Buscar

TEMA 2Tomografia Computadorizada

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 50 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
Estudo da tomografia computadorizada e técnicas radiográficas utilizadas para seleção de
parâmetros na formação da imagem seccional.
PROPÓSITO
Compreender a tomografia computadorizada por meio das descobertas relativas à sua história,
dos avanços tecnológicos e parâmetros de controle associados à formação da imagem.
OBJETIVOS
MÓDULO 1
Reconhecer a história da tomografia
MÓDULO 2
Reconhecer a geração de dados correlacionada à formação da imagem e as principais
modalidades em TC
MÓDULO 3
Identificar os ajustes de protocolos em tomografia computadorizada
INTRODUÇÃO
A tomografia computadorizada (TC) foi um marco na história da medicina e desde a sua
introdução, nos anos 1970, proporcionou grande avanço na área médica. Trouxe benefícios
incontestáveis para o diagnóstico médico a partir da análise de imagens seccionais. É um
método capaz de formar imagens seccionais do organismo humano utilizando a radiação
ionizante liberada por uma fonte emissora que gira 360 graus ao redor do objeto, com emissão
contínua de raios X.
Os princípios físicos da TC são similares aos da radiografia convencional, na qual tecidos que
apresentam composições distintas absorvem a radiação X de maneira diferente. Quando os
tecidos são transpostos por raios X, os mais densos absorvem mais radiação quando
comparados com tecidos menos densos.
Desse modo, a TC evidencia a quantidade de radiação absorvida por cada parte do corpo que
está sob análise, traduzindo essas variações em imagens numa escala de cinza. Cada pixel da
imagem representa a média da absorção dos tecidos nesse local, expresso em unidades de
Hounsfield (nome dado em homenagem ao idealizador do primeiro aparelho de TC).
MÓDULO 1
 Reconhecer a história da tomografia
O HISTÓRICO PREDECESSOR DA
TOMOGRAFIA E OS RAIOS X COMO
ELEMENTOS ESSENCIAIS PARA O
MÉTODO
Segundo Nacif e Dos Santos (2009), em 8 de novembro de 1895, um professor de Física
teórica, o doutor Wilhelm Conrad Roentgen, descobriu os raios X, em Wurzburg, na Alemanha.
Ele realizava experiências com ampolas de Hittorf (Johann Wilhelm Hittorf – físico alemão) e
Crookes (William Crookes – físico e químico inglês). Ao anoitecer do dia 8 de novembro de
1895, Roentgen escolheu um dos tubos Hittorf-Crookes de que dispunha em uma estante de
seu laboratório, recobriu-o com cuidado, usando uma cartolina preta, escureceu totalmente o
laboratório e ligou o tubo aos eletrodos da bobina de Ruhmkorff.
Foto: Autor desconhecido / Wikipedia Commons / Domínio público
 Wilhelm Conrad Roentgen.
Ao passar a corrente de alta tensão através do tubo, verificou que nenhuma luz visível
atravessara a cartolina preta que o revestia. Preparava-se para interromper a corrente de alta
tensão quando percebeu que a cerca de 1 metro do tubo, havia uma luz fraca. Sem entender o
que se passava, Roentgen acendeu um fósforo e, com surpresa, verificou que a forma da
misteriosa luz era um pequeno écran de platinocianeto de bário deixado sobre um banco.
Roentgen sabia que a luz do écran não provinha dos raios catódicos e que pela distância, seria
ela algum tipo de radiação. Sem saber qual a radiação, deu-lhe o nome de raios X.
Imagem: Wilhelm Röntgen / Wikimedia Commons / Domínio público
 Radiografia da mão de Anna Bertha Ludwig (esposa de Wilhelm).
Em dezembro de 1895, Roentgen fez a primeira radiografia da História, de uma das mãos de
Anna Berta Ludwig Roentgen, sua esposa, em mais ou menos 15 minutos de exposição.
O experimento de Wilhelm culminou no surgimento dos raios X, elemento que serve como base
para a tomografia computadorizada, modalidade diagnóstica que se utiliza da radiação
ionizante para o entendimento corporal humano em planos (axial, coronal e sagital) com base
em cálculos matemáticos, um tubo de raios X, uma mesa de exames e elementos detectores
que transformam a captação em um sinal elétrico e, posteriormente, em informação que vai
gerar a imagem após um complexo processamento computacional desenvolvido a partir de
softwares.
O HISTÓRICO DE EVOLUÇÃO DA
INVENÇÃO
Em 1972, foi apresentado por Ambrose e Hounsfield um novo método de utilização da radiação
ionizante com a finalidade de medir as diferentes densidades corpóreas, obtendo imagens,
primeiramente do encéfalo, com finalidades diagnósticas. Esse método se desenvolveu por
cerca de 10 anos, sendo realizadas diversas medições de transmissão dos fótons de raios X,
em múltiplos ângulos e, a partir desses valores, os coeficientes de absorção pelos diversos
tecidos seriam calculados pelo computador e apresentados em uma tela, indo do branco ao
preto (teoria das tonalidades de cinza). Os pontos formariam uma imagem correspondente à
secção axial do cérebro, que poderia ser estudada posteriormente. Hounsfield apostava que
um feixe de raios X continha mais informações do que aquela que seria possível capturar com
o filme e imaginou que um sistema computacional formaria sua teoria de aumento de
informações e posterior avanço diagnóstico.
Foto: Autor desconhecido / Wikimedia Commons / Domínio público
 Godfrey Newbold Hounsfield.
O notório Hounsfield nasceu em Nottinghamshire, na Inglaterra, no dia 28 de agosto de 1919.
Era o irmão mais novo de uma família de cinco irmãos. No final do ano de 1939, ingressou na
Royal Air Force-RAF (Força Aérea Real Britânica) como voluntário. Lutou na Segunda Grande
Guerra Mundial e, logo após a guerra, obteve uma bolsa de estudos para ingressar no curso de
engenharia mecânica e elétrica na Casa Faraday, em Londres.
Uniu-se ao grupo de pesquisas da Eletric and Musical Industries – EMI, em 1951. Em 1967,
transferiu-se para o Laboratório Central de Pesquisas da EMI.
