a região provável do gel (~2.370 pb) onde o gene vip3A estaria localizado, 
esta foi cortada e aos pedaços de agarose foram adicionados 30 µl/10mg de NaCl (1M) 
e colocados em banho a 65°C por 20 min. Após a fusão, foi adicionado 1 volume de 
fenol. a seguir vórtex por 1 min e centrifugação a 15.295 xg por 10 min à temperatura 
ambiente. A fase aquosa foi coletada e 1 volume de fenol/clorofórmio (1:1) foi 
adicionado, a seguir 1 min de vórtex e nova centrifugação à 15.295 xg. Em seguida, a 
fase aquosa foi tratada com 1 volume de clorofórmio,1 min de vórtex, nova centrifugação 
e coleta da fase aquosa. Para precipitar o DNA foi adicionado 10% do volume total de 
acetato de sódio 3M pH 5,2 e 2 volumes de etanol absoluto. A amostra foi incubada a -
80°C por por 1 h. O precipitado foi centrifugado a 15.295 xg por 30 min a 4°C, lavado 
duas vezes com 1 ml de etanol 70% e centrifugado por 15min, 15.295 xg a 4°C. O 
precipitado obtido foi seco em fluxo laminar e ressuspendidos em 10µl de água Milli-Q 
estéril. 
 
 
 
 
 
 
 
 
24
4.9. Preparo do vetor de expressão pGA 748 
 
O vetor de expressão pGA748 é do tipo vetor binário, apresenta origem de 
replicação e marcadores de resistência a drogas para seleção e manutenção em 
Agrobacterium e em E. coli, em adição ao segmento de T-DNA contendo um marcador 
de seleção efetivo em plantas, e sítios de restrição para a conveniente introdução do 
DNA exógeno (Figura 4). 
O vetor plasmidial pGA748 é extraído da linhagem de E. coli MC1061 através de 
maxi - preparação de DNA. Cerca de 10 µg deste vetor (20 µl ), foram digeridos com 
adição de 2,0 µl da enzima EcoRI (10U/µl), 5,0 µl de tampão apropriado e 23 µl de água 
Mill-Q estéril completando o volume para 50 µl, a reação foi incubada a 37°C por 2 hs. 
Para limpeza do DNA, o volume foi aumentado para 400 µl com TE (10:1) pH 8,0 e 
adicionado 1 volume de fenol. Seguiu-se vórtex por 1 min e centrifugação a 15.295 xg 
em centrífuga Eppendorf por 10 min à temperatura ambiente. O sobrenadante foi 
transferido para um novo tubo e adicionou-se 1 volume de fenol/clorofórmio (1:1), 
seguindo-se 1 min de vórtex e nova centrífugação. Em seguida, tratou-se a fase aquosa 
com 1 volume de clorofórmio/álcool isoamílico (24:1), seguindo 1 min de vórtex e 
novamente centrifugado por 10 min. O DNA foi precipitado com a adição de 2 volumes 
de etanol absoluto e 50 µl de NaCl (1M), incubado a -80°C, por 1 h. Posteriormente foi 
centrifugado a 15.295 xg por 25 min a 4°C. O sobrenadante foi descartado e ao 
precipitado foi adicionado 1ml de etanol 70%, seguindo centrifugação a 15.295 xg por 15 
min a 4°C. O precipitado obtido foi seco em fluxo laminar e ressuspendidos em 40µl de 
água Milli-Q estéril. 
Em seguida, o vetor linearizado foi defosforilado com a enzima (CIP), fosfatase 
alcalina intestinal de bezerro na seguinte reação: 40 µl do vetor pGA748/EcoRI, 18 µl da 
enzima CIP (1 unidade/µl – GIBCO-BRL), 7 µl de tampão CIP [10x]. e 5 µl de água Milli-
Q estéril para completar 70 µl (volume total da reação). A reação foi mantida a 37°C 
durante 50 min. 
 
 
25
Novamente procedeu-se a limpeza do DNA como descrito anteriormente, porém o 
precipitado obtido foi ressuspendido em 30 µl de água Milli-Q estéril. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.9.1. Preparo das ligações 
 
O fragmento referente ao gene vip3A eluído foi ligado ao vetor pGA 748 
linearizado e defosforilado na proporção 4:1, utilizando 3 µl de T4 DNA ligase, 2 µl de 
Tampão da ligase [10x], 4 µl de inserto,1 µl do vetor pGA e água Milli-Q estéril para 
completar 20µl, volume final da reação. As ligações foram incubadas a 23°C por 16 hs. 
Decorrido este tempo, procedeu-se à transformação de células de Escherichia-coli 
DH10B competentes. 
 
12 Kb 
Figura 4. Mapa de restrição do vetor de expressão pGA748. BD e BE - bordas 
direita e esquerda do T-DNA do plasmídio Ti. P35S - promotor 35S do vírus do 
mosaico da couve-flor. nptII - gene que confere resistência à canamicina. Tc -
marca de resistência à tetraciclina. 
 
 
26
4.9.2. Transformação de E. coli DH-10B competentes 
 
Para o experimento de transformação foi utilizado o protocolo de HANAHAN et 
al., (1983), descrito no item 4.4.1. com algumas modificações: 
O tratamento de choque térmico foi feito pela transferência do tubo, contendo a 
suspensão de células para um banho-maria a 42°C por 1 min e 50 s. 
Posteriormente uma alíquota de 100 µl da cultura foi transferida para placas 
contendo meio LB ágar suplementado com os antibióticos tetraciclina (5 µg/ml) e 
canamicina (12,5µg/ml), para seleção dos transformantes. Os clones foram coletados, 
estocados, e submetidos a minipreparações de DNA. 
 
