Buscar

UC2-Eletricidade v2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 154 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 154 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 154 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Série energia – geração, TranSmiSSão e DiSTribuição
ELETRICIDADE
VoLume 2
Série energia – geração, TranSmiSSão e DiSTribuição
ELETRICIDADE
VoLume 2
CONFEDERAÇÃO NACIONAL DA INDÚSTRIA – CNI
Robson Braga de Andrade
Presidente
DIRETORIA DE EDUCAÇÃO E TECNOLOGIA – DIRET
Rafael Esmeraldo Lucchesi Ramacciotti
Diretor de Educação e Tecnologia
SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL – SENAI
Conselho Nacional
Robson Braga de Andrade
Presidente 
SENAI – Departamento Nacional
Rafael Esmeraldo Lucchesi Ramacciotti
Diretor Geral
Gustavo Leal Sales Filho
Diretor de Operações
Série energia – geração, TranSmiSSão e DiSTribuição
ELETRICIDADE
VoLume 2
SENAI 
Serviço Nacional de 
Aprendizagem Industrial 
Departamento Nacional
Sede 
Setor Bancário Norte • Quadra 1 • Bloco C • Edifício Roberto 
Simonsen • 70040-903 • Brasília – DF • Tel.: (0xx61) 3317-9001 
Fax: (0xx61) 3317-9190 • http://www.senai.br
© 2017. SENAI – Departamento Nacional
© 2017. SENAI – Departamento Regional da Bahia
A reprodução total ou parcial desta publicação por quaisquer meios, seja eletrônico, me-
cânico, fotocópia, de gravação ou outros, somente será permitida com prévia autorização, 
por escrito, do SENAI.
Esta publicação foi elaborada pela Equipe de Inovação e Tecnologias Educacionais do 
SENAI da Bahia, com a coordenação do SENAI Departamento Nacional, para ser utilizada 
por todos os Departamentos Regionais do SENAI nos cursos presenciais e a distância.
SENAI Departamento Nacional 
Unidade de Educação Profissional e Tecnológica – UNIEP
SENAI Departamento Regional da Bahia 
Inovação e Tecnologias Educacionais – ITED
FICHA CATALOGRÁFICA
S491e
 Serviço Nacional de Aprendizagem Industrial. Departamento Nacional.
 Eletricidade / Serviço Nacional de Aprendizagem Industrial, Departa- 
 mento Nacional, Departamento Regional da Bahia. - Brasília: SENAI/DN, 2017.
 150 p.: il. - (Série Energia – Geração, Transmissão e Distribuição, v. 2).
 ISBN 978-85-505-0269-4
 1. Eletrotécnica. 2. Medidas elétricas. 3. Magnetismo e eletromagnetismo. 
 4. Corrente alternada. I. Serviço Nacional de Aprendizagem Industrial. 
 II. Departamento Nacional. III. Departamento Regional da Bahia. IV. Eletricidade. 
 V. Série Energia – Geração transmissão e distribuição.
 CDU: 621.3
Lista de ilustrações
Figura 1 - A bússola e a bobina ..................................................................................................................................19
Figura 2 - Polos magnéticos no ímã ..........................................................................................................................21
Figura 3 - Polos magnéticos x polos geográficos .................................................................................................21
Figura 4 - Interação entre ímãs ....................................................................................................................................22
Figura 5 - Inseparabilidade dos ímãs ........................................................................................................................23
Figura 6 - O campo magnético de um ímã .............................................................................................................23
Figura 7 - Linhas de força magnéticas ......................................................................................................................24
Figura 8 - Guindaste magnético .................................................................................................................................26
Figura 9 - O campo magnético ao redor de um condutor ................................................................................27
Figura 10 - A regra da mão direita ..............................................................................................................................28
Figura 11 - A regra da mão esquerda ........................................................................................................................29
Figura 12 - Indução de corrente em um condutor ...............................................................................................30
Figura 13 - Variação do fluxo magnético .................................................................................................................31
Figura 14 - O campo magnético ao redor de um condutor ..............................................................................32
Figura 15 - Estrutura do capacitor ..............................................................................................................................33
Figura 16 - Capacitor de ar ............................................................................................................................................34
Figura 17 - Capacitor a óleo..........................................................................................................................................35
Figura 18 - Capacitor cerâmico ...................................................................................................................................35
Figura 19 - Capacitor eletrolítico ................................................................................................................................35
Figura 20 - Placas do capacitor....................................................................................................................................36
Figura 21 - Tensão e corrente no capacitor .............................................................................................................37
Figura 22 - Circuito com capacitores em série .......................................................................................................38
Figura 23 - Circuito com capacitores em paralelo ................................................................................................39
Figura 24 - Indutor ...........................................................................................................................................................40
Figura 25 - Indutor com núcleo de ar .......................................................................................................................41
Figura 26 - Indutor com núcleo de ferro ..................................................................................................................41
Figura 27 - Indutor com núcleo de ferrite ...............................................................................................................41
Figura 28 - Indutor toroidal ..........................................................................................................................................42
Figura 29 - Tensão e corrente no indutor ................................................................................................................42
Figura 30 - Circuito com indutores em série ..........................................................................................................44
Figura 31 - Circuito com indutores em paralelo ...................................................................................................45
Figura 32 - Subestação ..................................................................................................................................................49
Figura 33 - Gerador de tensão alternada .................................................................................................................50
Figura 34 - Identificação do triângulo retângulo..................................................................................................55
Figura 35 - Símbolo da impedância...........................................................................................................................63Figura 36 - Circuitos RL ...................................................................................................................................................63
Figura 37 - Circuito RL série ..........................................................................................................................................64
Figura 38 - Circuito RL paralelo ...................................................................................................................................66
Figura 39 - Circuitos RC ..................................................................................................................................................68
Figura 40 - Circuito RC série .........................................................................................................................................68
Figura 41 - Circuito RC paralelo ...................................................................................................................................70
Figura 42 - Circuitos RLC ................................................................................................................................................73
Figura 43 - Circuito RLC série .......................................................................................................................................73
Figura 44 - Circuito RLC paralelo .................................................................................................................................75
Figura 45 - Triângulo das potências...........................................................................................................................78
Figura 46 - Exemplo de circuito RLC ..........................................................................................................................79
Figura 47 - Transformador .............................................................................................................................................86
Figura 48 - Transformador elevador .........................................................................................................................87
Figura 49 - Transformador abaixador .......................................................................................................................87
Figura 50 - Medição na indústria ...............................................................................................................................91
Figura 51 - Instrumento ferro móvel .........................................................................................................................92
Figura 52 - Instrumento bobina móvel ....................................................................................................................93
Figura 53 - Instrumento eletrodinâmico .................................................................................................................93
Figura 54 - Instrumento eletrodinâmico blindado ..............................................................................................94
Figura 55 - Instrumento ressonante ..........................................................................................................................94
Figura 56 - Representação do processo de conversão .......................................................................................96
Figura 57 - Displays de LED e LCD ..............................................................................................................................97
Figura 58 - Escala ..............................................................................................................................................................97
Figura 59 - Sensibilidade em um instrumento de medição .............................................................................98
Figura 60 - Posições de instalação de medidores .................................................................................................99
Figura 61 - Demonstrativo de posição dos instrumentos ............................................................................. 100
Figura 62 - Tensão de isolação .................................................................................................................................. 100
Figura 63 - Exemplo de simbologia de instrumentos ...................................................................................... 101
Figura 64 - Amperímetro ........................................................................................................................................... 102
Figura 65 - Voltímetro ................................................................................................................................................. 102
Figura 66 - Ohmímetro ................................................................................................................................................ 103
Figura 67 - Wattímetro ................................................................................................................................................ 103
Figura 68 - Frequencímetro analógico .................................................................................................................. 104
Figura 69 - Medidor de energia................................................................................................................................ 106
Figura 70 - A eletrônica torna o mundo sem fronteiras ................................................................................. 111
Figura 71 - Simbologia do diodo semicondutor ................................................................................................ 112
Figura 72 - Simbologia do diodo semicondutor em camadas .................................................................... 113
Figura 73 - Simbologia técnica do diodo semicondutor ................................................................................ 113
Figura 74 - Encapsulamento do diodo semicondutor ..................................................................................... 113
Figura 75 - Exemplo de polarização do diodo semicondutor ...................................................................... 114
Figura 76 - Polarização direta do diodo semicondutor ................................................................................... 114
Figura 77 - Exemplo de polarização inversa do diodo semicondutor ....................................................... 115
Figura 78 - Divisão do circuito retificador em blocos ...................................................................................... 116
Figura 79 - Circuito retificador meia onda ........................................................................................................... 117
Figura 80 - Formas de onda de um circuito retificador meia onda ............................................................. 117
Figura 81 - Circuito retificador onda completa com center tap .................................................................... 119
Gráfico 1 - Variação da tensão ao longo do tempo .............................................................................................51
Gráfico 2 - Valores característicos ..............................................................................................................................52