A EMI, nessa época, era uma empresa quase totalmente voltada para a fabricação de discos e
componentes eletrônicos e não tinha nenhuma experiência com equipamentos radiológicos. Os
Beatles, que gravavam na época para o selo, foram os responsáveis pelo apoio financeiro mais
significativo para a companhia. O então Departamento de Saúde foi procurado por Hounsfield e
pelos radiologistas James Ambrose e Louis Kreel para financiar, junto com a EMI, o
desenvolvimento de um scanner para a cabeça.

1972
O radiologista Ambrose orientou clinicamente e alavancou o primeiro experimento, utilizando
um protótipo de scanner (tomógrafo) para cabeça da EMI, o Mark 1, no ano de 1972. Logo
depois, o Departamento de Saúde solicitaria mais 3 scanners.
1975
Em 1975, numa conferência em Bermuda, Hounsfield anunciou um scanner capaz de estudar
outras partes do corpo humano. Esse pronunciamento foi recebido com aplausos de pé, do
seletíssimo público local.

Em 1972, Hounsfield ganhou o prêmio MacRobert, a mais alta condecoração do Reino Unido
dedicada a inovações científicas. Em 1975, recebeu o prêmio Lasker, nos Estados Unidos da
América. Em 1979, junto com Cormack, recebeu o prêmio Nobel de Medicina, principal laurel
da medicina, pelo feito iniciado antes de 1972, cujo reconhecimento tardio não diminuiu as
honras e não causou demérito ao poder efetivo de sua invenção. Em 1981, foi condecorado
“Sir” pela rainha da Inglaterra.
Em 1994, foi eleito Honorary Fellow da Academia Real de Engenharia. Continuou a trabalhar
depois de sua aposentadoria oficial, em 1986, como cientista e consultor da EMI, e trabalhou
em alguns hospitais na Inglaterra.
Hounsfield foi um homem que contribuiu enormemente com o seu esforço e empenho, sempre
à frente do seu tempo, para o avanço da medicina e do radiodiagnóstico.
POR FALTA DE INTERVENÇÃO E APOIO MATEMÁTICO,
A TOMOGRAFIA COMPUTADORIZADA (TC) SE
DESENVOLVEU NO INÍCIO DA DÉCADA DE 1960 DE
FORMA MUITO LENTA, MAS, EM 1964, ALLAN
CORMACK ENTROU COM A AJUDA MATEMÁTICA
FUNDAMENTAL PARA O PROBLEMA DA
RECONSTRUÇÃO. ELE ESTUDAVA A DISTRIBUIÇÃO
DOS COEFICIENTES DE ATENUAÇÃO DO CORPO
PARA QUE O TRATAMENTO POR RADIOTERAPIA
PUDESSE SER BEM DIRECIONADO PARA O TUMOR
ALVO. ALÉM DISSO, ESTAVA CRIANDO UM
ALGORITMO MATEMÁTICO PARA RECONSTRUÇÃO
TRIDIMENSIONAL DA DISTRIBUIÇÃO DACONCENTRAÇÃO DE RADIONUCLÍDEOS, A PARTIR
DOS DADOS COLETADOS DE UM EQUIPAMENTO DE
CÂMARA-PÓSITRON, DESENVOLVIDO EM 1962.
(CARVALHO, 2007, p. 61).
ALLAN CORMACK
Allan McLeod Cormack (1924 — 1998) foi um físico sul-africano laureado com o Nobel de
Fisiologia ou Medicina de 1979 por ter participado do aprimoramento do diagnóstico de
doenças pela tomografia axial computadorizada.
javascript:void(0)
Foi exatamente nessa época que surgiu um engenheiro de radares, representante da EMI,
interessado em desenvolvimento computacional e criador do primeiro computador de
transistores da Inglaterra. Hounsfield apresentava ideias de estudar o interior de objetos,
utilizando a reconstrução obtida pela absorção de radiação pelos componentes tridimensionais
(objetos tridimensionais).
Hounsfield foi o criador de um protótipo que demorava 150 minutos para processar uma única
imagem e 9 dias para a aquisição da imagem total do objeto, utilizando uma fonte de amerício
241, emissora de raios gama. Quando ele adquiriu um tubo gerador de raios X para substituir a
radiação gama e aplicou ao desenvolvimento do método, o tempo de aquisição das imagens foi
drasticamente reduzido para 9 horas.
Imagem: Fbot / Wikimedia Commons / CC BY-SA 3.0.
 Protótipo de Hounsfield para a primeira geração do tomógrafo computadorizado
Ao longo do tempo, após várias imagens experimentais com peças tridimensionais e animais,
foi realizada a primeira imagem diagnóstica, de uma suspeita de tumor no lobo frontal esquerdo
de uma paciente escolhida pelo Dr. Ambrose. A imagem obtida, mostrando o tumor, causou
euforia em Hounsfield e na sua equipe.
Essas primeiras imagens foram mostradas no Congresso Anual do British Institute of
Radiology, em 20 de abril de 1972. As reações foram de perplexidade e empolgação,
principalmente dos neurologistas, que vislumbraram o estudo por imagem intracraniano.
Curiosamente, Hounsfield havia mostrado imagens seccionais de peças de cadáveres e de
animais no congresso europeu realizado em Amsterdã, no ano anterior, sem despertar nenhum
interesse. A comunidade médica ali reunida não percebeu e não teve noção da revolução
científica e médica que se aproximava. Já em 1973 foram comercializados vários aparelhos
tomográficos pelo mundo, principalmente na Europa e nos Estados Unidos.
Foto: Autor desconhecido / Wikimedia Commons / CC BY-SA 3.0
 Protótipo de Hounsfield para a primeira geração do tomógrafo computadorizado.
Quando o equipamento começou a ser comercializado, o tempo de aquisição de cada corte era
de 6 minutos e de 2 minutos para reconstrução de imagem. A redução do tempo se deu por
conta de um minicomputador mais eficiente, que foi incorporado ao sistema.
 SAIBA MAIS
No Brasil, o primeiro tomógrafo foi instalado em São Paulo, em 1977, no Hospital da Real e
Benemérita Sociedade Portuguesa de Beneficência. Logo após, na Santa Casa de
Misericórdia, no Rio de Janeiro, o primeiro aparelho teve seu funcionamento iniciado, em 28 de
julho de 1977.
A partir daí, a tecnologia só evoluiu e surgiram os aparelhos de segunda, terceira, quarta
geração e helicoidais, cada vez mais rápidos, com imagens mais nítidas e melhores
resoluções. Seus tempos de exame eram cada vez menores, assim como os custos de
produção, consequentemente, reduzindo valor dos equipamentos e dos exames.