 
4.9.3. Orientação correta de subclonagem 
 
Para verificação do sentido correto em que o gene foi ligado ao vetor (sentido 5` - 
3`) foi necessário selecionar uma enzima de restrição que estivesse presente no inserto, 
para isso foi feita uma análise virtual do gene vip3A usando o programa pDRAW32 
(http//www.acaclone.com). Com base no resultado obtido foi selecionada a enzima PstI 
devido a existência de somente um sítio de restrição para esta enzima na seqüência do 
gene vip3A (Figura 5). Feita esta análise foi realizada uma dupla digestão utilizando a 
enzima XhoI presente no ”polilinker” do vetor pGA748 (Figura 4) e PstI presente no 
inserto. O produto da digestão foi observado por eletroforese em gel de agarose 0,8% 
corado com brometo de etídeo sob ação de luz UV. 
O DNA plasmidial foi extraído de um dos clones com a orientação correta de 
subclonagem, o qual foi, em seguida utilizado para transformar a linhagem de A. 
tumefaciens GV3101/pMP90, por meio de eletroporação. 
 
 
 
 
 
 
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.10. Preparo das células competentes de A. tumefaciens 
 
Para o preparo das células competentes, uma única colônia de A. tumefaciens foi 
retirada de uma placa com meio 2xLB ágar, deixada a 28°C por 3 dias, e inoculada em 
100ml de meio 2xLB líquido. O crescimento se deu a 28°C, com agitação de 120 rpm, 
por 12 a 16 hs. 
 Em seguida cerca de 50ml da cultura foram transferidos para 500ml de 2x LB em 
um frasco de 2,5 L. As células foram crescidas a 28°C, com agitação de 120 rpm por 
cerca de 4 hs e transferido para 2 frascos de centrífuga de 250ml gelados. Estes frascos 
foram deixados no gelo por 20 min. 
 Após centrifugação a 4°C, por 15 min a 4000 xg, o meio foi descartado e as 
células foram gentilmente ressuspensas em cada frasco com 250ml de água Milli-Q 
estéril gelada. Centrifugou-se novamente a 4°C, por 15 min a 4000 xg e repetiu-se esta 
lavagem por 5-6 vezes. O sobrenadante foi então descartado e as células em cada tubo 
foram ressuspendidas em glicerol 10% gelado. A suspensão de células de cada tubo foi 
transferida para um único tubo Falcon de 50ml e após centrifugação a 4°C por 10 min a 
Vip3A 
Figura 5. Análise virtual fornecida pelo programa pDRAW32 evidenciando o sítio de
restrição para a enzima PstI selecionada e os locais de pareamento dos “primers”. 
 
 
28
3000 xg, o sobrenadante foi descartado e as células foram gentilmente ressuspensas 
em 2 ml de glicerol 10% gelado. Foram feitas alíquotas de 80 µl em tubos de 
microcentrífuga que foram imediatamente estocados a –80°C. 
 
 
4.10.1. Transformação de A. tumefaciens por eletroporação 
 
Uma liquota de 80µl de células de A. tumefaciens eletrocompetente foi retirada do 
freezer a – 80°C e colocada no gelo para descongelamento lento. Cerca de 1µl (~1µg/µl) 
da ligação foi adicionado e o tubo incubado no gelo por 4 min. 
A mistura de células competentes e DNA foi transferida para uma cubeta de 
eletroporação (0,1 cm) gelada. 
O “Gene Pulser” foi ajustado para 25 µF, com 1.8 Kv de carga e o “Pulse 
Controller”, para 400 Ω. O pulso foi aplicado por 5,5 s. A cubeta foi removida e 
imediatamente adicionado 1ml de meio SOC à cubeta, ressuspendendo-se as células. A 
suspensão de células foi transferida para um tubo de 1,5 ml e incubada com agitação de 
140 rpm a 28°C por 5 hs para permitir a recuperação das mesmas. 
 Decorrido este tempo as células foram plaqueadas (80µl/placa) em meio YEB 
ágar (Extrato de carne 5g/L, Extrato de levedura 1g/L, Peptona 5g/L Sacarose 5g/L, 
MgSO4 240mg/L, pH 6,8) VERVLIET et al., (1975), contendo 12,5µg/ml de canamicina e 
5µg/ml de tetraciclina. As placas foram incubadas a 28°C até o surgimento dos 
transformantes (aproximadamente 48 hs). 
 
 
4.10.2. Extração de DNA dos transformantes 
 
Alguns clones ao acaso foram coletados e transferidos para 3 ml de meio YEB 
contendo 5µg/ml de tetraciclina e 12,5µg/ml de canamicina, incubados a 28°C, com 
agitação de 120 rpm, por 16 hs. 
 
 
29
Após este tempo foi transferido 1,5 ml da cultura para tubos de microcentrífuga e 
centrifugados a 12.000 xg por 2 min. Os sobrenadantes foram descartadose o sedimento 
foi ressuspenso em 1 ml de Tampão I (NaCl 0,2 M em TE – 10 ml pH 8,0), centrifugados a 
12.000 xg por 2 min. Esta etapa foi repetida por mais duas vezes para eliminar todo o resto 
de meio de cultura. 
Após as lavagens o sedimento foi ressuspendido em 200 µl de tampão I e 
adicionado 200 µl de solução I (NaOH 0,2 N, SDS 1% - 1ml), misturado por inversão 4 a 6 
vezes e incubado no gelo por 15 min. Em seguida foram adicionados 150 µl de acetato de 
potássio 3 M (pH 5,2) previamente resfriado, misturado por inversão quatro vezes e 
incubado no gelo por 30 min. Decorrido este tempo, centrifugou-se a 12.000 xg, por 5 min. 
Os sobrenadantes foram retirados cuidadosamente e transferidos para outro tubo, a eles 
foi acrescentado 1 volume de fenol (~500 µl), os tubos foram agitados em agitador do tipo 
vortex por 2 min e centrifugados a 12.000 xg, por 5 min, para separar as fases. A fase 
aquosa (superior) foi transferida para um novo tubo. 
Em seguida foi adicionado 1 volume (~500 µl) de clorofórmio/álcool isoamílico 24:1, 
os tubos foram agitados por 2 min em vórtex, e centrifugados a 12.000 xg por 5 min, a 
fase aquosa foi transferida para um novo tubo. Para precipitar o DNA foi adicionado 1 
volume de isopropanol (mantido a –20°C), misturado por inversão e incubado a –80°C 
por uma hora. Decorrido este tempo os tubos foram centrifugados a 12.000 xg, por 30 
min a 4°C, o sobrenadante foi descartado e o precipitado foi lavado pela adição de 500 
µl de etanol 70%. O precipitado obtido foi seco em fluxo laminar e ressuspendidos em 
20µL de água Milli-Q estéril. 
 