Gráfico 3 - Plano cartesiano complexo ....................................................................................................................53
Gráfico 4 - Representações do ponto P ....................................................................................................................54
Gráfico 5 - Tensão e corrente em fase .......................................................................................................................59
Gráfico 6 - Tensão e corrente em fase (vetores) ....................................................................................................59Gráfico 7 - Corrente atrasada em 90º .......................................................................................................................60
Gráfico 8 - Corrente atrasada em 90º (vetores) .....................................................................................................60
Gráfico 9 - Tensão atrasada 90º ..................................................................................................................................61
Gráfico 10 - Tensão atrasada 90º (vetores) ..............................................................................................................61
Gráfico 11 - Decomposição da impedância ..........................................................................................................62
Gráfico 12 - Representação fasorial ..........................................................................................................................65
Gráfico 13 - Representação fasorial 2 .......................................................................................................................67
Gráfico 14 - Representação fasorial 3 .......................................................................................................................70
Gráfico 15 - Representação fasorial 4 .......................................................................................................................72
Gráfico 16 - Representação fasorial 5 .......................................................................................................................75
Gráfico 17 - Representação fasorial 6 .......................................................................................................................77
Gráfico 18 - Tensões nas três fases e os diodos em condução nas seis etapas ....................................... 124
Gráfico 19 - Forma de onda da saída de um retificador trifásico onda completa ................................. 125
Gráfico 20 - Curva característica do diodo zener ............................................................................................... 128
Figura 82 - Formas de onda para o circuito retificador onda completa com center tap ......................119
Figura 83 - Circuito retificador onda completa em ponte .............................................................................. 121
Figura 84 - Formas de onda de um circuito retificador onda completa em ponte ............................... 121
Figura 85 - Circuito retificador trifásico onda completa ................................................................................. 123
Figura 86 - Circuito retificador trifásico ................................................................................................................. 125
Figura 87 - Simbologia técnica universal do diodo zener .............................................................................. 127
Figura 88 - Circuito estabilizador com diodo zener .......................................................................................... 127
Figura 89 - Fórmulas para dimensionar um circuito regulador zener ........................................................ 128
Figura 90 - Identificação dos elementos que compõem o LED.................................................................... 129
Figura 91 - Estrutura do semicondutor LED ........................................................................................................ 130
Figura 92 - Diagrama em blocos de um circuito com filtro capacitivo ...................................................... 131
Figura 93 - Circuito retificador em ponte com filtro capacitivo ................................................................... 131
Figura 94 - Momento de carga e descarga do capacitor ................................................................................ 132
Figura 95 - Circuito retificador em blocos com aplicação do regulador de tensão .............................. 133
Figura 96 - Circuito retificador com tensão de saída regulada ..................................................................... 133
Figura 97 - Circuito retificador com tensão de saída regulada com CI 78XX ........................................... 134
Quadro 1 - Equivalência entre circuito magnético e circuito elétrico ............................................................26
Quadro 2 - Simbologias para instrumentos de medidas ....................................................................................95
Quadro 3 - Precisão para instrumentos de medição ............................................................................................98
Quadro 4 - Fórmulas para dimensionar um retificador meia onda .............................................................. 118
Quadro 5 - Fórmulas para dimensionar um retificador onda completa com tap central .....................120
Quadro 6 - Fórmulas para dimensionar um retificador onda completa em ponte ................................ 122
Quadro 7 - Expressões matemáticas para dimensionar uma ponte trifásica ........................................... 126
Sumário
1 Introdução ........................................................................................................................................................................15
2 Magnetismo e eletromagnetismo ...........................................................................................................................19
2.1 Ferromagnetismo ........................................................................................................................................20
2.2 Campo magnético ......................................................................................................................................23
2.3 Eletromagnetismo ......................................................................................................................................27
2.4 Capacitância e indutância ........................................................................................................................32
2.4.1 Capacitores ..................................................................................................................................33
2.4.2 Indutores ......................................................................................................................................40
3 Corrente alternada ........................................................................................................................................................49
3.1 Princípio de geração ...................................................................................................................................50
3.2 Grandezas e valores característicos ......................................................................................................51
3.3 Análise fasorial de circuitos em corrente alternada com representação na forma retangular e polar: resistivo, capacitivo e indutivo ............................................................53
3.4 Circuito RL ......................................................................................................................................................63
3.4.1 Circuito RL série .........................................................................................................................64
3.4.2 Circuito RL paralelo ..................................................................................................................66
3.5 Circuito RC .....................................................................................................................................................68
3.5.1 Circuito RC série .........................................................................................................................68
3.5.2 Circuito RC paralelo ..................................................................................................................703.6 Circuito RLC ...................................................................................................................................................73
3.6.1 Circuito RLC série .......................................................................................................................73
3.6.2 Circuito RLC paralelo ................................................................................................................75
3.7 Potência em corrente alternada .............................................................................................................78
3.7.1 Potência ativa (P) .......................................................................................................................78
3.7.2 Potência reativa (Q) ..................................................................................................................78
3.7.3 Potência aparente (S) ...............................................................................................................79
3.8 Fator de potência ........................................................................................................................................81
4 Medidas elétricas ...........................................................................................................................................................91
4.1 Princípio do funcionamento dos instrumentos de medida .........................................................92
4.1.1 Instrumentos analógicos ........................................................................................................92
4.1.2 Instrumentos digitais ...............................................................................................................95
4.2 Características básicas dos instrumentos de medida ....................................................................97
4.3 Instrumentos e grandezas ..................................................................................................................... 102
4.4 padronização de tensões EBT, BT, MT, AT e EAT, medições em EBT ........................................ 107
5 Princípios da eletrônica ........................................................................................................................................... 111
5.1 Diodo semicondutor ............................................................................................................................... 112
5.2 Retificadores monofásicos .................................................................................................................... 116
5.2.1 Retificador meia onda .......................................................................................................... 116
5.2.2 Retificador onda completa com derivação central .................................................... 118
5.2.3 Retificador onda completa em ponte ............................................................................ 120
5.3 Retificadores trifásicos ........................................................................................................................... 123
5.4 Diodo zener ............................................................................................................................................... 127
5.5 LED ................................................................................................................................................................. 129
5.6 Filtros capacitivos .................................................................................................................................... 131
5.7 Reguladores de tensão ........................................................................................................................... 132
Referências ........................................................................................................................................................................ 137
Minicurrículo dos autores ........................................................................................................................................... 139
Índice .................................................................................................................................................................................. 141
Apêndice A ....................................................................................................................................................................... 142
Apêndice B ........................................................................................................................................................................ 145
Introdução
1
Prezado (a) aluno (a),
É com grande satisfação que o Serviço Nacional de Aprendizagem Industrial (SENAI) traz o 
livro didático de Eletricidade, volume 2.
Este livro tem como objetivo desenvolver fundamentos técnicos e científicos relativos às 
grandezas e ao funcionamento de circuitos eletroeletrônicos, bem como capacidades sociais, 
organizativas e metodológicas, de acordo com a atuação do técnico no mundo do trabalho. 
O conteúdo está organizado em dois volumes. O volume 1 compreenderá: comunicação e 
informação, dados e informações, trabalho em grupo e individual, matemática aplicada, fun-
damentos de eletricidade, circuitos elétricos, princípios de leis e teoremas e potência em cor-
rente contínua. Neste volume 2 abordaremos sobre magnetismo e eletromagnetismo, corren-
te alternada, medidas elétricas e princípios da eletrônica. 
Atualmente, o mercado de trabalho busca profissionais qualificados e que consigam se des-
tacar entre as atividades que lhes são propostas em diversas áreas e não é diferente com a 
eletricidade. É buscando atender as exigências do mercado que este volume apresenta os con-
teúdos de forma que desperte as suas habilidades tanto no desenvolvimento pessoal quanto 
no desenvolvimento técnico.
ELETRICIDADE - VOLUME II16
Ao final desta unidade curricular, você terá desenvolvido as seguintes capacidades:
CAPACIDADES SOCIAIS, ORGANIZATIVAS E METODOLÓGICAS
a) Cumprir normas e procedimentos;
b) Identificar diferentes alternativas de solução nas situações propostas;
c) Manter-se atualizado tecnicamente;
d) Ter capacidade de análise;
e) Ter senso crítico;
f) Ter senso investigativo;
g) Ter visão sistêmica;
h) Demonstrar organização nos próprios materiais e no desenvolvimento das atividades;
i) Estabelecer prioridades;
j) Integrar os princípios da qualidade às atividades sob a sua responsabilidade;
k) Ter cuidado com ferramentas, instrumentos e insumos colocados à sua disposição;
l) Comunicar-se com clareza;
m) Demonstrar atitudes éticas;
n) Demonstrar postura de cooperação;
o) Ter proatividade;
p) Ter responsabilidade;
q) Trabalhar em equipe.