Imagem: Shutterstock.com
Em 1976, foi patenteada a aquisição volumétrica e, em junho de 1980, imagens tridimensionais
com resolução de 1200 x 1200 pixels passam a ser adquiridas e apresentadas quase em
tempo real.
A ordem textual não contempla a ordem cronológica dos fatos, mas sim a relevância de
Hounsfield como o principal ator da história da tomografia computadorizada. Veja a ordem
cronológica dos principais eventos:
ÉPOCA EVENTO
1895 Descoberta dos raios X
1919 Nascimento de Hounsfield
1939 Ingresso de Hounsfield na Força Aérea Britânica
1962 Utilização dos raios Gama por Cormack – câmara-pósitron
1964 Ajuda matemática para a reconstrução por Cormack
1967 Ingresso de Hounsfield na EMI
ÉPOCA EVENTO
1971
Hounsfield havia mostrado imagens seccionais de peças de cadáveres e de
animais no congresso europeu realizado em Amsterdã em 1970
1972
Primeiras imagens tomográficas de uma paciente são mostradas no
Congresso Anual do British Institute of Radiology
1973 Tomógrafo entra no mercado
1975 Anúncio de um scanner de outras regiões do corpo humano
1976 Patente da aquisição volumétrica
1977 Primeiros tomógrafos no Brasil, em SP e no RJ
1979 Prêmio Nobel para Cormack e Hounsfield
1980 Patente da aquisição volumétrica tridimensional
1981 Condecoração de Cavaleiro para Sir Hounsfield, pela rainha da Inglaterra
1986 Aposentadoria de Hounsfield, ainda representando a EMI até 1994
⇋ Utilize a rolagem horizontal
Quadro: Cronologia dos eventos relacionados à participação de Hounsfield.
Elaborado por: Henrique Luz Coelho.
O MÉTODO TOMOGRÁFICO
A TC é um método de diagnóstico por imagem que utiliza os raios X em combinação com
computadores adaptados para processar muitas informações e produzir imagens com alta
resolubilidade. O tubo de raios X fica dentro do corpo do aparelho, no gantry, que é uma
espécie de portal ou pórtico onde o paciente entra para gerar a aquisição dos cortes. A
radiação “entra” no paciente (objeto) e atinge os detectores, que formam o principal elemento
de coleta do sinal da tomografia, para ser processada pelo computador.
DETECTORES
Conjunto de receptores ou sensores que coletam o residual do feixe de radiação que
atravessa o paciente.
Foto: Shutterstock.com
Na aquisição dos cortes tomográficos, o tubo gira em torno do paciente e um feixe de radiação
é emitido, incidindo nos detectores após a interação com o corpo do paciente, que coletam
informações obtidas das projeções múltiplas para, logo em seguida, serem processadas e
transformadas em imagem.
O princípio básico para a geração de imagens digitais é a captação de sinais elétricos, que são
transformados em dígitos binários pelo computador, com a essencial estrutura física dos
javascript:void(0)
detectores, que podem ser sólidos (cristais luminescentes) ou gasosos (câmara de ionização à
base do gás xenônio).
A matriz de TC é definida por linhas e colunas arranjadas que formam a imagem digital. O
elemento de imagem que é formado pela intersecção dessas linhas é o pixel (picture element)
e uma matriz de alta resolução apresenta pixels de pequenas dimensões. Já a espessura do
corte está relacionada à profundidade, e o volume formado é conhecido como voxel (volume
element). O voxel é formado pelas dimensões do pixel e a profundidade do corte. Essa matriz
de alta resolução forma a base da imagem em tomografia, sendo notoriamente explorada, pois
o aumento da matriz está relacionado à melhora da resolução das imagens digitais
tomográficas.
As características essenciais do método tomográfico são:
Imagem: Shutterstock.com
Feixe de raios X de aspecto laminar
Imagem: Shutterstock.com
Aquisição das imagens que ocorrem no gantry
Imagem: Shutterstock.com
Imagem final, que é digital e manipulada por softwares
Imagem: Shutterstock.com
Quanto maior a matriz, melhor a resolução de imagens
A aplicação do método tomográfico é essencialmente composta por uma ordem de
acontecimentos intuitivos, que vão desde a chegada do paciente ao equipamento até a saída
da sala de exames, perpassando a aquisição de imagens no gantry e encontrando
assentamento no processamento das imagens que ocorre na sala de comando do aparelho.
No próximo módulo, você vai compreender a evolução da tomografia computadorizada,
segmentada por gerações.
INTRODUÇÃO À TOMOGRAFIA
Neste vídeo, o especialista Wellington Guimarães Almeida explica o que é a tomografia
computadorizada, trazendo os detalhes pertinentes sobre o assunto:
VERIFICANDO O APRENDIZADO
1. QUAL FOI O PERSONAGEM HISTÓRICO QUE INCORPOROU A
MATEMÁTICA ESSENCIAL NA REALIZAÇÃO DO PROJETO FINAL PARA
DESENVOLVIMENTO DA TOMOGRAFIA COMPUTADORIZADA?
A) HounsfieldB) Ambrose
C) Cormack
D) Kreel
E) Roentgen
2. QUAL É O ELEMENTO DO GANTRY QUE COLETA O SINAL DA
TOMOGRAFIA PARA SER PROCESSADO PELO COMPUTADOR?
A) O sistema de conversão de sinal elétrico.
B) O sistema de refrigeração.
C) O tubo de raios X.
D) O detector.
E) O gantry.
GABARITO
1. Qual foi o personagem histórico que incorporou a matemática essencial na realização
do projeto final para desenvolvimento da tomografia computadorizada?
A alternativa "C " está correta.
Allan Cormack foi o responsável pela inserção da matemática ao sistema tomográfico, em
1964, para desvendar o problema da reconstrução das imagens.
2. Qual é o elemento do gantry que coleta o sinal da tomografia para ser processado
pelo computador?
A alternativa "D " está correta.
O detector é a parte do gantry responsável pelo recebimento do sinal da tomografia que
interagiu com o paciente e por transformar esse sinal em sinal elétrico para, posteriormente,
ser processado pelo computador.
MÓDULO 2
 Reconhecer a geração de dados correlacionada à formação da imagem e as
principais modalidades em TC
PRINCÍPIOS DE FORMAÇÃO DA IMAGEM
Foto: Shutterstock.com
A TC é um método completamente não invasivo de obtenção de imagens internas do corpo.