 
4.10.3. Confirmação da presença do gene vip3A 
 
 Para confirmar a presença do gene vip3A, nos transformantes de A. tumefaciens, 
os DNAs resultantes das minipreparações foram submetidos a reações de PCR 
utilizando-se os iniciadores Vip5 e Vip6 apresentados na tabela 1 seguindo a mesma 
reação, os produtos amplificados foram analisados em gel de agarose 1% e 
 
 
30
fotodocumentados em fotodocumentador Gel Doc 2000 (Bio-Rad). Os clones positivos 
foram estocados em glicerol 40% e mantidos no freezer á – 80°C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
5. RESULTADOS E DISCUSSÃO 
 
Para estudar o gene vip3A na linhagem HD-125 de B. thuringiensis foi utilizado o 
kit Insta Gene Matrix para obtenção do material genético, o qual demonstrou ser um 
método eficiente e mais rápido quando comparado com o método descrito por MARMUR 
et al., (1961). 
Neste trabalho foram utilizados os pares de iniciadores específicos descritos por 
LOGUERCIO et al., (2002) que amplificam o gene vip3A completo como também regiões 
distintas do gene como as regiões Vip5-Vip2 e Vip3-Vip6, (Figura 3). A utilização do par 
de iniciadores Vip5-Vip6 para amplificação do gene completo resultou num produto 
esperado de (~2.370 pb) com banda única, canaleta 2 (Figura 6). 
A análise virtual da seqüência de nucleotídeos do gene vip3A(a), depositada no 
GenBank com o número de acesso L48811, através do programa pDRAW 32, permitiu 
verificar que a amplificação com o iniciador Vip5 inicia-se a partir do “start codon” (ATG) 
e o iniciador Vip6 faz o pareamento a partir do “stop codon” (TTA), portanto, estes 
amplificam o gene vip3A(a) completo, o que permitiu a sua subclonagem em um vetor de 
expressão em plantas. 
Nos estudos realizados por LOGUERCIO et al., (2002) foram apresentadas 
bandas inespecíficas quando da amplificação das amostras com o mesmo par de 
iniciadores. Na canaleta 3 (Figura 6) comprova-se a ausência de amplificação da 
linhagem padrão usada como controle negativo, a B. thuringiensis tenebrionis 
(coleoptéro-específico). 
O produto desta amplificação foi ligado no vetor de clonagem pGEM-T Easy e os 
DNAs plasmidiais obtidos dos clones de Escherichia coli transformadas, portadores do 
gene vip3A, foram submetidos a digestão com a enzima de restrição EcoRI para 
liberação do inserto. 
 
 
 
 
 
 
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As digestões (Figura 7 – canaletas: 4 e 5, 9 – 12) e o seqüenciamento dos clones 
positivos utilizando os dois pares de iniciadores (Tabela 1) demonstraram que o gene 
vip3A de B. thuringiensis foi clonado com sucesso. A seqüência de nucleotídeos obtida 
para região Vip5-Vip2 teve um tamanho de 824 pb (Figura 8A) e a região Vip3-Vip6 com 
tamanho de 846 pb (Figura 8B) O alinhamento das seqüências geradas utilizando-se da 
ferramenta BLASTN indicou 93% de homologia para a região Vip5-Vip2 e 85% para 
região Vip3-Vip6, quando comparada à seqüência do gene vip3A(a) presente no 
GenBank, com número de acesso L48811. 
Segundo RICE (1999) e AZOL (2006) ambas as regiões Vip5-Vip2 e Vip3-Vip6 
são altamente conservadas nesta espécie. 
WU et al., (2004) utilizaram iniciadores específicos para amplificação do gene 
vip3A de B. thuringiensis linhagem WB50. Após o seqüenciamento, a seqüência de 
nucleotídeos de 2.460pb analisada indicou 99% de homologia quando alinhada com 
aquela do gene vip3A(a) depositada no Banco de dados. 
 
 
Figura 6. Eletroferograma confirmando a presença do gene
vip3A na linhagem B. thuringiensis HD-125. Canaleta 1: 
Peso molecular:1Kb Plus DNA Ladder; 2: fragmento
amplificado com ~2.370pb; 3: CN- B.t. tenebrionis; 4: 
controle negativo da reação. 
 1 2 3 4 
3.000pb 
2.000pb 
2.370pb 
 