CAPACIDADES TÉCNICAS
a) Aplicar princípios de química e física;
b) Aplicar princípios de trigonometria;
c) Efetuar a medição de grandezas elétricas;
d) Efetuar cálculos de operações fundamentais de matemática;
e) Identificar as ferramentas adequadas para realização dos testes de acordo com a classe de tensão;
f) Identificar as ferramentas, equipamentos e instrumentos de medição adequados para as medi-
ções e os testes;
g) Identificar ausência de tensão;
h) Identificar características elétricas de materiais, componentes, instrumentos e equipamentos;
i) Identificar e interpretar unidades de medidas elétricas;
 1 INTRODUÇÃO 17
j) Identificar grandezas elétricas;
k) Identificar o funcionamento de circuitos eletroeletrônicos;
l) Identificar os instrumentos de medição;
m) Identificar princípios de funcionamento dos componentes e dos equipamentos;
n) Identificar terminologias técnicas;
o) Interpretar diagramas e esquemas elétricos;
p) Interpretar simbologia de componentes elétricos;
q) Reconhecer princípios da física (eletricidade, magnetismo, eletromagnetismo e mecânica);
r) Reconhecer princípios de química (reaçõesquímicas);
s) Reconhecer princípios de trigonometria;
t) Utilizar procedimentos e normas específicos de medição.
Lembre-se de que você é o principal responsável por sua formação e isso inclui ações proativas, como:
a) Consultar seu professor-tutor sempre que tiver dúvida;
b) Não deixar as dúvidas para depois; 
c) Estabelecer um cronograma de estudo que você cumpra realmente;
d) Reservar um intervalo para quando o estudo se prolongar um pouco mais.
Aproveite bastante o seu livro e bons estudos!
Magnetismo e eletromagnetismo
2
Neste capítulo iremos tratar sobre o magnetismo e o eletromagnetismo. Vamos entender 
melhor sobre o campo magnético, linhas de campo, fluxo e densidade magnética. Os ímãs 
também serão abordados como uma fonte de campo magnético seja ele artificial ou natural. A 
interação entre ímãs e as forças resultantes de atração e repulsão também serão apresentadas 
a seguir.
O eletromagnetismo é o ramo da física responsável por estudar a relação entre o campo 
magnético e a eletricidade. A indução elétrica desempenha um importante papel nesta relação 
e por isto as Leis de Lenz e de Faraday1 serão fundamentais para compreender este fenômeno.
Ainda neste capítulo iremos estudar sobre os capacitores e indutores, que são dispositivos 
comuns nos circuitos elétricos assim como os resistores que estudamos anteriormente. A in-
fluência destes dispositivos em um circuito de corrente contínua e o cálculo de associação em 
série e em paralelo também serão abordados a seguir.
Polo Norte Polo Suli i
Figura 1 - A bússola e a bobina 
Fonte: SENAI DR BA, 2017.
A imagem anterior nos mostra lado a lado um produto do magnetismo e do eletromagne-
tismo, de um lado a bússola que faz uso das propriedades magnéticas e que é um instrumento 
1 Lei de Lenz e de Faraday: essas leis explicam a interação entre o campo magnético e a corrente elétrica.
ELETRICIDADE - VOLUME II20
muito importante para a geografia e a navegação, do outro a bobina, o amplificador eletromagnético pre-
sente em transformadores, motores e aparelhos eletrônicos em geral.
Você sabe o que é ferromagnetismo? E um ímã? Vamos aprender mais sobre eles a seguir.
2.1 ferroMagnetisMo
O ferromagnetismo é a propriedade que faz com que substâncias apresentem uma magnetização es-
pontânea, mesmo estando fora do efeito de um campo magnético externo. Substâncias que possuem essa 
propriedade dão origem aos ímãs.
Os ímãs podem ser classificados: 
a) Quanto à origem:
 - Imã natural: materiais que apresentam o ferromagnetismo de maneira natural são chamados 
de ímãs naturais, como a magnetita2 e a própria terra;
 - Imã artificial: objetos produzidos pela sociedade como, por exemplo, os ímãs de neodímio 
presentes nos discos rígidos dos computadores.
 
b) Quanto à capacidade de manter as propriedades magnéticas: 
 - Ímãs temporários: conseguem absorver a propriedade magnética e replicar o efeito como 
acontece em um ímã comum, contudo, eles não conseguem manter a propriedade magnética 
uma vez que cesse a exposição ao campo magnético. Exemplo: clipes de papel e pregos;
 - Ímãs permanentes: conseguem manter as propriedades magnéticas mesmo quando cessa 
a ação de um campo magnético externo. Apesar disto, quando submetido a temperaturas 
muito elevadas, este material perderá temporariamente as propriedades magnéticas. Exem- 
plos: imãs de neodímio e ímãs de ferrite presentes em alto falantes.
 SAIBA 
MAIS
Além dos materiais ferromagnéticos temos também os paramagnéticos e dia-
magnéticos. Para conhecer mais sobre estes materiais, consulte: GUSSOW, Milton. 
Eletricidade básica. Tradução José Lucimar do Nascimento. 2. ed. Porto Alegre: 
Bookman, 2009.
Os ímãs estão presentes no nosso dia a dia em diversos objetos como: bússola, microfone, disco rígido 
(HD) além dos ímãs de geladeira. Os motores de corrente contínua representam uma grande parcela da 
aplicação dos ímãs na indústria.
2 Magnetita: é um tipo de minério de ferro.
 2 MagnetisMo e eletroMagnetisMo 21
leis de atração e repulsão entre ímãs
Observando o ímã em barra mostrado na imagem a seguir, podemos ver a presença de dois polos que 
estão localizados nas extremidades do ímã. Estes polos são denominados polo norte (N) e polo sul (S). 
Figura 2 - Polos magnéticos no ímã
Fonte: SENAI DR BA, 2017.
A denominação dos polos como norte e sul ocorre em função dos polos magnéticos do nosso planeta. 
O polo norte magnético é mais próximo do polo sul geométrico assim como o polo sul magnético é mais 
próximo do polo norte geométrico, por este motivo o polo norte de um ímã tende a apontar para o norte 
magnético como acontece com as bússolas. Observe a imagem a seguir que apresenta a diferença entre os 
polos magnéticos e geográficos.
Polo Norte geográ�co
Polo Sul geográ�co
Polo Sul magnético
Polo Norte magnético
Equador geográ�co
Equador magnético
Figura 3 - Polos magnéticos x polos geográficos
Fonte: SENAI DR BA, 2017.
ELETRICIDADE - VOLUME II22
interação entre ímãs
A partir do conceito de polos magnéticos, é possível compreender a interação que existe entre os polos 
magnéticos, com os ímãs acontece da mesma forma: polos opostos se atraem e polos iguais se repelem. 
Observe a imagem a seguir.
1
2
3
4
Figura 4 - Interação entre ímãs
Fonte: SENAI DR BA, 2017.
A imagem anterior ilustra bem a interação entre os ímãs. Nas situações 1 e 2 temos dois polos diferentes 
(um norte e um sul), esta interação tem como resultado uma força de atração fazendo com que os ímãs se 
atraiam até se juntar. Nas situações 3 e 4 temos casos de polos iguais: sul e sul, em seguida, norte e norte; 
neste caso, o resultado será uma força de repulsão fazendo com que os ímãs se afastem cada vez mais.
inseparabilidade dos ímãs
Nos ímãs mostrados nas imagens anteriores, é possível ver de maneira clara o polo norte e o polo sul 
de cada ímã. O que aconteceria se um ímã fosse partido ao meio “separando” os polos? Esta ideia é fisica-
mente impossível, pois não conseguimos separar os polos de um ímã, toda vez que cortamos ou mesmo 
quebramos um ímã ele se rearranja em dois novos ímãs com seus respectivos polos norte e polo sul.
 2 MagnetisMo e eletroMagnetisMo 23
N
N N
S
S S
Figura 5 - Inseparabilidade dos ímãs
Fonte: SENAI DR BA, 2017.
A imagem anterior ilustra a tentativa de separar os polos de um ímã, contudo quando o ímã é cortado 
são produzidos dois novos ímãs. No ponto onde o ímã é dividido são formados polos opostos. Na seção a 
seguir, iremos estudar sobre o efeito produzido pelos ímãs: o campo magnético.
2.2 caMpo Magnético
O campo magnético pode ser definido como a região (espaço) na qual ocorrem as interações magnéti-
cas. Um exemplo prático pode ser observado na imagem a seguir.
Ímã
Limalha de ferro
Figura 6 - O campo magnético de um ímã
Fonte: SENAI DR BA, 2017.