Essas imagens são obtidas a partir do exterior do objeto, pela medição das intensidades dos
fótons de raios X que atravessam esse corpo. As intensidades obtidas são processadas por um
algoritmo computacional que as transforma em uma imagem bidimensional, que posteriormente
poderá ser reconstruída nos planos axial, coronal, sagital, oblíquo ou curvo e até mesmo em
perspectiva tridimensional.
O processo de formação de imagem pode ser dividido em três fases:
AQUISIÇÃO DE DADOS
RECONSTRUÇÃO MATEMÁTICA DA IMAGEM
APRESENTAÇÃO DA IMAGEM
AQUISIÇÃO DE DADOS
É também conhecida como fase de varredura ou de exploração. Inicia-se com a exposição de
uma seção da região do corpo a um feixe colimado de raios X, na forma de um leque fino,
envolvendo as suas extremidades. Os fótons de radiação que atravessam a seção do corpo,
sem interagir, atingem um conjunto de detectores no lado oposto.
RECONSTRUÇÃO MATEMÁTICA DA IMAGEM
Os dados brutos obtidos pelos detectores são calculados por meio de algoritmos matemáticos
pelo computador e representados em tons de cinza na tela do monitor, conforme a natureza
dos tecidos atravessados no corte, formando assim uma imagem numérica ou digital.
APRESENTAÇÃO DA IMAGEM
A fase final é a conversão da imagem digital em uma imagem de vídeo para que possa ser
diretamente observada em um monitor de TV e posteriormente documentada em filme. Esta
fase é efetuada por componentes eletrônicos que funcionam como um conversor (vídeo)
digital-analógico. A relação entre os valores do número de TC do pixel da matriz de
reconstrução para os tons de cinza, ou de brilho, da matriz de apresentação é estabelecida
pela seleção da janela.
Em outras palavras, a imagem é gerada a partir de um feixe de raios X estreito e um conjunto
de detectores montado no lado oposto. Como o cabeçote e o detector estão conectados
mecanicamente, eles se movimentam sincronizadamente. Quando o conjunto cabeçote-
detector faz uma translação ou rotação em torno do paciente as estruturas internas do corpo
atenuam o feixe de raios X, de acordo com a densidade e número atômico de cada tecido.
Imagem: Leandro Ferreira Souteiro
Os dados obtidos pelos detectores são armazenados no computador e, por meio de equações
matemáticas aplicadas sobre esses dados, torna-se possível a determinação de relações
espaciais entre as estruturas internas de uma região selecionada do corpo humano. A imagem
é apresentada na tela do computador como uma matriz bidimensional em que, a cada
elemento dessa matriz (pixel), é atribuído um valor numérico, denominado número de TC. Este
é expresso em unidades Hounsfield (UH) e está relacionado ao coeficiente linear médio de
atenuação do elemento de volume (voxel) no interior do corte que o pixel representa. O fóton,
ao atravessar o corpo, é atenuado, e a leitura do sinal do detector é proporcional ao grau de
atenuação ou ao grau de penetração do fóton.
Imagem: Roseane Bahiense
 Esquema de rotação do conjunto cabeçote-detector.
AQUISIÇÃO DE IMAGENS NOS
DIFERENTES EQUIPAMENTOS DE
TOMOGRAFIA COMPUTORIZADA
Imagem: Leandro Ferreira Souteiro
TC linear (convencional) – também conhecido como corte a corte, no qual a mesa se
movimenta após cada giro de 360º do tubo, fazendo a aquisição de uma imagem a cada giro,
ou seja, a mesa anda e para a cada novo corte.
Imagem: Leandro Ferreira Souteiro
TC Helicoidal – um método de aquisição indireto, que combina a emissão contínua de
radiação X e a rotação do conjunto ampola-detectores com o movimento da mesa (pitch),
adquirindo um volume de dados em forma de hélice. A aquisição de dados é contínua, de forma
que a ampola permanece girando enquanto a mesa permanece movimentando-se. Nesse
processo, não há mais a aquisição de dados por corte, mas sim de forma ininterrupta.
Imagem: Leandro Ferreira Souteiro
TC Multicortes (multislice) – um dos mais novos avanços na tomografia, apresentando
múltiplos conjuntos de anéis detectores de forma estrategicamente emparelhada, sendo
possível a aquisição de vários cortes simultâneos em cada rotação do tubo de raios X.
Em tomografia, a imagem final representa a densidade correspondente de cada tecido por
meio de uma escala de cinza.
CLASSIFICAÇÃO EM FUNÇÃO DA
DENSIDADE DO OBJETO
As diferenças entre regiões nas imagens por TC são classificadas em:
Imagem: RPCAS
HIPERDENSAS (CLARAS)
Imagens hiperdensas, caracterizadas pela tonalidade branca, em uma tomografia de abdome.
Imagem: RPCAS
ISODENSAS (EM TONS DE CINZA)
Imagens isodensas, caracterizadas por escalas de cinza (do escuro ao claro), em uma
tomografia de crânio.
Imagem: RPCAS
HIPODENSAS (ESCURAS)
Imagens hipodensas, caracterizadas por tonalidades de cinza (do preto ao cinza escuro) em
uma tomografia de tórax.
A essa classificação, segue a chamada escala de Hounsfield (HU), cujas unidades assumem
valores preestabelecidos a partir da atribuição do valor 0 (zero) correspondente à densidade da
água. Os tomógrafos são calibrados de modo que a água tenha sempre o valor 0.
A escala Hounsfield assume valores entre -1000 (ar) até +1000 (osso cortical).
Imagem: Imaginologia. Freitas, 2014, p. 13.
 Escala de Hounsfield.
O olho humano só consegue distinguir 64 níveis de cinza, sendo necessário selecionar um
nível ideal de atenuação que permita uma contrastação dos tecidos avaliados. Selecionado um
nível e uma abertura de janela adequada, será possível visualizar estruturas ósseas ou
detalhes anatômicos das partes moles. A tabela a seguir mostra valores de HU para algumas
estruturas, onde podemos perceber que quanto maior a densidade do tecido/órgão, maior a
atenuação.
Veja a seguir as principais densidades teciduais utilizadas em TC.