 
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 2 3 4 5 6 7 8 9 10 11 12
 3.000pb
2.000pb
PGEM-T
2.370pb
Figura 7. Eletroferograma da digestão dos clones positivos
utilizando a enzima EcoRI. Canaleta 1: PM: !Kb; canaletas 
4,5,6,7,9,10,11,12, demonstram a presença e liberação do
fragmento inserido no vetor pGEM-T Easy, as demais canaletas 
mostram a ausência do fragmento. 
>Vip5-Vip2 
AAACCTAATACTCCCGATAAGAACCTTATCTTATCCATATATGGATTTAGCTTAGCTTACA
TACATTAAAGACTGGAATTGAATCATTACTAATTGCGAACCCAATCAATGCCTGTCCTGG
TTTAACTTCCACAATCATCTTTGCATCTTCATCACTTCCTTTAACTGTTGCATAATTAAGAT
TAGAAAAAGTATTAGAAAGTGTAAGGAGGATGTTTACTCTAAATTCCTCTTTTTCCTTATTT
AAATGTTCATTCATAATAGAAGTATAATCGATATCTGCTAAGCCTAATAATTTTCGGCATG
TTGTTAAAGAAAGAAAAGCTTTTGCTTGCAGAGCTGGTAATACAATTAAGAAGTTATAAAC
ATTTCCGACCTCACTGCCACTTGTTTTCACATTTTCTTTAGTAATTAATTCCGATGCAGGT
TTTAAAGCTGAACGCCGAATAAATTATTTCCTACCATTACATCGTGGAATGTATTAAGGCA
AGATTCAAAACCATCCACATCATTTTTTGTGACACTTTTCGCTAGATCAGATAACTCANTT
AACTCATCAAGAATATCTGCCCGAGAGCCATCCTTTTTTACTTTTGAACTATTTTCCGTAC
CAAAAAGTAGTTCCCCAAATTTTCTGTTCACNTATTTAATCCTTTGATACCCAGGTGTACT
NCTCCGNAAGGGGGGAGGTAACTCGGTACGTTGGGCGGAATCGGATACCAATTTATCG
GGAAAANNNCCACCCANAGCATCACGCAAGGANGCGTTNGGCCAGACTNAGGGGCCG
>Vip3-Vip6 
GGAACTTGAAGATGCGACCCAGTATTATTAGCCCTTTCCAGTAGACCGGTACAAAAGTTA
TCNTTCGACAATGATGCCTTGACGGTTAGCAAAAACTGGTGATACGCGCAGCTCTTATAG
CCCCCATATCATACCGCTTCCCTATAATATCCAATCCTCACATTATCATCTCCGGACACT
GAAAAACCACTCTAGATGTTGCATAAACTATCGAATTGAAGGGATAGGATGAAACTCCCT
CGTCCTCCCAGACATCGAGCGAGAGAATTGCCGCTAATATTAAATGATCCCAAACTCGT
GCAATTATTTGTATAACGTAATTCGGGACTGATGAAGTAGTCAGAATGACTAATTGCCAA
AATAATAAAGCTATCTCCCCAAGCTTCATCGCCATTTTGACTTTTTAAAATTAAATACACTC
CCTTTAAATCAGTTCCTGTAGTAAAACGTTTAGAAATAGTTTGATAATCTCCTACATTATTA
TTTGTATCTTCATAATGAACATACCCAGAAGTGGCATCTTTTAAATGAATAGAAGGGGCG
CCTTAGGCAGGCAGTGGGATGAGGAGCCGGGGAAGCGGGGGCGACGCAGCGCGAGC
GCGGGCCAGCGGTGTGGCGGCCGCAGGACAGGGGCGGGGNNNGNNGNNGNGGNNG
CGCGCGGGAGGAGGGGCGTGGNGGTCCCTCACCGCTGCCGGTGGAGGGGGCGGCAG
GTGAGCCGCGATGCGTGGCAGGGGCGCGGGAGGGGGGACGCCGAGGGGGGCGCGC
Figura 8. Seqüência FASTA da região Vip5-Vip2 (A) e seqüência FASTA da região 
Vip3-Vip6 (B). 
A
B
 
 
34
O alinhamento múltiplo feito através da utilização do programa CLUSTALW gerou 
um filograma de similaridade genética entre as seqüências obtidas pelo “software” 
Bioedit e os outros genes vips depositados no GenBank. Os resultados podem ser 
observados na Figura 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Na Figura 9, observou-se a formação de dois grupos principais; dentre estes um 
grupo apresentouos genes vip83 e vip3A(b) e um grupo maior com outros 4 genes 
incluindo as seqüências geradas pelo “Bioedit” demonstrando que a linhagem HD-125 
apresenta maior similaridade genética para o gene vip3A(a). Esses dados corroboram o 
trabalho de LOGUERCIO et al., (2002) onde este cita que a linhagem HD-125 tem um 
segmento quase inteiramente idêntico ao relatado vip3A(a). 
Segundo ESTRUCH et al., (1996), a proteína Vip3A(b) é 98% idêntica à Vip3A(a), 
com a identificação de apenas 5 aminoácidos diferentes quando se compara as duas 
seqüências. 
Em análises por reações de PCR com iniciadores específicos, DONOVAN et. al., 
(2001), comprovaram que a linhagem B. thuringiensis HD-1 contem o gene vip3A. Ainda 
DONOVAN et al., (2001) relataram que a proteína Vip3A pode ser um componente para 
a toxicidade de uma variedade de B. thuringiensis contra insetos da ordem Lepidoptera. 
9 
 
 
35
SELVAPANDIYAN et al., (2001) analisaram a toxicidade da proteína Vip 
construindo deleções de N e C terminal, expressadas em E.coli. As deleções de 39 a.a. 
do N terminal reduziu sua toxicidade contra larvas de S. litura. Similarmente, a deleção 
de 154 a.a. do C terminal aboliu completamente sua atividade contra estas larvas. 
Os DNAs dos clones de E. coli, transformadas com o vetor de expressão pGA748 
mais o gene vip3A foram digeridos com as enzimas XhoI e PstI para análise do sentido 
de clonagem, ou seja, o codon ATG do fragmento correspondente ao gene vip3A 
deveria estar “upstream” ao promotor 35S do vetor pGA748, para que fosse possível a 
expressão deste gene em plantas. Essa análise gerou três bandas. O perfil das bandas 
pode ser observado na Figura 10. Quando o fragmento foi clonado no sentido contrário 
(sentido 3` - 5`), canaletas 3 e 5, observou-se um fragmento de 9.982 pb, um de 2.600 
pb e um terceiro fragmento de 1.788 pb, (Figura 11A) Quando o fragmento estava 
clonado no sentido correto (sentido 5`- 3`), canaletas 2 e 4, distinguia-se um fragmento 
de 11.188 pb, 2.600 pb e um terceiro de 582 pb, (Figura 11B). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 2 3 4 5
2.600pb
1.788pb
582pb
9.982pb
11.188pb
3.000pb
1.000pb
12.000pb
600pb
Figura 10. Eletroferograma demostrando o sentido da
clonagem do gene no vetor pGA748, utilizando as
enzimas XhoI e PstI. Canaleta 1 PM, canaletas 2 e 4 
sentido correto (5` - 3`), canaletas 3 e 5 sentido inverso 
(3`- 5`). 
 
