Prévia do material em texto
Fenômenos de Transporte Professor Dr. Rodrigo Orgeda Professor Esp. Henryck Cesar Massao Hungaro Yoshi NEAD - Núcleo de Educação a Distância Av. Guedner, 1610, Bloco 4 - Jardim Aclimação CEP 87050-900 - Maringá - Paraná unicesumar.edu.br | 0800 600 6360 DIREÇÃO UNICESUMAR Reitor Wilson de Matos Silva, Vice-Reitor e Pró-Reitor de Administração Wilson de Matos Silva Filho, Pró-Reitor Executivo de EAD William Victor Kendrick de Matos Silva, Pró-Reitor de Ensino de EAD Janes Fidélis Tomelin, Presidente da Mantenedora Cláudio Ferdinandi. NEAD - NÚCLEO DE EDUCAÇÃO A DISTÂNCIA Diretoria Executiva Chrystiano Mincoff, James Prestes e Tiago Stachon; Diretoria de Graduação e Pós-graduação Kátia Coelho; Diretoria de Permanência Leonardo Spaine; Diretoria de Design Educacional Débora Leite; Head de Produção de Conteúdos Celso Luiz Braga de Souza Filho; Head de Metodologias Ativas Thuinie Daros; Head de Curadoria e Inovação Tania Cristiane Yoshie Fukushima; Gerência de Projetos Especiais Daniel F. Hey; Gerência de Produção de Conteúdos Diogo Ribeiro Garcia; Gerência de Curadoria Carolina Abdalla Normann de Freitas; Supervisão do Núcleo de Produção de Materiais Nádila de Almeida Toledo; Supervisão de Projetos Especiais Yasminn Talyta Tavares Zagonel; Projeto Gráfico José Jhonny Coelho e Thayla Guimarães Cripaldi; Fotos Shutterstock Coordenador de Conteúdo Fabio Augusto Genti- line e Crislaine Rodrigues Galan. Designer Educacional Janaina de Souza Pontes e e Amanda Peçanha dos Santos. Revisão Textual Cintia Prezoto Ferreira e Erica Fernanda Ortega. Editoração Lavígnia da Silva Santos. Ilustração Welington Vainer Satin de Oliveira e Natalia de Souza Scalassara. Realidade Aumentada Maicon Douglas Curriel, Thiago Marçal Surmani, Matheus Alexander de Oli- veira Guandalini e Kleber Ribeiro da Silva. C397 CENTRO UNIVERSITÁRIO DE MARINGÁ. Núcleo de Educação a Distância; YOSHI, Henryck Cesar Massao Hungaro; ORGEDA, Rodrigo. Fenômenos de Transporte. Henryck Cesar Massao Hungaro Yoshi; Rodrigo Orgeda. Maringá-PR.: Unicesumar, 2020. Reimpresso em 2024. 368 p. “Graduação - Híbridos”. 1. Fenomeno. 2. Transporte . 3. Química 4. EaD. I. Título. ISBN 978-85-459-2113-4 CDD - 22 ed. 541.3 CIP - NBR 12899 - AACR/2 Impresso por: PALAVRA DO REITOR Em um mundo global e dinâmico, nós trabalha- mos com princípios éticos e profissionalismo, não somente para oferecer uma educação de qualida- de, mas, acima de tudo, para gerar uma conversão integral das pessoas ao conhecimento. Baseamo- -nos em 4 pilares: intelectual, profissional, emo- cional e espiritual. Iniciamos a Unicesumar em 1990, com dois cursos de graduação e 180 alunos. Hoje, temos mais de 100 mil estudantes espalhados em todo o Brasil: nos quatro campi presenciais (Maringá, Curitiba, Ponta Grossa e Londrina) e em mais de 300 polos EAD no país, com dezenas de cursos de graduação e pós-graduação. Produzimos e revi- samos 500 livros e distribuímos mais de 500 mil exemplares por ano. Somos reconhecidos pelo MEC como uma instituição de excelência, com IGC 4 em 7 anos consecutivos. Estamos entre os 10 maiores grupos educacionais do Brasil. A rapidez do mundo moderno exige dos educadores soluções inteligentes para as ne- cessidades de todos. Para continuar relevante, a instituição de educação precisa ter pelo menos três virtudes: inovação, coragem e compromisso com a qualidade. Por isso, desenvolvemos, para os cursos de Engenharia, metodologias ativas, as quais visam reunir o melhor do ensino presencial e a distância. Tudo isso para honrarmos a nossa missão que é promover a