Valores Estruturas
300 a 100 Osso cortical/denso
100 a 200 Osso normal
60 Fígado
50 Pâncreas
Valores Estruturas
36 Parênquima cerebral
20 Músculo
0 Água
-20 a -80 Gordura
-500 a -800 Pulmão
-1000 Ar
⇋ Utilize a rolagem horizontal
Quadro: Principais densidades teciduais utilizadas em TC.
Elaborado por: Henrique Luz Coelho.
A ESCALA DE HOUNSFIELD E O PADRÃO
DA IMAGEM NA TELA DO MONITOR
Para visualizarmos esses números de TC representados pela escala de cinza, utilizaremos um
elemento denominado de janela (WINDOW), que será composta por 3 fatores:
CENTRO (LEVEL)
NÍVEL DA JANELA (WL, DE WINDOW LEVEL)
LARGURA DA JANELA (WW, DE WINDOW WIDTH)
CENTRO (LEVEL)
Representa o valor médio da densidade das estruturas que compõem o voxel ou um grupo de
voxels. O centro da janela independe do contraste que se apresenta na imagem e seu valor
deve ser relacionado à densidade média do objeto de maior interesse na imagem obtida.
NÍVEL DA JANELA (WL, DE WINDOW LEVEL)
O nível da Janela está diretamente relacionado com os valores de atenuação teciduale
controla o brilho da imagem ou determina o número de TC que será o centro da janela. Ele é,
geralmente, determinado pela densidade do tecido que aparece com mais frequência dentro de
uma estrutura anatômica.
LARGURA DA JANELA (WW, DE WINDOW WIDTH)
A largura da Janela se refere ao intervalo de números de TC que são exibidos como diferentes
tons de cinza e está relacionado ao contraste da imagem.
 EXEMPLO
Quando realizamos exame do abdome superior: o WC (LC) deverá corresponder à
densidade média do fígado. No exame de tórax (mediastino): o WC (LC) deverá corresponder
à densidade média do coração. No exame de tórax (pulmão): o WC (LC) deverá
corresponder à densidade média do pulmão.
Janela ampla: baixo contraste definido como 400-2000 HU, mais bem usado em áreas de
diferentes valores de atenuação agudos (tórax, por exemplo).
Janela estreita: alto contraste definido como 50-350 HU são excelentes ao examinar áreas
de atenuação semelhante (crânio, por exemplo).
O AJUSTE DA JANELA É FUNDAMENTAL PARA DEFINIR
CORRETAMENTE O CONTORNO DE UMA ESTRUTURA, POIS
DEVIDO AO EFEITO DE VOLUME PARCIAL PRESENTE NA
IMAGEM SEMPRE HAVERÁ UM BORRAMENTO ENTRE A
INTERFACE DE DUAS ESTRUTURAS ADJACENTES.
As imagens a seguir mostram as janelas em TC:
Exame de tórax: WL 53 e WW 354.
Exame de tórax: WL 95 e WW 349.
Exame de tórax: WL -650 e WW 1198.
ALGORITMOS DE RECONSTRUÇÃO
APLICADOS À FORMAÇÃO DA IMAGEM
Em TC, as imagens podem ser reconstruídas utilizando os algoritmos de reconstrução, que é
um método matemático (complexo) utilizado na reconstrução das imagens. Consiste,
basicamente, na obtenção de imagens em diferentes projeções, com a correspondente
somatória dos resultados obtidos em cada projeção, considerando um valor médio de
atenuação para cada coluna ou linha da imagem, que colocam em evidência alguns tecidos.
A classificação a seguir está relacionada com a natureza do tecido estudado:
Classificação Natureza do tecido
SOFT Tecidos moles em crianças.
STANDARD Tecidos moles nos adultos (músculos e vísceras).
Classificação Natureza do tecido
DETAIL Tecido de densidades intermediária entre músculos e ossos.
BONE Ênfases ao tecido ósseo.
EDGE Ênfases ao tecido ósseo denso e cortical óssea (contorno ósseo).
LUNG Parênquima pulmonar.
⇋ Utilize a rolagem horizontal
Quadro: Relação entre a classificação e a natureza do tecido estudado.
Elaborado por: Henrique Luz Coelho.
1- Standard
2- Lung
3- Bone
ALGORITMOS DE RECONSTRUÇÃO
Desta vez, o especialista Wellington Guimarães Almeida retrata os principais aspectos dos
algoritmos de reconstrução:
FILTROS DE IMAGEM (ENHANCE/ SMOOTH/
SHARP)
O filtro de reconstrução utilizado tem por finalidade retirar ou minimizar certas frequências
espaciais que estão presentes nas projeções, as quais são responsáveis pela degradação da
resolução espacial da imagem tomográfica. O filtro é um dos parâmetros mais importantes a
condicionar a qualidade de imagem em TC, oferecendo diferentes compromissos entre a
resolução espacial e o ruído. As imagens digitais podem receber tratamentos que alteram o seu
aspecto visual.
Foto: Shutterstock.com
Os tratamentos são obtidos por filtros tipo High Pass e Low Pass:
Os filtros High Pass dão realce às imagens e podem ser do tipo Enhance/Sharp/Edge;
Os filtros Low Pass suavizam a imagem e podem ser do tipo Smooth/Soft.
Mas qual é a diferença desses filtros?
1
Os filtros Sharp são frequentemente utilizados na reconstrução de imagens, quando se
pretende obter os detalhes finos, isto é, elevada resolução espacial. No entanto, ocorre o
aumento dos níveis de ruído da imagem.

2
Os filtros Smooth são utilizados em reconstruções de tecidos moles, sendo característico a
diminuição do ruído de imagem e da resolução espacial.
DOCUMENTAÇÃO TOMOGRÁFICA
Imagem: Shutterstock.com
É a última etapa do exame de tomografia computadorizada. Uma boa documentação, além de
demonstrar zelo com o exame, pode ser decisiva para uma correta interpretação do estudo. As
imagens devem ser documentadas, levando-se em consideração qual o tecido de maior
interesse (assunto) e, evidenciando-se, na medida do possível, o contraste da imagem.
O tecido de interesse é estabelecido pelo nível da imagem (Window Level) e representado pelo
valor WL. O contraste da imagem depende da amplitude da Janela (Window Width),
representado por WW. Janelas muito amplas apresentam imagens tomográficas acinzentadas
e, portanto, de baixo contraste, mas podem representar fator de qualidade, na medida em que
um maior número de estruturas estarão presentes na imagem.