 
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Obtido o clone com a orientação correta de clonagem, partiu-se para a extração 
do DNA plasmidial e a eletroporação de A. tumefaciens linhagem GV3101. Os clones 
transformantes foram analisados por PCR, utilizando-se os iniciadores Vip5 e Vip6 
(Tabela 1.), e os produtos desta amplificação podem ser visualizados na Figura 12, a 
Figura 11. Esquema ilustrativo da construção do vetor de expressão em
plantas pGA748 com o gene vip3A inserido no sentido inverso (3’- 5’) (A) e a 
ligação do gene vip3A no sentido correto (5’- 3’), upstream” ao promotor 35S 
(B)
P35S
9 400pb
B 
PstI1.788p
9 400pb
P35S
A 
 
 
37
qual demostra a presença do gene vip3A completo na linhagem de A. tumefaciens 
transformada. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A transformação por eletroporação de células de A. tumefaciens com o vetor 
pGA748 foi altamente eficiente, resultando em 100% de clones analisados contendo o 
gene vip3A. 
GOULD et al., (1990) concluíram que espécies monocotiledôneas de milho podem 
ser transformadas com grande eficiência utilizando linhagens de A. tumefaciens 
desarmadas. 
Em estudos futuros poderá ser feito a transformação de uma cultivar de interesse 
econômico para expressão do gene vip3A mediadas por A. tumefaciens e posterior 
avaliação do nível de expressão desta proteína através da extração de RNA e utilização 
da técnica de RT-PCR. As plantas transformadas poderiam ser utilizadas em bioensaios 
contra larvas de Lepidópteros em condições de campo. 
Estudos que verificam a abundância, a distribuição e a diversidade de isolados de 
B. thuringiensis são importantes não somente para a busca de novas alternativas de 
controle de insetos pragas, através do isolamento de linhagens com especificidade 
3.000pb
2.370pb
 1 2 3 4 5 6 7 8 9 10
Figura 12. Eletroferograma evidenciando a presença do gene
vip3A nos clones transformantes de A. tumefaciens. Canaleta 1:
PM, 2: HD-125, canaletas 3,4,5,6,7,8 amplificação do gene, 9 CN:
Bt tenebrionis, 10: controle negativo da reação. 
 
 
38
toxica diferente das atualmente conhecidas, mas também para responder questões 
ligadas a evolução (conseqüente classificação) e as relações ecológicas desta espécie 
(VILAS BOAS, 2002). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
6. CONCLUSÕES 
 
❖ O vetor de expressão em células de planta, pGA748, apesar de ser um 
plasmídio grande, permitiu a manipulação e análise em células de E. coli DH10B, quanto 
à determinação correta de subclonagem do gene vip3A. 
 
❖ A transformação por eletroporação de A. tumefaciens com o vetor pGA748 foi 
altamente eficiente, resultando em 100% de clones analisados contendo o gene vip3A. 
 
❖ A construção do vetor pGA748 com o gene vip3A inserido no sentido correto, 
pode ser usado em transformação indireta via A. tumefaciens, ou transformação direta 
pelo uso de Biobalística e/ou eletroporação de protoplasto. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
7. REFERÊNCIAS BIBLIOGRÁFICAS 
 
 
ADANG, M. J.; FIROOZABADY, E.; KLEIN, J.; DEBOER, D.; SEKAR, V.; KEMP, J. D.; 
MURRAY, E.; ROCHELEAU, T. A.; RASHKA, K.; STAFFIELD, G.; STOCK, C.; SUTTON, 
D.; MERL, D. J. Application of a Bacillus thuringiensis crystal protein for insect control. In: 
Molecular Strategies for Crop Protection. ARNTZEN, C. J. and RYAN, C., eds. Alan 
R. Liss, New York, p. 345 - 353, 1987. 
 
ARANTES, O.M.N. Caracterização molecular do Gene Delta-Endotoxina, sua 
clonagem e transformação em Bacillus thuringiensis Berliner., 124f. Tese 
(Doutorado em Agronomia) – Escola Superior de Agricultura Luiz de Queiroz, 
Universidade de São Paulo, Piracicaba, 1989. 
 
ARORA, N.; SELVAPANDIYAN, A.; AGRAWAL, N.; BHATNAGAR, R. K. Relocating 
expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis. 
Biochem and Biophy. Reserch Commun., v.310, p.158-162, 2003. 
 
AZAMBUJA, A.O. et al. Bacillus thuringiensis obtidos de insetos sociais (Acromyrmex sp) 
coletados em áreas orizícolas . In: SINCOMBIOL, VII, 2001, Poços de Caldas (MG), 
Anais do VII SINCOMBIOL Lavras: Universidade Federal de Lavras, 2001. 
 
AZOL, M.S. Detecção de Polimorfismo por PCR-RFLP no gene vip3A em Isolados 
de Bacillus thuringiensis e Avaliação da proteína Vip3A no controle de Spodoptera 
frugiperda. Dissertação (Mestrado em Genética e Melhoramento de Plantas)- 
Faculdade de Ciências Agrárias e Veterinária, 42p., 2006. 
 
BARTON, K.; WHITELEY, H. R.; YANG, N. Bacillus thuringiensis delta-endotoxin 
expressed in transgenic Nicotiana tabacum provides resistance to lepdoteran insects. 
Plant Physiology, v.85, p. 1103 - 1109, 1987. 
 