Observe que a limalha de ferro se organiza ao redor do ímã em função do campo magnético gerado 
por ele. Na região em volta do ímã é estabelecida uma força de atração entre ímã e limalha; quanto mais 
ELETRICIDADE - VOLUME II24
distante do ímã menor será a força de atração. Além disto, você observou que na região dos polos temos 
mais material ferroso do que no restante do ímã? Isso pode ser justificado pela concentração de linhas de 
forças magnéticas.
linHas de Forças maGnéticas
As linhas de força magnética são linhas estabelecidas na região do campo magnético, entre o polo nor-
te e o polo sul de um ímã como você pode ver em detalhes na imagem a seguir. 
N S
Figura 7 - Linhas de força magnéticas
Fonte: SENAI DR BA, 2017.
A convenção adotada considera que as linhas partem do polo norte e chegam no polo sul, conforme 
mostrado na imagem anterior. Pela presença de dois polos magnéticos, as linhas adquirem um formato 
curvo sem nunca se cruzar.
Fluxo de indução maGnética
Fluxo de indução magnética ou simplesmente fluxo magnético é o conjunto de todas as linhas do cam-
po magnético em uma região do espaço, por exemplo: as linhas que partem do polo norte de um ímã. O 
fluxode indução magnética é indicado pela letra grega φ (fi). 
densidade do Fluxo maGnético
A densidade do fluxo magnético é a razão entre o fluxo magnético e a área. Para cálculo da densidade 
de fluxo magnético utilizamos a seguinte fórmula.
 2 MagnetisMo e eletroMagnetisMo 25
B = 
φ
A
Sendo:
B = densidade de fluxo magnético em teslas (T);
φ = fluxo magnético em Webers (Wb);
A = área em metros quadrados (m²).
Para entender melhor, veja um exemplo de cálculo de densidade magnética:
Exemplo: 
Um ímã emite um fluxo magnético de 500 µWb através de uma área de 0,001 m². Sabendo disto, vamos 
calcular a densidade magnética.
1º Passo: conversão do fluxo magnético, o valor fornecido no texto do exemplo está em µWb. Para 
podermos aplicar na fórmula, será necessário convertê-lo para Wb.
500 µWb = 500 . 10-6 Wb = 5 . 10-4 Wb
2º Passo: cálculo da densidade de campo, com o valor do fluxo em Webers. Podemos aplicar a fórmula 
e calcular o campo magnético.
B = 
φ
A
B = 
5 . 10-4
0,001
B = 0,5 T
A densidade do campo magnético é de 0,5 Tesla.
circuitos maGnéticos
O objetivo na utilização de circuitos magnéticos é direcionar e concentrar o efeito magnético em um 
determinado espaço. As grandezas presentes em um circuito magnético são bastante semelhantes às 
grandezas presentes nos circuitos elétricos. O quadro a seguir mostra uma equivalência entre as grandezas 
presentes nos dois tipos de circuito.
ELETRICIDADE - VOLUME II26
cIrcuIto ElétrIco cIrcuIto magnétIco
Força eletromotriz Força magnetomotriz
Corrente elétrica Fluxo magnético
Resistência elétrica Relutância magnética
Condutividade Permeabilidade
Quadro 1 - Equivalência entre circuito magnético e circuito elétrico
Fonte: SENAI DR BA, 2017.
Com as informações fornecidas pelo quadro anterior, é possível escrever a Lei de Ohm para circuitos 
magnéticos. Observe:
φ = 
Fmm
R
Sendo: 
φ = fluxo magnético;
Fmm = força magnetomotriz;
R = relutância magnética.
Um exemplo prático de circuito eletromagnético são os guindastes eletromagnéticos, que são utiliza-
dos para movimentação de contêineres metálicos em portos e de sucata metálica em ferros velhos.
Figura 8 - Guindaste magnético
Fonte: SHUTTERSTOCK, 2017.
 2 MagnetisMo e eletroMagnetisMo 27
A imagem anterior nos mostra um guindaste com um gancho eletromagnético que permite a movi-
mentação de sucatas metálicas em um ferro velho. Neste caso, o efeito magnético está sendo canalizado 
para atrair materiais ferrosos e facilitar a movimentação deste tipo de carga.
Você viu a aplicação de um guindaste eletromagnético, mas você sabe o que é eletromagnetismo? 
Confira a seção a seguir para mais informações sobre este fenômeno.
2.3 eletroMagnetisMo
O eletromagnetismo é o ramo da eletricidade que aborda a relação entre a corrente elétrica e o campo 
magnético. Quando um condutor elétrico é percorrido por uma corrente elétrica, ao redor do condutor 
será estabelecido um campo magnético.
A partir deste conhecimento, é possível replicar e principalmente poder desligar o efeito magnético 
presente nos ímãs. Isso nos possibilita uma série de aplicações como o guindaste apresentado anterior-
mente. Chamamos de eletroímã o dispositivo formado por um núcleo de material ferroso envolvido por 
uma bobina. 
A principal vantagem de um eletroímã sobre um ímã convencional é a possibilidade de desligá-lo, pois, 
como citado anteriormente, a propriedade magnética do eletroímã só é perceptível quando existe a cir-
culação de corrente elétrica. O campo magnético resultante irá depender da intensidade da corrente e da 
amplificação magnética provocada pela bobina. 
campo maGnético no condutor
A intensidade do campo está relacionada à intensidade da corrente no condutor. Observe a imagem a 
seguir e veja a influência da corrente elétrica no campo magnético resultante.
Campo magnético de
maior intensidade
Campo magnético de
menor intensidade
Intensidade da corrente
elétrica maior
Intensidade da corrente
elétrica menor
Figura 9 - O campo magnético ao redor de um condutor
Fonte: SENAI DR BA, 2017.
ELETRICIDADE - VOLUME II28
Observando a imagem anterior, podemos perceber que, quanto maior a intensidade da corrente, maior 
será a intensidade do campo magnético. Os motores elétricos de corrente alternada que são utilizados na 
indústria para produzir movimento fazem bom uso desta relação, pois motores de maior potência, destina-
dos a movimentar cargas mais pesadas possuem maiores dimensões e maior corrente elétrica resultando 
em um campo magnético de maior intensidade.
reGra da mão direita
A regra da mão direita é um artifício prático que permite compreender a relação entre a corrente elé-
trica e o sentido das linhas de campo. A imagem a seguir ilustra o procedimento, que consiste em segurar 
o fio com a mão direita, o dedo polegar deve estar no mesmo sentido do fio, enquanto os demais serão 
fechados ao redor do fio. O polegar indica o sentido do fluxo da corrente, enquanto os demais dedos indi-
cam o sentido das linhas de campo em volta do condutor. Observe:
Mão direita
CorrenteCorrente
Campo magnético
Figura 10 - A regra da mão direita
Fonte: SENAI DR BA, 2017.
A aplicação desta regra permite determinar de maneira simples o sentido do campo magnético em um 
condutor.
Força de lorentz
Como vimos no decorrer deste estudo, o movimento das cargas elétricas gera um campo magnético; 
esse campo, por usa vez, irá exercer uma força sobre as cargas em movimento chamada de força magnéti-
ca ou força de Lorentz. Independente da origem do campo magnético ser de um ímã ou de uma corrente 
elétrica, a força magnética ou força de Lorentz exercida por ele pode ser calculada pela seguinte equação:
 2 MagnetisMo e eletroMagnetisMo 29
F = |q| . v . B . sen θ
Sendo:
F = força magnética;
q = intensidade da carga q;
v = velocidade da carga;
B = intensidade do campo magnético;
θ = ângulo formado entre as linhas de campo e a posição da carga.
Desta forma, a força de Lorentz tem a intensidade proporcional à velocidade e à carga; a direção per-
pendicular ao plano determinado por B e v; e o sentido determinado pela regra da mão esquerda que você 
verá a seguir.
reGra da mão esquerda
A regra da mão esquerda permite determinar o sentido da força F. O dedo indicador deve estar no sen-
tido do campo magnético B e o dedo médio no sentido da velocidade v, assim o polegar irá determinar o 
sentido da força. 
Figura 11 - A regra da mão esquerda
Fonte: SENAI DR BA, 2017.
ELETRICIDADE - VOLUME II30
Uma carga elétrica puntiforme3 1 . 10 -5 C passa com a velocidade de 2,0 m/s na direção perpendicular 
(90º) ao campo de indução magnética de 20 T. Observe como se calcula a força exercida na partícula.
1º Passo: Identificar as informações necessárias no texto do exemplo: carga, velocidade e campo mag-
nético.
F = |q| . v . B . sen θ
2º Passo: Substituir os valores na fórmula apresentada e calcular a força.
F = 1 . 10 -5 . 2 . 20 . sen 90
F = 3,54 . 10 -4 N ou 357 µN
lei de Faraday
A Lei de Faraday estabelece que a variação do fluxo magnético que atravessa um circuito dá origem a 
uma tensão e consequentemente a uma corrente. Esta tensão é chamada de força eletromotriz induzida. 
Observe uma demonstração prática do enunciado pela Lei de Faraday na imagem a seguir.