No próximo módulo, você vai conhecer os principais artefatos em TC, as soluções para
resolvê-los e as principais características que interferem diretamente na qualidade da imagem
e na busca de um diagnóstico, fazendo uma correlação entre a hipótese diagnóstica adequada
à imagem de TC e as falhas que podem ocorrer por conta do aparecimento desses artefatos.
VERIFICANDO O APRENDIZADO
1. QUAL DAS ALTERNATIVAS ABAIXO REPRESENTA NA TC A
TONALIDADE DE CINZA VARIANDO DO PRETO AO CINZA-ESCURO, NA
QUAL A IMAGEM FINAL REPRESENTA A DENSIDADE
CORRESPONDENTE DE CADA TECIDO POR MEIO DE UMA ESCALA DE
CINZA?
A) Imagens densas
B) Imagens hiperdensas
C) Imagens hipodensas
D) Imagens isodensas
E) Imagens com baixíssima densidade
2. QUAL DOS ALGORITMOS DE RECONSTRUÇÃO APLICADOS À
FORMAÇÃO DA IMAGEM REPRESENTA O PARÊNQUIMA PULMONAR E O
TECIDO ÓSSEO CORTICAL, RESPECTIVAMENTE?
A) Edge e soft
B) Lung e edge
C) Soft e lung
D) Bone e detail
E) Bone e soft
GABARITO
1. Qual das alternativas abaixo representa na TC a tonalidade de cinza variando do preto
ao cinza-escuro, na qual a imagem final representa a densidade correspondente de cada
tecido por meio de uma escala de cinza?
A alternativa "C " está correta.
As imagens hipodensas representam, numa escala de cinza, tonalidades mais escuras
relativas às densidades teciduais mais baixas.
2. Qual dos algoritmos de reconstrução aplicados à formação da imagem representa o
parênquima pulmonar e o tecido ósseo cortical, respectivamente?
A alternativa "B " está correta.
Os filtros ou algoritmos de reconstrução lung e edge representam o tecido pulmonar, mais
especificamente o parênquima pulmonar (excluindo-se o mediastino), e o osso cortical é
representado pelo segundo algoritmo.
MÓDULO 3
 Identificar os ajustes de protocolos em tomografia computadorizada
PRINCIPAIS PARÂMETROS DE CONTROLE
NA AQUISIÇÃO DAS IMAGENS
TOMOGRÁFICAS
Os parâmetros a seguir serão apresentados detalhadamente neste módulo:
Colimação do feixe;
Eixo de corte e pitch;
Corrente (mA);
Alta tensão (kV);
Tempo de varredura.
COLIMAÇÃO DO FEIXE
A colimação do feixe é o primeiro item a ser definido e isso dependerá da região a ser
estudada, o que levará aos procedimentos de escolha dos outros fatores. A espessura maior
pode determinar perda de informação do tecido, e a espessura menor determina um maior
número de imagens da mesma região e, portanto, um tempo maior para realização da
varredura. Os aparelhos de tomografia mais modernos permitem colimação de até 0,5mm
(submilimeter), sendo mais comuns as espessuras de 1mm, 2mm, 5mm e 10mm.
Mas o que são colimadores?
Os colimadores são os dispositivos responsáveis pela restrição da área de exame ou região do
corpo do paciente a ser estudada no exame. Eles também permitem a diminuição da dose de
exposição de radiação (primária e secundária) no paciente e atuam na melhoria da qualidade
das imagens. Existe dois tipos de colimadores, os colimadores pré-paciente (o feixe é colimado
assim que sai do tubo) e os colimadores pós-paciente (o feixe é novamente colimado ao entrar
em contato com o detector).
Imagem: Leandro Ferreira Souteiro
 Colimadores pré-paciente e pós paciente.
A colimação do feixe é um procedimento muito importante, pois está diretamente relacionada à
espessura do corte, ou seja, à região que será estudada, atuando na execução do exame de
forma direta. Assim, ela é responsávelpor evitar o espalhamento, fazendo com que as linhas
do feixe apresentem um aspecto organizado.
ESPESSURA DE CORTE
A espessura do corte tomográfico é um parâmetro muito importante em TC, pois ela é
determinada pelo operador e pode ser controlada pela abertura do colimador. As espessuras
de cortes devem estar compreendidas na faixa de 1mm a 10mm, podendo ter especificações
predefinidas para determinados exames (protocolos preestabelecidos) a fim de garantir a
qualidade da imagem, ou seja, sem interferência dos ruídos nas imagens.
Imagem: Leandro Ferreira Souteiro
 Espessura de corte.
Uma espessura de corte muito fina pode gerar mais ruído quando comparada às espessuras
mais largas, ou seja, que apresentam uma resolução inferior. Quanto menor a radiação
secundária, melhor a resolução de contraste, que pode ser explicada como a habilidade de
distinguir pequenas diferenças de tons de cinza em uma imagem.
A escolha do tamanho de corte dependerá do contraste entre as estruturas da região estudada.
Caso haja alto contraste (alta resolução espacial), normalmente serão utilizados cortes finos, e
quando não houver um grande contraste entre as estruturas, como por exemplo, tecidos moles,
é recomendado o uso de cortes mais espessos. Com isso, conseguiremos uma maior distinção
entre o contraste dos tecidos e, consequentemente, um estudo melhor para o caso.
 ATENÇÃO
Devemos lembrar dos seguintes fatores ao dimensionarmos a espessura de corte. Quanto
maior for a espessura de corte:
Maior será o efeito de volume parcial apresentado na imagem.
Menor será a interferência de ruído (artefato) na imagem.
AS VANTAGENS E DESVANTAGENS NA
UTILIZAÇÃO DE CORTES FINOS
Vantagens
Aumento da resolução espacial;
Melhor reconstrução (coronal sagital e oblíqua);
Menor influência de artefatos radioabsorventes.

Desvantagens
Aumenta o ruído;
Aumenta o tempo de varredura;
Aumenta o tempo de reconstrução.
EIXO DE CORTE E PITCH
A escolha das distâncias entre os eixos e escolha da espessura do corte está relacionada ao
fator pitch.
Imagem: Leandro Ferreira Souteiro
 Distância entre os eixos de corte.
Os eixos de corte representam delimitações realizadas para dar passagem ao raio central do
feixe. Esses eixos são definidos antes do início do exame e permitem a mensuração das
distâncias entre os diversos cortes realizados nas regiões de estudo. A escolha dos eixos está
relacionada à qualidade das imagens obtidas posteriormente, pela quantidade de dados
gerados.