 
41
BERNHARD, K. et al. Natural isolates of Bacillus thuringiensis: worldwide distribution, 
characterization, and activity against insect pest. Journal of Invertebrate Pathology, 
v.70, p.59-68, 1997. 
 
BHALLA, R., et al. Isolation, characteization and expression of a novel vegetative 
insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol. Lett., v.243, p.467-
472, 2005. 
 
BRASILEIRO, A.C.M. Biologia de Agrobacterium sp. Boletim da Associação Brasileira 
de Cultura de Tecido de Plantas, v. 20, p. 2-6, 1993. 
 
BRASILEIRO, A.C.M. & V.T.C. CARNEIRO. Manual de Transformação Genética de 
Plantas. 1ª Ed.Embrapa Brasília, 309 p., 1998. 
 
CARLSON, C.R.; CAUGANT, D.A.; KOLSTO, A-B. Genotypic diversity amongBacillus 
cereus and Bacillus thuringiensis strains. Appl. Envron. Microbiol., v.60, p.1719-1725, 
1994. 
 
CARLSON, C.R.; JOHANSEN, T.; LECADET, M-M.; KOLSTO, A-B. Genomic 
organization of the entomopathogenic bacterium Bacillus thuringiensis subsp. berliner 
1715. Microbiology, v.142, p.1625-1634, 1996. 
 
CAROZZI, N. B. et al. Prediction of insecticidal activity of Bacillus thuringiensis strins by 
polymerase chain reaction product prolifes. Applied. Environ. Microbiol.,. v. 57, p. 
3057-3061, 1991. 
 
CAVADOS, C. F.C. et al. Na Assessmente of the biological activity of Bacillus 
thuringiensis LFB-Fiocruz 907 in Chrysomya megacephala (Diptera: Calliphoridae). 
Israel Journ. of Entomol., v.32, p.117-123, 1998. 
 
 
42
CHAUFAUX, J. et al. Recherche de souches naturalles du Bacillus thuringiensis dans 
differéntes biotopes, à travers le monde. Can. J. Microbiol, v.43, p.337-343, 1997. 
 
CLEENE, M. ; LEY, J. The host range of crown gall. Botanical Review, v. 42, p. 389-
464, 1976. 
 
CRICKMORE, N. et al. Revisionof the nomenclature for the Bacillus thuringiensis 
pesticidal crystal proteins. Microbiol. Mol. Biol. Ver., v.62, p.807-813, 1998. 
 
DIAS, D.G.S. et al. Prospecção de estirpes de Bacillus thuringiensis efetivas contra 
mosquitos. Boletim de Pesquisa e Desenvolvimento Embrapa, Embrapa Recursos 
Genéticos e Biotecnologia Brasília D.F., n. 30, 26p., 2002. 
 
DONOVAN, W. P., J. C. DONOVAN & J. T. ENGLEMAN. Gene Knockout demonstrates 
that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon 
and spodoptera frugiperda. Journ. Invertebr. Pathol. v. 78, p. 45-51, 2001. 
 
DOSS, V.A. et al. Cloning and expression of the vegetative insecticidal protein (vip3V) 
gene of Bacillus Thuringiensis in Escherichia coli. Protein Expr. Purif. v.26, p.82-88, 
2002. 
 
ESTADA, U.; FERRÉ, J. Binding of inseticidal crystal proteins of B.t. to the midgut Brush 
border of the cabbage looper, Tricoplusia ni (Hübner) (Lepidoptera; noctuidae) and 
selection for resistance to one of the crystal proteins. Applied and Environmental 
Microbiology, v. 60, p. 3840-3846, 1994. 
 
 
 
43
ESTRUCH, J.J. et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein 
with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci 
USA, v.93 p.5389-5394, 1996. 
 
FEITELSON, J S. The Bacillus thuringiensis family tree, p.63-72. In: L. kim (ed.) 
Advanced engineered pesticides, Marcel Dekker, Inc. New York, N. Y., 1993. 
 
FISCHOHOFF, D. A.; BOWDISH, K. S.; PERLAK, F. J.; MARRONE, P. G.; 
MCCORMICK, E. J.; ROCHESTER, D. E.; ROGERS, S. G.; FRALEY, R. T. Insect 
tolerant transgenic tomato plants. Bio/Technology, v. 5, p. 807 - 813, 1987. 
 
GILL, S.S.; COWLES, E.A.; PIETRANTONIO, P.V. The mode of action of Bacillus 
thuringiensis. Ann. Ver. Entomol., v.37, p.615-636, 1992. 
 
GILL, S.S. Mechanism of action of Bacillus thuringiensis toxins. Memória do Instituto 
Oswaldo Cruz, v.90, p.69-74. 1995. 
 
GOLDBERG, R. J.; TJADEN, G. Are B.T.K. plants realy safe to eat? Bio/Technology, 
v.8, p. 1011 - 1015, 1990. 
 
GOULD, J. et al. Transformation of Zea mays L. Using Agrobacterium tumefaciens and 
the Shoot Apex. Plant Physol. v. 95, p. 426-434, 1991. 
 
HAMILTON,A.J.; LYCETT, G.W.; GRIERSON, D. Antisense gene that inhibits synthesis of 
the hormone ethylene in transgenic plants. Nature, v. 346, p. 284-287, 1990. 
 
 
 
44
HANAHAN, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol., v. 
166, p.557–580, 1983. 
 
HAWTHORNE, D. Predicting pest evolution predicting insect adaptation to a resistant 
crop. J. Econ. Entomol., v. 91, p. 565-571, 1998. 
 
HOFMANN, C.; VANDERBRUGGEN, H.; HÖFTE, H.; VAN RIE, J.; JANSENS, S.; VAN 
MELLAERT, H. Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the 
presence of high-affinity binding sites in the brush border membrane of target insect 
midguts. Proc. Natl. Acad. Sci. USA, v.85, p.7844-7848, 1988. 
 