SN
i
i i i i
i
Bobina feita com
�o de cobre
Ímã
Multímetro
ajustado para
medição de
corrente
SN
Figura 12 - Indução de corrente em um condutor
Fonte: SENAI DR BA, 2017.
3 Carga elétrica puntiforme: corpo eletrizado com dimensões desprezíveis quando comparado com as distâncias que o separam 
de outros corpos.
 2 MagnetisMo e eletroMagnetisMo 31
Observando a imagem anterior, podemos ver dois conjuntos formados por uma espira4, um ímã e um 
multímetro. O multímetro está ajustado para efetuar a medição de corrente; quando há a movimentação 
do ímã passando pela bobina, uma tensão é induzida no condutor e o medidor consegue detectar uma 
corrente assim como propostopor Faraday.
CURIOSIDADES
Além das contribuições para o entendimento dos fenômenos eletromag-
néticos, Michael Faraday inventou o voltímetro (aparelho utilizado para 
medição de tensão elétrica) enquanto pesquisava sobre eletrólise.
(Fonte: CRUZ, 2013). 
lei de lenz
Heinrich Lenz percebeu que corrente elétrica induzida em um circuito possui um sentido e o campo 
magnético gerado por ela se opõe à variação do fluxo que a originou. Se o fluxo magnético cresce, a cor-
rente induzida gera um campo magnético no sentido contrário se opondo ao fluxo original. Se o fluxo 
magnético diminui, a corrente induzida gera um campo magnético no mesmo sentido se opondo à dimi-
nuição do fluxo original.
Observe a ilustração a seguir.
Situação A Situação B
1
N S
N S
N S
N S
2
1
2
Figura 13 - Variação do fluxo magnético
Fonte: SENAI DR BA, 2017.
4 Espira: pedaço de condutor enrolado em formato circular. Um conjunto de espiras forma uma bobina.
ELETRICIDADE - VOLUME II32
Na situação A, ocorre o aumento do fluxo magnético: no tempo 1 a espira é atravessada por uma quan-
tidade menor de linhas de campo do que no tempo 2. A variação no fluxo magnético irá induzir uma 
corrente na espira que, por sua vez, irá gerar um campo magnético; em função do fluxo ter aumentado, o 
campo gerado pela corrente induzida assumirá o sentido oposto buscando neutralizar este aumento no 
fluxo magnético original.
Na situação B, ocorre a diminuição do fluxo magnético: no tempo 1 a espira é atravessada por uma 
quantidade maior de linhas de campo do que no tempo 2. A variação no fluxo magnético irá induzir uma 
corrente na espira que, por sua vez, irá gerar um campo magnético; em função do fluxo ter diminuindo, o 
campo gerado pela corrente induzida assumirá o sentido oposto, buscando neutralizar a redução no fluxo 
magnético original.
autoindução
A autoindução é um processo eletromagnético que acontece quando a corrente elétrica passa por um 
condutor; ao percorrer o condutor, ela gera um campo magnético; se essa corrente for variável, o campo e 
o fluxo magnético também serão, o que irá resultar em uma corrente induzida no próprio condutor. Neste 
processo, o condutor induz a si mesmo.
A razão entre o fluxo magnético e a corrente elétrica recebe o nome de indutância ou coeficiente de 
autoindução e varia de acordo com a forma e as dimensões do circuito. A indutância será uma propriedade 
fundamental nos indutores, que estudaremos a seguir.
2.4 capacitância e indutância
A capacitância pode ser definida como a capacidade de um dispositivo em oferecer resistência à varia-
ção de tensão, ou ainda como a capacidade do dispositivo armazenar tensão elétrica. O dispositivo res-
ponsável por fornecer capacitância a um circuito é conhecido como capacitor, cujo símbolo é mostrado na 
figura a seguir. 
Símbolo de um capacitor Símbolo de um indutor
Figura 14 - O campo magnético ao redor de um condutor
Fonte: SENAI DR BA, 2017.
 2 MagnetisMo e eletroMagnetisMo 33
A indutância, por sua vez, é a capacidade que um dispositivo tem de oferecer resistência à variação de 
corrente. O dispositivo responsável por fornecer indutância a um circuito é conhecido como indutor, mos-
trado na figura anterior.
Vamos conhecer mais sobre capacitores e indutores a seguir.
2.4.1 capacitores
Um capacitor é formado por duas placas condutoras de energia elétrica, separadas por um material 
isolante que é chamado de dielétrico. Este material pode ser ar, vidro ou qualquer outro material isolante. 
Observe a seguir a estrutura do capacitor.
Carga elétrica
Dielétrico
Fonte de tensão
Q+ Q-
+
+
+
+
+
+
-
-
-
-
-
-
+ -
Placas condutoras de eletricidade
Figura 15 - Estrutura do capacitor
Fonte: SENAI DR BA, 2017.
Ele é utilizado em circuitos elétricos para armazenar energia em forma de tensão elétrica.
características
A capacitância pode ser calculada pela seguinte fórmula:
ELETRICIDADE - VOLUME II34
C = 
Q
V
Sendo:
C = a capacitância medida em Farads (F);
Q = a carga de uma das placas medida em Coulombs (C);
V = tensão entre as placas em Volts (V).
A unidade de capacitância é o Farad, contudo, é uma capacitância muito grande para a maioria das apli-
cações práticas. Por este motivo, é comum encontrarmos capacitores em microfarad (µF), nanofarad (nF), 
ou picofarad(pF) que valem respectivamente 10-6 F, 10-9 F e 10-12 F. Além disto, a capacitância irá depender 
da área, das placas do capacitor, da distância entre as placas e do material dielétrico.
Os capacitores podem ser classificados de acordo com o tipo de dielétrico que possuem, como:
a) capacitor de ar: como o nome sugere, tem como dielétrico o ar; é utilizado em circuitos de sin-
tonia de rádio e podem possuir capacitância fixa ou variável.
Figura 16 - Capacitor de ar
Fonte: SENAI DR BA, 2017.
b) capacitor a óleo: possui como dielétrico papel embebido em óleo e normalmente é aplicado 
em circuitos de alta tensão;
 2 MagnetisMo e eletroMagnetisMo 35
(A ÓLEO)
22 µ FD
Figura 17 - Capacitor a óleo
Fonte: SENAI DR BA,2017.
c) capacitor de cerâmica: possui a cerâmica como dielétrico. São capacitores muito utilizados em 
placas eletrônicas e possuem pequenas dimensões e pequena capacitância;
Figura 18 - Capacitor cerâmico
Fonte: SHUTTERSTOCK, 2017.
d) capacitor eletrolítico: este tipo de capacitor é uma evolução do capacitor a óleo, possuindo 
como dielétrico um eletrólito líquido e consegue associar um alto valor de capacitância com um 
tamanho menor;
Figura 19 - Capacitor eletrolítico
Fonte: SHUTTERSTOCK, 2017.
ELETRICIDADE - VOLUME II36
Quando o capacitor está em repouso, suas placas estão equilibradas do ponto de vista eletrostático, ou 
seja, sem carga elétrica resultante. Contudo, esta situação muda quando o capacitor é conectado a uma 
fonte de tensão, pois, a partir deste instante, as placas começam a ser carregadas eletricamente. 
Os elétrons localizados na placa A mostrados na imagem a seguir serão atraídos pelo polo positivo da 
fonte e serão depositados na placa B. Ao final do processo, a placa A estará carregada positivamente en-
quanto a B estará carregada negativamente; o final do processo de carregamento é alcançado quando a 
diferença de potencial da placa é igual a da fonte.
R
A
B
VV
Figura 20 - Placas do capacitor
Fonte: SENAI DR BA, 2017.
 FIQUE 
 ALERTA
Capacitores eletrolíticos possuem polaridade, ou seja, cada um dos dois terminais 
deve ser conectado em um polo específico do circuito positivo ou negativo. Caso a 
ligação seja feita de maneira errada, o capacitor pode explodir.
comportamento em corrente contínua
O comportamento do capacitor em um circuito de corrente contínua é apresentado pelos gráficos a se-
guir, que mostra a corrente e a tensão em relação ao tempo. A corrente vai diminuindo conforme a tensão 
aumenta. Quando o capacitor estiver completamente carregado, a tensão no capacitor será igual à tensão 
da fonte e a corrente será praticamente nula; o dielétrico (isolante) irá dificultar/impedir a passagem da 
corrente. O capacitor permanece carregado mesmo após ter sido retirada a bateria, só sendo descarregado 
quando for estabelecido um contato entre as placas carregadas para que retornem ao equilíbrio eletros-
tático. 
 2 MagnetisMo e eletroMagnetisMo 37
corrente
Imáx Vmáx
tensão
tempotempo
Curva da corrente e da tensão no capacitor
Figura 21 - Tensão e corrente no capacitor
Fonte: SENAI DR BA, 2017.