PITCH
Esse dispositivo define a razão entre o deslocamento da mesa por volta do tubo em relação à
espessura do feixe. Quando se realizam cortes helicoidais com pitch na razão de 1 para 1, a
mesa realiza um deslocamento que é da mesma proporção que a espessura do corte
realizado. Caso seja feita uma alteração para a razão 2:1, a mesa exerce um deslocamento
que será o dobro da espessura do corte por revolução. Nessas circunstâncias, podemos
concluir que o tempo necessário para a aquisição de 20 imagens será de 10 segundos.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Pitch  =   deslocamento   da   mesa  
espessura   do   feixe
 ATENÇÃO
É preciso considerar um tempo de revolução de 1 segundo.
Se o pitch for menor que 1, os cortes são sobrepostos e, se for maior que 1, há um intervalo
entre os cortes. Se for igual a 1, não haverá espaço entre os cortes e, se o valor do pitch for
aumentado, aumenta-se também a quantidade de radiação no processo e perde-se a
qualidade da imagem gerada.
É recomendado que se utilize um valor de pitch maior que 1, ou seja, deslocamento da mesa
por volta do tubo levemente maior que espessura do feixe.
Dessa forma, evita-se que a mesma região do tecido seja duplamente irradiada, levando-se em
consideração os padrões de controle de dose no paciente. Essa é uma recomendação de
extrema importância e relevância para todos os estudos e sempre que possível deve ser
realizada.
Por outro lado, se o pitch for muito maior que 1, alguma região entre os eixos de cortes pode
não ser irradiada.
Essa observação é essencial para os estudos, pois devemos levar em consideração a
necessidade de um diagnóstico mais preciso.
A RELAÇÃO ESPESSURA DE CORTE E
PITCH
Neste último vídeo o especialista Wellington Guimarães Almeida trata dos aspectos da relação
de espessura de corte e pitch:
CORRENTE-TEMPO (MAS)
O fator mAs está associado à corrente de cátodo-ânodo do tubo de raios X, em miliamperagem
(mA), e ao tempo de varredura, em segundos (s).
 Quanto maior a corrente aplicada:
Maior produção de raios X
Aumento da radiação secundária
Aumento do calor gerado no tubo
Maior desgaste do tubo
Maior gasto de energia elétrica
Aumento da dose no paciente
Aumento do contraste da imagem
Para regiões que possuem movimentos involuntários, é desejado que se possua um
pequeno tempo de varredura. Esse tempo está diretamente relacionado com a velocidade de
rotação do tubo em torno do paciente e, como os novos aparelhos de tomografia aumentaram
javascript:void(0)
a velocidade de rotação do tubo, foi necessário o aumento do mAs das ampolas, que pode
chegar a 500.
REGIÕES QUE POSSUEM MOVIMENTOS
INVOLUNTÁRIOS
Regiões do corpo que sejam afetadas pelos movimentos involuntários do corpo humano
como, por exemplo, o peristaltismo digestório, o peristaltismo ureteral e o batimento
cardíaco.
Em algumas situações, é necessário o aumento do fator mAs, como em exames envolvendo
regiões com alta capacidade de absorção (a coluna lombar e a pelve óssea, por exemplo). Já
as regiões de alto contraste anatômico necessitam de um fator mAs inferior (o ouvido interno e
os pulmões, por exemplo). Este segundo representa uma maior diferença entre os tons de
cinza, mas nem sempre uma maior quantidade de tons de cinza.
O controle do fator mAs é fundamental para que o sinal captado nos detectores seja alto
suficiente para a geração da imagem e, na maioria dos aparelhos de TC, ele é mantido
constante durante todo o processo.
Dessa forma, deve-se levar em consideração o tempo de rotação do tubo (revolução) e a
fatia mais absorvente do volume de varredura, que determinará o valor da corrente
necessária para a geração de um bom sinal durante a aquisição dos dados.
ALTA TENSÃO (KV)
A alta tensão do tubo de raios X aplicada entre cátodo e ânodo situa-se, geralmente, num
intervalo de 80kVp a 140kVp. Ela é responsável pela aceleração dos elétrons, produzindo
fótons mais ou menos energéticos e, consequentemente, feixes mais ou menos penetrantes.
Se o valor de tensão é aumentado, elétrons chegam ao ânodo mais energéticos e, ao
colidirem, geram fótons também mais energéticos. Assim, reduz-se a resolução do contraste
entre estruturas de tecidos moles, reduz-se o ruído das imagens e aumenta-se o desgaste do
tubo. Deve-se analisar os valores criteriosamente, a favor do diagnóstico, mas sem deixar de
considerar a segurança orgânica.
Altos valores de kV são recomendados para exames em que se deseja uma alta resolução
como, por exemplo, os pulmões ou em exames em que o feixe de raios X deva penetrar mais
na matéria e não ser completamente atenuado, como as estruturas ósseas. Para tecidos moles
deverá ser utilizada uma tensão menor, de modo a poder visualizar com melhor contraste as
estruturas desejadas, ou seja, maior diferença entre as tonalidades de cinza.
O aumento da tensão também apresenta como principais vantagens e desvantagens nos
exames tomográficos:
VANTAGENS

DESVANTAGENS
VANTAGENS
Reduz o ruído da imagem;
Gera feixe mais energético.
DESVANTAGENS
Desgaste do tubo de raios X;
Maior dose de radiação no paciente;
Elevação do aquecimento do tubo de raios X;
Maior gasto de energia elétrica;
Redução do contraste entre tecidos moles.
TEMPO DE VARREDURA
Tempo de varredura é o tempo que o tubo de raios X gasta para realizar uma volta em torno do
paciente, ou seja, percorrer os 360° no gantry. Ele está diretamente relacionado com a corrente
do tubo, quevaria numa relação inversa. Para manutenção do nível de ruído das imagens, uma
diminuição do tempo traduz-se num aumento da corrente.