HOOYKAAS, P.J.J.; BEIJERSBERGEN, A.G.M. The virulence system of Agrobacterium 
tumefaciens. Annual Review of Phytopathology, v. 32, p. 157-179, 1994. 
 
LACORTE, C.; MANSUR, E. Transferência de genes através de Agrobacterium 
tumefaciens: avaliação da compatibilidade patógeno-hospedeiro. Boletim da 
Associação Brasileira de Cultura de Tecido de Plantas; Notícias, v. 21, p. 2-7,1993. 
 
LAWSON, C., W. KANIEWSKI, L. HALEY, R. ROZMAN, C. NEWELL, P. SANDERS, N. E. 
TUMER. Engineering resistance to mixed virus infection in a commercial potato cultivar: 
resistance to potato virus X and potato virus Y in transgenic Russet Burbank. 
Biotechnology, v.8, p.127-134, 1990. 
 
LEE, M.K.; WALTERS, F.S.; HART, H.; PALEKAR, N.; CHEN, J-S. The mode of action of 
the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab 
δ-endotoxin. Appl. Environ. Microbiol., v.69, p.4648-4657, 2003. 
 
 
45
 
LERECLUS, D.; LECADET, M-M.; RIBIER, J.; DEDONDER, R. Molecular relationships 
among plasmids of Bacillus thuringiensis: conseved sequences through 11 crystalliferous 
strains. Mol. Gen. Genet, v.186 p.391-398, 1982. 
 
LERECLUS, D. ; DELECLUSE, A.; LECADET, M.M. Diversity of Bacillus thuringiensis 
toxins and genes. In: ESTWISTLE, P.F., CORY, J.S., BAILEY, M.J., HIGGS, S. Bacillus 
thuirngiensis an enviromental biopesticide: Theory and pratice, Chichester: J. Wiley 
e Sons, p.37-70, 1993. 
 
LI, CARREL J.J.; ELLAR, D.J. Cristal structure of inseticide delta-entotoxin from Bacillus 
thuringiensis at 2,5 A Resolution. Nature, v.353, p.815-821, 1991. 
 
LIPPINCOTT, J.A.; LIPPINCOTT, B.B.; STARR, M.P. The genus Agrobacterium. In: 
STARR, M.P. et al., ed. The prokaryotes: a handbook on habitats, isolation, and 
identification of bacteria. Berlin: Springer-Verlag, v.1, p. 842-855, 1981. 
 
LOGUERCIO, L.L. et al. Combiend analysis of supernatant-based feeding bioassays and 
PCR as a first-tier screening strategy for Vip-derived activities in Bacillus thuringiensis 
strains effective against tropical fall armyworm. Journal of Appl. Microbiol. v. 93, p.269-
277, 2002. 
 
MACINTOSH, S.C. et al. Specificity and efficacy of purified Bacillus thuringiensis proteins 
against agronomically important insects. J. Invertbr. Pathol., v.56, p.258-266, 1990. 
MAIA, A.H. Modelagem da evolução da resistência de pragas a toxinas Bt 
expressas em culturas transgênicas: quantificação de risco utilizando análise de 
incertezas. Tese (Doutorado) 108p Escola Superior de Agricultura “Luíz de Queiróz”, 
Universidade de São Paulo, Piracicaba, 2003. 
 
 
46
 
MARIANI, C., V. GROSSELE, M. BEUCKELER, M. BLOCK, R. B. GOLDBERG, W. 
GREEF, J. LEEMANS. A chimeric ribonuclease inhibitor gene restores fertility to male 
sterile plants. Nature, v.357, p.384-387, 1992. 
 
MARMUR, J. A. Procedure for isolation of deoxyribonucleic acid from microorganisms. J. 
Mol. Biol. v.3, 208-218, 1961. 
 
MARTIN, P. A.; TRAVERS, W. R. S. Worldwide abundance and distribuition of Bacillus 
thuringiensis isolates. Appl. Environ. Microbiol., v.55, p.2437-2442,1989. 
 
MARTINELLI, S. Efeito de híbridos de milho Bt expressando toxinas de Bacillus 
thuringiensis Berlier sobre insetos herbívoros e agentes de controle biológico em 
condições de campo. Tese (Mestrado) – Faculdade de Filosofia, Ciências e Letras de 
Ribeirão Preto, Universidade de São Paulo, 139p., 2001. 
 
MEADOWS, M.P. Bacillus thuringiensis in the environment: ecology and risk 
assessment. In: ENTWISTLE, P.F.; CORY, J.S.; BAILEY, M.J.; HIGGS, S. (coords.). 
Bacillus thuringiensis na environmtal biopesticide: theory and pratice. Chichester: 
J. Wiley & Sons, p.193-220, 1993. 
 
MEYERS, H.B.; JOHONSON, D.R.; SINGER, T.L.; PAGE, L.M. Survival of Helicoverpa 
zea Boddie on Bollgard® cotton. In: BELTWIDE COTTON CONFERENCE, 2., Memphis, 
1977. Proceedings. Memphis: National Cotton Council, p.1269-1271, 1997. 
 
 
 
47
MOAR, W.J.et al. Developmente of Bacillus thuringiensis CryIC resistence by 
Spodoptera exigua (Hubner) (Lepdoptera: Noctuidae). Appl.Environ.l Microbiol. v.61, 
p.2086-2092, 1995. 
 
MONERAT, R. & BRAVO, A. Proteínas bioinceticidas produzidas pela bactéria Bacillus 
thuringiensis: Modo de ação e resistência. Em: MELO, I.S. & AZEVEDO, J.L. de. 
Controle Biológico, Ed: Embrapa meio ambiente, Jaguariúna, S.P., v.3, 388p., 2000. 
 