O tempo de carregamento de um capacitor pode ser calculado pela seguinte equação:
T = R . C
Sendo:
T = o tempo de carregamento em segundos;
R = a resistência do circuito em Ohms;
C = a capacitância do capacitor em Farad.
Assim como acontece nos circuitos contendo resistores, podemos ter mais de um capacitor em um 
circuito e, de acordo com a relação entre eles no circuito, é possível associá-los para simplificar o circuito.
associação de capacitores
O cálculo de associação de capacitores é bastante semelhante à associação de resistores. Veja a seguir 
como é feito o cálculo para associação em sériee associação em paralelo.
a) associação de capacitores em série: utiliza as mesmas fórmulas que a associação de resistores 
em paralelo. Na sequência veremos a fórmula geral para o cálculo de capacitores em série.
1
 = 
1
 + 
1
 + 
1
 + ... + 
1
Ceq C1 C2 C3 Cn
Sendo:
Ceq = a capacitância equivalente;
C1, C2, C3, Cn = as capacitâncias individuais.
ELETRICIDADE - VOLUME II38
O método prático e o método para resistores iguais também podem ser aplicados aos capacitores. Já a 
carga elétrica é igual para capacitores em série:
Qt = Q1 = Q2 = Q3 =...= Qn
No exemplo a seguir, iremos calcular a capacitância equivalente do circuito. Observe:
V1
C1 C2 C3
12 V
100uF 50uF 300uF
Figura 22 - Circuito com capacitores em série
Fonte: SENAI DR BA, 2017.
Para a resolução deste circuito, iremos utilizar o método prático; desta forma, consideraremos C1 e C2 
como CA, para calcular a capacitância equivalente parcial.
1º Passo: calcular a associação de C1 e C2.
CA = C1 . C2
C1 + C2
CA = 100 . 50
100 + 50
CA = 5000
150
CA = 33,33 µF
2º Passo: calcular a capacitância equivalente considerando CA e C3.
Ceq = CA . C3
CA + C3
Ceq = 33,33 . 300
33,33 + 300
Ceq = 9999
333,33
Ceq = 30 µF
 2 MagnetisMo e eletroMagnetisMo 39
b) associação de capacitores em paralelo: utiliza a mesma fórmula que a associação de resistores 
em série.
Ceq = C1 + C2 + C3 + ... Cn
Sendo:
Ceq = a capacitância equivalente;
C1, C2, C3, Cn = as capacitâncias individuais.
Já a carga elétrica se divide para capacitores em paralelo, sendo necessário somá-las para obter a carga 
total:
Qt = Q1 + Q2 + Q3 + ... + Qt
Observe o cálculo da associação em série no circuito a seguir.
V1 C1 C2 C3
24 V 200uF 40uF 75uF
Figura 23 - Circuito com capacitores em paralelo
Fonte: SENAI DR BA, 2017.
O processo consiste em somar as capacitâncias para obter a capacitância equivalente. Observe:
Ceq = C1 + C2 + C3
Ceq = 200 + 40 + 75
Ceq =315 µF
ELETRICIDADE - VOLUME II40
A capacitância equivalente do circuito é de 315 µF.
2.4.2 indutores
O indutor é um dispositivo formado por um conjunto de espiras de um material condutor. Um exemplo 
comum são as bobinas de cobre, como mostrado na figura a seguir, onde um condutor de cobre é enrola-
do em várias voltas com a menor distância possível entre elas, formando uma bobina. Possuir um núcleo 
de um material ferromagnético aumenta a indutância deste dispositivo por concentrar as linhas de campo.
Figura 24 - Indutor
Fonte: SHUTTERSTOCK, 2018.
caracterísicas
A indutância é representada pela letra L e medida em Henry. Diferente do capacitor, o indutor armazena 
energia em forma de campo magnético. Como dito anteriormente, os indutores estão presentes na indús-
tria através das bobinas presentes nos transformadores e motores elétricos.
tipos de indutores
Os indutores podem ser aplicados seguindo os princípios evidenciados pelas Leis de Faraday e Lenz 
para induzir corrente em um condutor, ou ainda em forma de bobina funcionando como amplificador 
magnético. Por este motivo, encontramos indutores com características diferentes de acordo com a sua 
aplicação. Destas características, o número de voltas das bobinas e o material que compõe o núcleo do 
indutor são as mais comuns. A seguir, você pode conferir a classificação de indutores considerando o ma-
terial que compõe o núcleo.
a) núcleo de ar: consiste no condutor enrolado nele mesmo sem um material de suporte. É o tipo 
mais simples de indutor;
 2 MagnetisMo e eletroMagnetisMo 41
Figura 25 - Indutor com núcleo de ar
Fonte: SHUTTERSTOCK, 2018.
b) núcleo de ferro: possui núcleo de ferro; normalmente é pesado e utilizado em altas tensões;
Figura 26 - Indutor com núcleo de ferro
Fonte: SHUTTERSTOCK, 2018.
c) núcleo de ferrite: possui ferrite no núcleo que é um dos microconstituintes do ferro; pode ser 
considerado como um tipo de ferro puro, utilizado em circuitos de alta frequência como, por 
exemplo, transmissores e receptores de rádio;
Figura 27 - Indutor com núcleo de ferrite
Fonte: SHUTTERSTOCK, 2018.
d) núcleo toroidal: indutores compactos sofrem menor influência de outros indutores e por isso 
são chamados de indutores autoblindados.
ELETRICIDADE - VOLUME II42
Figura 28 - Indutor toroidal
Fonte: SENAI DR BA, 2017.
comportamento em corrente contínua
A indutância se opõe à variação da corrente elétrica, por isso, quando temos um indutor em um circuito 
de corrente contínua, os efeitos da indutância só podem ser observados quando o circuito é energizado ou 
desenergizado. A figura a seguir mostra o comportamento da tensão e da corrente elétrica no indutor em 
um circuito de corrente contínua.
Tensão
Vmáx Imáx
Corrente
tempotempo
Curva da tensão e da corrente no indutor
Figura 29 - Tensão e corrente no indutor
Fonte: SENAI DR BA, 2017.
É possível perceber através da figura que quando o circuito é energizado a tensão elétrica diminui en-
quanto a corrente aumenta. No instante que o indutor é energizado, há uma variação na corrente e ocorre 
a autoindução do condutor, gerando uma corrente contrária à que o induziu, conforme demonstrado an-
teriormente pela Lei de Lenz.
 2 MagnetisMo e eletroMagnetisMo 43
casos e relatos
o desafio de criar um protótipo com princípios magnéticos
Marcos e Ana são alunos do curso de eletrotécnica do primeiro semestre no SENAI Sergipe e, atual-
mente, estão estudando a disciplina eletricidade. Emílio, professor da disciplina, solicitou que seus 
alunos formassem duplas para desenvolver um protótipo que fizesse o uso dos princípios magnéti-
cos ou eletromagnéticos estudados na disciplina.
Diante do desafio, Marcos e Ana começaram a pesquisar sobre experimentos. Após pesquisarem 
sobre o tema, chegaram à conclusão de que fariam um protótipo de um caminhão com braço de 
eletroímã. O projeto foi divido em três partes: o caminhão, o braço e o eletroímã. Ana conseguiu um 
caminhão de madeira com a carroceria livre entre os brinquedos do seu irmão caçula. Marcos ficou 
responsável por construir o braço para acoplar no caminhão e fez de madeira, pois trabalhava na 
marcenaria da família. Com o braço articulado pronto e acoplado ao caminhão eles partiram para o 
eletroímã.
Para a construção do eletroímã, eles compraram fio comum de cobre de 1 mm² em uma loja de 
materiais elétricos e enrolaram para formar a bobina responsável por amplificar o campo magnético 
(eles não sabiam que o fio utilizado em bobinas é esmaltado). Mesmo após diversas tentativas, refa-
zendo a bobina várias vezes, eles não conseguiram um resultado satisfatório.
Depois de tantas tentativas sem sucesso, eles começaram a pesquisar especificamente sobre bobi-
nas e analisaram o que haviam feito de errado. Chegaram à conclusão de que haviam comprado o 
fio errado, pois, como visto anteriormente, o fio utilizado em bobinas é esmaltado, o que permite 
que ele seja enrolado sem que a bobina seja curto-circuitada, diferente do que acontece com o fio 
comum que eles haviam comprado.
Com o fio correto em mãos, eles conseguiram fazer o experimento funcionar e apresentaram o 
protótipo ao professor Emílio que ficou extremamente satisfeito com o projeto desenvolvido por 
Marcos e Ana pois, além de demonstrar os princípios estudados em sala de aula, eles conseguiram 
representar uma aplicação prática através do seu protótipo.