TEMPOS DE VARREDURA ALTOS PODEM PROMOVER
O APARECIMENTO DE ARTEFATOS NA IMAGEM EM
DECORRÊNCIA DA MOVIMENTAÇÃO DO PACIENTE,
PORÉM SÃO NECESSÁRIOS EM CERTOS CASOS,
COMO EM UMA RECONSTRUÇÃO VOLUMÉTRICA DE
QUALIDADE. A DIMINUIÇÃO DO TEMPO DE
VARREDURA PERMITE O USO DA TOMOGRAFIA
COMPUTADORIZADA NO DIAGNÓSTICO DE REGIÕES
ONDE OS MOVIMENTOS INVOLUNTÁRIOS, ANTES,
CAUSAVAM A DEGRADAÇÃO DA IMAGEM. OS
APARELHOS DE TC HELICOIDAL MULTICORTE MAIS
MODERNOS APRESENTAM TEMPOS DE ROTAÇÃO
MENORES QUE 0,5S.
(MOURÃO, 2007)
Os equipamentos helicoidais multicortes possuem estrutura mecânica bastante desenvolvida, a
força de deslocamento é da ordem de 13 vezes a gravidade da Terra e, assim, o tempo de
rotação do tubo é menor que 0,5 segundo (subsecond).
Os tempos de varredura, ao longo da história da TC, foram sendo reduzidos drasticamente em
favor da agilidade dos exames e da capacidade de processamento das imagens. Nesse
contexto, a evolução tecnológica do sistema computacional e do próprio equipamento em si
andou em consonância com a necessidade do fator comercial, representando uma capacidade
maior de realizar mais exames por hora, sem perder a qualidade da imagem, para fins de
avanço do diagnóstico. Essa diminuição drástica e recorrente alcançou níveis elevados com o
advento da tecnologia helicoidal multicortes, os famosos aparelhos helicoidais multislice.
A alteração dos protocolos iniciais do aparelho ficará a cargo do operador da TC, com a
aquiescência do chefe do setor de imagens, que estabelece novos critérios de protocolos, de
acordo com as mudanças de padrões preestabelecidos e predefinidos por convenção da clínica
ou do hospital.
VERIFICANDO O APRENDIZADO
1. QUAL DAS ALTERNATIVAS A SEGUIR É CONSIDERADA UMA
VANTAGEM NA UTILIZAÇÃO DOS CORTES FINOS COMO ESCOLHA DE
PARÂMETRO DE CONTROLE DE IMAGEM?
A) Controle de qualidade
B) Diminuição da resolução espacial
C) Aumento da resolução espacial
D) A utilização do método temporal
E) Aumento da radiação por corte obtido
2. PARA REGIÕES QUE APRESENTAM OU PODEM APRESENTAR
MOVIMENTOS INVOLUNTÁRIOS, COMO DEVEMOS PROCEDER EM
RELAÇÃO AO MAS?
A) Manter o parâmetro mAs.
B) Aumentar o parâmetro mAs.
C) Manter o protocolo para cada região específica.
D) Alterar o protocolo somente para os casos envolvendo a área cardíaca.
E) Diminuir o parâmetro mAs.
GABARITO
1. Qual das alternativas a seguir é considerada uma vantagem na utilização dos cortes
finos como escolha de parâmetro de controle de imagem?
A alternativa "C " está correta.
O aumento da resolução espacial é uma das principais vantagens na seleção de cortes finos
no método tomográfico, logo, há uma busca para a obtenção de cortes finos para muitas
regiões de estudo.
2. Para regiões que apresentam ou podem apresentar movimentos involuntários, como
devemos proceder em relação ao mAs?
A alternativa "E " está correta.
A diminuição do mAs resulta no menor tempo de varredura, que está diretamente relacionado
com a velocidade de rotação do tubo em torno do paciente, mas sem perder a qualidade do
exame, dependendo das estruturas estudadas.
CONCLUSÃO
CONSIDERAÇÕES FINAIS
No primeiro módulo, fizemos uma varredura histórica para compreensão da tecnologia que
envolve a tomografia. Após, no módulo 2, foram demonstrados os diversos aspectos da
formação da imagem em TC, perpassando pela geração de dados e formação, dando
relevância aos critérios selecionados na formação da imagem em TC e os seus usos.
Por fim, vimos no terceiro módulo a relevância dos parâmetros de controle da imagem
tomográfica no que se refere às seleções ou escolhas ideais para a qualidade da imagem e o
suporte para o avanço digital da excelência no diagnóstico por imagem. O escopo das teorias
descritas aqui revela a importância de cada método de parâmetro utilizado no protocolo ou em
suas alterações, com o objetivo de sempre priorizar a qualidade da imagem.
AVALIAÇÃO DO TEMA:
REFERÊNCIAS
CARVALHO, A. P. História da tomografia computadorizada. Revista Imagem, Rio de Janeiro,
2007. Consultado na internet em: 10 jun. 2021.
DOS SANTOS, E. S.; NACIF, M. F. Manual de técnicas em tomografia computadorizada.
Rio de Janeiro: Rubio, 2009.
FREITAS, C. F. de. Imaginologia. São Paulo: Artes Médicas, 2014.
MAZZOLA, A. A. Ressonância magnética: princípios de formação da imagem e aplicações em
imagem funcional. Associação Brasileira de Física Médica, 2009. Consultado na internet em: 10
jun. 2021.
MOURÃO, A. P. Tomografia Computadorizada: tecnologias e aplicações. São Caetano do
Sul: Difusão, 2015.
NÓBREGA, A. I. Manual de Tomografia Computadorizada. 1. ed. São Paulo: Atheneu, 2005.
RPACS Cloud. Manual do Usuário – Network Medical. São Paulo, 2020.
SOARES, F. A.; LOPES, H. B. Tomografia Computadorizada. Florianópolis: Centro Federal
de Educação Tecnológica de Santa Catarina, 2000.
EXPLORE+
A abordagem da metodologia e evolução da tomografia, segundo o professor Mário
Trigueiro, está no vídeo História e introdução à tomografia, disponível no YouTube.
Saiba mais sobre a formação da imagem em tomografia computadorizada e um pouco
mais do aspecto histórico e global da TC pela leitura do Manual de Técnicas em
Tomografia Computadorizada, de Edvaldo Severo dos Santos e Marcelo Souto Nacif,
disponível no site Radioinmama.
Saiba mais sobre os parâmetros relacionados à qualidade de imagem em tomografia
computadorizada no material disponibilizado pelo X Congreso Regional Latinoamericano
IRPA de Protección y Seguridad Radiológica, ocorrido entre 12 e 17 abr. 2015 na
Argentina.
NOTA AUTOR DESCONHECIDO
Está reservado ao autor o direito de se manifestar.
CONTEUDISTA
Henrique Luz Coelho

Outros materiais