MÜLLER-COHN, J.; CHAUFAUX, J.; BUISSON, C.; et al. Spodoptera litorallis Boisduval 
(Lepidoptera: Noctuidae) resistence to CryIc and cross – resistence to other B.t. crystal 
toxins. Journal of Economic Entomology, v. 89, p. 791-797, 1996. 
 
PERLAK, F. J., R. W. DEATON, T. A ARMSTRONG, R. L. FUCHS, S. R. SIMS, J. T. 
GREENPLATE, D. A. FICHOFF. Insect resistant cotton plants. Biotechnology, v.8 
p.939-943, 1990. 
 
PIETRANTONIO, P.V.; FEDERICI, B.A. GILL, S.S. Interaction of Bacillus thuringiensis 
endotoxins with the insect midgut epithelium. In: THOMPSON, S.N.; FEDERICI, B.A. 
(Ed.) Parasites and pathogens of insects. New York: Academic Press, v.2, p.55-79, 
1993. 
 
RICE, W C. Specific primers for the detection of Vip3A insecticidal gene within a Bacillus 
thuringiensis collection. Lett. in Appl. Microbiol., v. 28, p. 378-382, 1999. 
 
 
 
48
SELVAPANDIYAN, A., et al. Toxicity analysis of N- and C-terminus-deleted vegetative 
insecticidal protein from Bacillus thuringiensis. Appl. Environ. Microbiol. v.67, p.5855-
5858, 2001. 
 
SMITH, R.A.; COUCHE, G.A. The pilloplane as a source of Bacillus thuringiensis 
variants. Appl. Environ. Microbiol., v.57, p.311-331,1991. 
 
SMITS, P.H. Insect pathogens: their suitability as biopesticides, p.21-28. In EVANS, H.F. 
(ed.), Microbial insecticides: novelty or necessity? Major Design & Production Ltd., 
Nottingham, England, 1997. 
 
SYNGENTA. Vip3A Cotton Transformation Event COT102. Biotechmology Notification 
File. 2005. 
 
THOMPSON, J. D., HIGGINS, D. G., GIBSON, T. J. CLUSTAL W: improving the 
sensitivity of progressive multiple sequence alignment through sequence weighting, 
position-specific gap penalties and weight matrix choice. Nucleic Acids Res., v. 22, p. 
4673-4680, 1994. 
 
VAECK, M.; REYNAERTS, A.; HOFTE, H.; JANSENS, S.; DE BEUCKELEER, M.; 
DEAN, C.; ZABEAU, M.; VAN MONTAGU, M.; LEEMANS, J. Transgenic plants protected 
from insect attack. Nature London, v. 328, p. 33 - 37, 1987. 
 
VALADARES-INGLIS, M.C.C.; SHILER, W.; SOUZA, M.T. de. Engenharia genética de 
microoganismos agentes de controle biológico. InL MELO, I.S,; AZEVEDO, J.L. (Ed.) 
Contole Biológico. Jaguariúna: Embrapa-CNPMA, v.1, p.201-230, 1998. 
 
VALICENTE, F.H. et al. Identificação através de PCR dos genes cryl de cepas de 
Bacillus thuringiensis Berliner eficientes contra a lagarta-do-cartucho, Spodotera 
 
 
49
frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Na. Soc. Entomol. Brasil, v.29(1), 
p.147-153, 2000. 
 
VERVLIET, G. et al. Characterization of different plaque-forming and defective temperate 
phages in Agrobacterium strains. Journal of General Virology, v. 26, p.33-48, 1975. 
 
VILAS-BÔAS, G. F. L. T. Diversidade e Estrutura Genética de Populações de 
Bacillus thuringiensis e de Bacillus cereus. Jaboticabal: FCAV/UNESP, 102p. Tese 
Doutorado, 2002. 
 
WALDEN, R.; KONCZ, C.; SCHELL, J. The use of gene vectors in plant molecular 
biology. Methods in Molecular and Cellular Biology, v. 1, p. 175-194, 1990. 
 
WARREN, G.W.; CAROZZI, N. B.; DESAI, N.; KOZIEL, M.G. Field evaluation of 
transgenic tobacco containing a Bacillus thuringiensis insecticidal protein gene. Journal 
of Economic Entomology, v. 5, p. 1651 - 1659, 1992. 
 
WARREN, G.W. et al. Novel pesticidal proteins and strains. Patent WO 96/10083. 
World Intellectual Property Organization, 1996. 
 
WU, Z. L., W. Y. GUO, J. Z. QIU , T. P. HUANG , X. B. LI & X. GUAN. Cloning and 
localization of vip3A gene of Bacillus thuringiensis. Biotechnology letters v.26, p.1425-
1428, 2004. 
 
YU, C.-G., et al. The Bacillus thuringiensis vegetative insectcidal protein vip3A lyses 
midgut epitheilium cells of susceptible insects. Appl Environ. Microbiol., v.63, p.532-
536, 1997. 
 
 
 
50
ZAMBRYSKI, P.; HOOS, H.; GENETELLO, C.; LEEMANS, J.; MONTAGU, M. van; 
SCHELL, J. Ti Plasmid vector for the introduction of DNA into plant cells without 
alteration of their normal regeneration capacity. EMBO Journal, v. 2, p. 2143-2150, 
1983. 
 
ZHAO, J.-Z., H.L. COLLINS, J.D. TANG, L. CAO, E.D. EARLE, R.T. ROUSH, S. 
HERRERO, B. ESCRICHE, J. FERRE & A.M. SHELTON. Development and 
characterization of diamondback moth resistance to transgenic broccoli expressing high 
level of Cry1C. Appl. and Environ. Microbiol. v. 66, p. 3784-3789, 2000. 
 
ZUPAN, J.R.; ZAMBRYSKI, P. Transfer of T-DNA from Agrobacterium to the plant cell. 
Plant Physiology, v. 107, p. 1041-1047, 1995.

Continue navegando