O problema enfrentado por Marcos e Ana na história apresentada ocorreu pelo uso do fio de cobre co-
mum, encontrado em qualquer loja de materiais elétricos. Este tipo de condutor é bastante utilizado para 
a alimentação de circuitos elétricos residenciais e industriais, porém o fio específico para bobina é um fio 
de cobre esmaltado. O condutor é pintado com uma tinta isolante, pois, quando a bobina for construída, 
não haverá contato elétrico entre as espiras; contudo, as extremidades da bobina que serão energizadas 
devem ter o seu fio raspado para permitir a passagem da corrente elétrica.
Veja a seguir como é feito o cálculo de associaçãode indutores.
ELETRICIDADE - VOLUME II44
associação de indutores
Assim como acontece com os resistores e capacitores, podemos ter mais de um indutor em um circuito 
e é possível associá-los para simplificar o circuito. Acompanhe o processo a seguir.
a) associação de indutores em série: utiliza a mesma fórmula adotada no cálculo de resistores 
associados em série.
Leq = L1 + L2 + L3 + ... Ln
Sendo:
Leq = a indutância equivalente;
L1, L2, L3, Ln = as indutâncias individuais.
No exemplo a seguir, observe como calcular a indutância equivalente do circuito:
L1
L2
L3
200 mH
100 mH
80 mH
V1
6V
Figura 30 - Circuito com indutores em série
Fonte: SENAI DR BA, 2017.
Por ser um circuito em série, a indutância equivalente será a soma de todas as indutâncias presentes no 
circuito.
Leq = L1 + L2 + L3
Leq = 200 + 100 + 80
Leq = 380 mH
b) associação de indutores em paralelo: utiliza a mesma fórmula adotada no cálculo de resistores 
associados em paralelo, conforme mostra a fórmula geral a seguir. São aplicados também aos 
indutores em paralelo o método prático e o método usado no cálculo dos resistores iguais. 
 2 MagnetisMo e eletroMagnetisMo 45
1
 = 
1
 + 
1
 + 
1
 + ... + 
1
Leq L1 L2 L3 Ln
Sendo:
Leq = a indutância equivalente;
L1, L2, L3, Ln = as indutâncias individuais.
Observe o cálculo da associação dos indutores em paralelo no circuito a seguir.
L1
L2
L3
L4
200 mH
100 mH
80 mH
80 mH
V1
6 V
Figura 31 - Circuito com indutores em paralelo
Fonte: SENAI DR BA, 2017.
1º Passo: calcular a associação de L1 e L2. Para esta associação, iremos utilizar o método prático. Desta 
forma, consideraremos L1 e L2 como LA, para calcular a indutância equivalente parcial.
LA = L1 . L2
L1 + L2
LA = 200 . 100
200 + 100
LA = 20000
300
LA = 66,67 mH
ELETRICIDADE - VOLUME II46
2º Passo: calcular a associação de L3 e L4. Chamaremos esta associação de LB, como L3 e L4 possuem a 
mesma indutância, então podemos aplicar a fórmula para valores iguais, observe:
LB = L
n
LB = 80
2
LB = 40 mH
3º Passo: calcular a indutância equivalente considerando LA e LB.
Leq = LA . LB
LA + LB
Leq = 66,67 . 40
66,67 + 40
Leq = 2666,8
106,67
Leq = 25 mH
A indutância equivalente do circuito é de 25 mH.
 2 MagnetisMo e eletroMagnetisMo 47
 recapitulando
Neste capítulo, estudamos sobre os ímãs e sua relação com os materiais ferromagnéticos, materiais 
que sofrem uma força de atração quando expostos a um campo magnético. Os tipos de ímãs tempo-
rários e permanentes também foram abordados no seguimento do capítulo; enquanto os temporá-
rios apresentam as propriedades magnéticas por um determinado período, os permanentes conse-
guem manter tais propriedades. Inseparabilidade, polaridade e a relação entre os polos magnéticos 
deram seguimento ao estudo, servindo como base para o entendimento do campo magnético.
O campo magnético também foi abordado, expondo as linhas de campo magnético e o fluxo de 
indução magnética que relaciona a quantidade de linhas de força com a área que atravessam. Este 
estudo serviu como base para conhecermos mais sobre o eletromagnetismo: as relações estabeleci-
das entre a corrente elétrica e o campo magnético. As Leis de Farad e o fenômeno da autoindução 
nos ajudaram a entender a indução, que se manifesta quando um fluxo magnético variável faz surgir 
uma corrente em um condutor; a Lei de Lenz, por sua vez, explica que essa corrente induzida irá se 
opor ao efeito que a provocou.
Capacitores e indutores foram os últimos temas vistos neste capítulo, ambos são elementos pre-
sentes em circuitos elétricos, enquanto o capacitor armazena energia elétrica em forma de tensão 
através do campo elétrico, o indutor armazena energia em forma de campo magnético. Este capítulo 
encerra nossos estudos sobre os circuitos de corrente contínua. No capítulo a seguir, iremos dar iní-
cio ao estudo da corrente alternada. Continue estudando!
Corrente alternada
3
Neste capítulo, iremos estudar a corrente alternada (CA), conhecida também como (AC) 
que, diferente da corrente contínua, possui variação de amplitude em relação ao tempo. Em 
função desta variação, vamos conhecer como é gerada esta corrente e os valores característi-
cos que ela pode assumir como tensão de pico, tensão eficaz, frequência e o seu valor médio. 
Estudaremos também o comportamento de indutores e capacitores, quando submetidos 
a corrente alternada. Com os conhecimentos destes componentes, será possível avançar para 
circuitos alternados compostos por resistores e indutores (RL), resistores e capacitores (RC) e os 
circuitos mistos composto por resistores, indutor e capacitor (RLC).
Em circuitos de corrente alternada, o conceito de potência elétrica é expandido, pois a cor-
rente alternada possui outros tipos de potência. Ainda neste capítulo, vamos fazer o estudo da 
potência ativa, reativa e aparente; o fator de potência também será um tema de nosso estudo, 
assim como os impactos que um baixo fator de potência pode causar em uma instalação. Por 
último, iremos conhecer mais um pouco sobre transformadores, que são máquinas de corrente 
alternada utilizadas para manipular tensão e corrente elétrica.
Figura 32 - Subestação 
Fonte: SHUTTERSTOCK, 2017.
ELETRICIDADE - VOLUME II50
A imagem anterior nos mostra uma subestação, estrutura fundamental para o processo de transmissão 
e distribuição de energia elétrica em corrente alternada. As subestações recebem as linhas de transmissão 
de energia e, quando localizadas em perímetro urbano, abaixam o valor da tensão recebida para que esta 
possa percorrer a cidade através da rede primária até chegar aos transformadores que mais uma vez rebai-
xam a tensão para a tensão nominal da cidade: 127 ou 220 V.
3.1 prinCípio de geração
O princípio de geração de corrente alternada consiste em induzir uma força eletromotriz em uma es-
pira. Isto acontece quando uma espira é colocada na presença de um campo magnético produzido por 
um ímã permanente e, conforme a espira se movimenta, variando o fluxo magnético, será induzida uma 
tensão nos seus terminais, conforme mostra a imagem a seguir.
N
Tensão alternadaS
Polo sul (S)
Polo
norte (N)
Campo magnético
Figura 33 - Gerador de tensão alternada
Fonte: SENAI DR BA, 2017.
SAIBA 
MAIS 
Para conhecer mais detalhes sobre o processo de geração de corrente alternada, 
consulte: SILVA FILHO, Matheus T. da. Fundamentos de eletricidade. Rio de Ja-
neiro: LTC, 2013.
 3 Corrente alternada 51
3.2 grandezas e valores CaraCterístiCos
Os circuitos alimentados por corrente contínua têm como característica básica manter a polaridade dos 
seus condutores, tendo sempre um condutor positivo e um negativo. A corrente alternada, por outro lado, 
possui um condutor fase que alterna de sentido conforme o tempo como você pode conferir no gráfico a 
seguir.
0
t
Valor Zero
Semiciclo
positivo
+V
-V
Semiciclo
negativo
Tempo (s)
T
Gráfico 1 - Variação da tensão ao longo do tempo 
Fonte: SENAI DR BA, 2017.
 
Como você pôde observar no gráfico anterior, o comportamento da tensão em corrente alternada as-
sume a forma de uma senoide, em que a tensão oscila, admitindo valores positivos e negativos em função 
do tempo. Este processo ocorre em ciclos que são divididos em duas etapas: o semiciclo positivo (indicado 
pela cor verde), quando o valor de tensão parte do zero, alcança o valor máximo e retorna a zero; e o se-
miciclo negativo (indicado pela cor vermelha), que possui o mesmo comportamento apenas assumindo 
valores negativos.
CURIOSIDADES
Além de defender a corrente alternada e inventar o gerador de corrente 
alternada, Nikola Tesla também foi o inventor do rádio e do princípio da 
lâmpada fluorescente. Ele também contribuiu para o avanço nas pesqui-
sas com raios X e radar.
Ainda falando de corrente alternada, não podemos esquecer de mencionar sobre a frequência. Esta 
grandeza é muito importante para garantir o funcionamento satisfatório das cargaselétricas. Aqui no Bra-
sil, a frequência padrão é de 60 hertz (hz), ou seja, a corrente completa 60 ciclos em um segundo.
Além da frequência, o período é um outro parâmetro importante na corrente alternada. Ele pode ser 
definido como o tempo necessário para que um ciclo seja completado, ou seja, para que seja possível a 
ELETRICIDADE - VOLUME II52
corrente alternada passar de um semiciclo para outo. A frequência pode ser definida pela equação mate-
mática a seguir:
ƒ = 
1
T
Sendo:
ƒ = a frequência em Hertz;
T = o período em segundos.
No gráfico Variação da tensão ao longo do tempo, você observou o comportamento de uma onda se-
noidal e, a partir desta observação, é possível extrair valores do gráfico como, por exemplo, a amplitude 
ou valor de pico. Além dessas informações, existem outros valores que podem ser extraídos desse gráfico. 
Observe o gráfico a seguir.
90o 180o 270o 360o
Valor de
pico a pico
Valor de
picoValor
rmsValormédio
Gráfico 2 - Valores característicos 
Fonte: SENAI DR BA, 2017.
a) Valor de pico (VP): o valor de pico é o valor máximo que uma onda senoidal pode assumir. Este 
valor pode ser positivo ou negativo;
b) Valor de pico a pico (VPP): o valor de pico a pico é o valor medido considerando o valor máximo 
positivo e o valor máximo negativo, podendo ser determinado pela a equação abaixo
Vpp = 2 . Vp
 3 Corrente alternada 53
c) Valor eficaz (Vrms): para entendermos o valor eficaz ou o Vrms (root Mean Square), precisamos lem-
brar que a cada instante em relação ao tempo a nossa onda senoidal vai mudando de valor, o que 
a torna uma medida variante em relação ao tempo. O valor eficaz tem uma relação direta com 
a potência de uma carga, representa a dissipação de potência de uma resistência, considerando 
que esta resistência fosse alimentada em corrente contínua. Isso quer dizer que o valor eficaz da 
tensão alternada indica uma quantidade de potência elétrica dissipada em uma resistência, caso a 
mesma fosse alimentada por uma tensão contínua. A equação abaixo determina como podemos 
encontrar o valor eficaz matematicamente.
Vrms = 
Vp
√2
d) Valor médio (Vmed): o valor médio corresponde à média de todos os valores em uma onda senoi-
dal considerando apenas um semiciclo.
Vmed = 
Vpp
π
O valor médio quando considerados dois semiciclos senoidais é nulo, devido ao fato de termos um se-
miciclo positivo e outro semiciclo negativo, fazendo com que as grandezas elétricas se anulem. 
3.3 análise fasorial de CirCuitos em Corrente alternada Com representação na 
 forma retangular e polar: resistivo, CapaCitivo e indutivo
Para o estudo de circuitos de corrente alternada, iremos trabalhar com números complexos, que você 
estudou no capítulo Matemática aplicada, lembra? Um número complexo pode ser representado de duas 
formas, na forma polar e na forma retangular (algébrica). Graficamente, podemos representá-lo atribuindo 
ao eixo horizontal a parte real (eixo real) e no eixo vertical a parte imaginária (eixo imaginário).
0
P
Eixo real
Eixo imaginário
Gráfico 3 - Plano cartesiano complexo 
Fonte: SENAI DR BA, 2017.
 
ELETRICIDADE - VOLUME II54
A imagem anterior nos mostra um plano cartesiano complexo formado por um eixo horizontal real e 
um eixo vertical imaginário. Neste plano, temos um ponto P, podemos localizar este ponto de duas for-
mas, através de coordenadas cartesianas (x, y) ou através de um comprimento e uma inclinação. Observe 
a seguir:
Eixo imaginário
Eixo real
P
Z
a
b
0
0
Gráfico 4 - Representações do ponto P
Fonte: SENAI DR BA, 2017.
De um modo prático, é possível marcar precisamente o ponto P no plano desde que os valores de a e b 
sejam conhecidos, ou o valor do |Z| e do ângulo θ. A representação utilizando a e b é o que chamamos de 
forma algébrica e é escrita da seguinte forma:
Z = a + bi
Onde, a e b são números reais e i compõe a unidade imaginária.
Contudo, no ramo de estudo da eletricidade, a unidade imaginária é representada pela letra j e normal-
mente colocada antes da parte real. Desta forma, temos:
Z = a + jb
A forma polar é composta pelo comprimento |Z| e o ângulo θ, onde |Z| é a intensidade e o θ indica o 
argumento do ângulo considerado. Observe:
Z = |Z| θ
 3 Corrente alternada 55
transformação da forma de representação dos números complexos
Incorporando as informações das duas formas de representação, é possível formar um triângulo retân-
gulo com a e b como catetos e |Z| como hipotenusa. Isto nos permite utilizar da trigonometria para efetuar 
as conversões. Veja a figura a seguir:
|Z|
|Z|
a0
P
θθ
b
b
a
Eixo imaginário
Figura 34 - Identificação do triângulo retângulo
Fonte: SENAI DR BA, 2017.
Vamos ver a seguir como ocorre a transformação da forma algébrica para a forma polar.
a) Transformação da forma algébrica (retangular) para a forma polar
Para converter o número para a forma polar, será necessário calcular |Z| e o ângulo θ. 
O |Z| pode ser obtido pelo teorema de Pitágoras:
|Z| = √a2 + b2
O ângulo θ pode ser obtido pelo arco tangente:
θ = arctg 
b
a
Observe um exemplo numérico de conversão a seguir:
Z = 10 + j4
ELETRICIDADE - VOLUME II56
1º Passo: calcular o |Z|; para isto, iremos utilizar o teorema de Pitágoras como apresentado anterior-
mente.
|Z| = √a2 + b2
|Z| = √102 + 42
|Z| = √100 + 16
|Z| = √116
|Z| = 10,770
2º Passo: calcular o ângulo θ; para isto, iremos utilizar a função arco tangente.
θ = arctg 
b
a
θ = arctg 
4
θ = 21,801°
10
Desta forma, o número complexo Z = 10 + j4 pode ser escrito como 10,770 21,801° .
Você pode conferir como realizar a transformação da forma algébrica para a forma polar utilizando a 
calculadora. Veja o passo a passo disponível no apêndice desse livro. 
Veja agora como ocorre a transformação da forma polar para a forma algébrica.
b) Transformação da forma polar para a forma algébrica (retangular)
Utilizando do mesmo triângulo apresentado na imagem anterior, podemos calcular a e b a partir da 
hipotenusa e o ângulo fornecido.
A parcela a pode ser determinada utilizando o cosseno no ângulo θ.
a = |Z| . cosθ
A parcela b pode ser determinada utilizando o seno do ângulo θ.
b = |Z|. senθ
 3 Corrente alternada 57
Observe um exemplo numérico de conversão a seguir:
10,770 21,801°
1º Passo: determinar a utilizando o cosseno.
a = |Z| . cosθ
a = 10,770 . cos 21,801°
a = 10
2ºPasso: determinar b utilizando o seno.
b = |Z| .senθ
b = 10,770 . sen 21,801°
b = 4
Desta forma, o número complexo 10,770 21,801° pode ser escrito como Z = 10 + j4.
Você pode conferir como realizar a transformação da forma polar para a forma algébrica através do 
passo a passo de utilização da calculadora no apêndice disponibilizado no final do livro. 
 FIQUE 
 ALERTA
Para que a conversão entre as formas polar e retangular seja executada corretamen-
te, é preciso se certificar que a sua calculadora esteja ajustada para graus, para isto, 
aperte a tecla mode duas vezes e em seguida tecle 1.
operações com números complexos
Para simplificar o processo de resolução de operações com números complexos utilizamos as seguintes 
regras.
a) Soma e subtração: na soma e subtração de números complexos, utilizamos a forma algébrica, 
tanto a soma quanto a subtração são realizadas separadamente, parte real com parte real e parte 
imaginária com parte imaginária. Observe o exemplo a seguir.
Z1 = 6 + j2
Z2 = 3 + j8
Z3 = 5 - j5
ELETRICIDADE - VOLUME II58
Operação: (Z1 + Z2) -Z3
1º Passo: montar a operação substituindo os valores de Z1, Z2 e Z3;
[(6 + j2) + (3 + j8)] -(5 - j5)
2º Passo: resolver primeiro a soma devido à presença dos parênteses. Para isto, iremos somar 6 e 3 
(parte real) e 2 e 8 (parte imaginária);
(9 + j10) - (5 - j5)
3º Passo: após a soma, iremos realizar a subtração, mantendo o mesmo padrão: 9 e 5 (parte real) 10 e 
-5 (parte imaginária).
(9 - 5) + j(10 -(-5))
4 + j15
b) Multiplicação e divisão: para a multiplicação

Continue navegando