educação de qualidade nas diferentes áreas do conhecimento, formando profissionais cidadãos que contribuam para o desenvolvimento de uma sociedade justa e solidária. Vamos juntos! Prezado(a) Acadêmico(a), bem-vindo(a) à Co- munidade do Conhecimento. Essa é a característica principal pela qual a Unicesumar tem sido conhecida pelos nossos alu- nos, professores e pela nossa sociedade. Porém, é importante destacar aqui que não estamos falando mais daquele conhecimento estático, repetitivo, local e elitizado, mas de um conhecimento dinâ- mico, renovável em minutos, atemporal, global, democratizado, transformado pelas tecnologias digitais e virtuais. De fato, as tecnologias de informação e comu- nicação têm nos aproximado cada vez mais de pessoas, lugares, informações, da educação por meio da conectividade via internet, do acesso wireless em diferentes lugares e da mobilidade dos celulares. As redes sociais, os sites, blogs e os tablets ace- leraram a informação e a produção do conheci- mento, que não reconhece mais fuso horário e atravessa oceanos em segundos. A apropriação dessa nova forma de conhecer transformou-se hoje em um dos principais fatores de agregação de valor, de superação das desigualdades, propagação de trabalho qualificado e de bem-estar. Logo, como agente social, convido você a saber cada vez mais, a conhecer, entender, selecionar e usar a tecnologia que temos e que está disponível. Da mesma forma que a imprensa de Gutenberg modificou toda uma cultura e forma de conhecer, as tecnologias atuais e suas novas ferramentas, equipamentos e aplicações estão mudando a nossa cultura e transformando a todos nós. Então, prio- rizar o conhecimento hoje, por meio da Educação a Distância (EAD), significa possibilitar o contato com ambientes cativantes, ricos em informações e interatividade. É um processo desafiador, que ao mesmo tempo abrirá as portas para melhores oportunidades. Como já disse Sócrates, “a vida sem desafios não vale a pena ser vivida”. É isso que a EAD da Unicesumar se propõe a fazer. Seja bem-vindo(a), caro(a) acadêmico(a)! Você está iniciando um processo de transformação, pois quando investimos em nossa formação, seja ela pessoal ou profissional, nos transformamos e, consequentemente, transformamos também a so- ciedade na qual estamos inseridos. De que forma o fazemos? Criando oportunidades e/ou estabe- lecendo mudanças capazes de alcançar um nível de desenvolvimento compatível com os desafios que surgem no mundo contemporâneo. O Centro Universitário Cesumar mediante o Núcleo de Educação a Distância, o(a) acompa- nhará durante todo este processo, pois conforme Freire (1996): “Os homens se educam juntos, na transformação do mundo”. Os materiais produzidos oferecem linguagem dialógica e encontram-se integrados à proposta pedagógica, contribuindo no processo educa- cional, complementando sua formação profis- sional, desenvolvendo competências e habilida- des, e aplicando conceitos teóricos em situação de realidade, de maneira a inseri-lo no mercado de trabalho. Ou seja, estes materiais têm como principal objetivo “provocar uma aproximação entre você e o conteúdo”, desta forma possibilita o desenvolvimento da autonomia em busca dos conhecimentos necessários para a sua formação pessoal e profissional. Portanto, nossa distância nesse processo de crescimento e construção do conhecimento deve ser apenas geográfica. Utilize os diversos recursos pedagógicos que o Centro Universitário Cesumar lhe possibilita. Ou seja, acesse regularmente o Stu- deo, que é o seu Ambiente Virtual de Aprendiza- gem, interaja nos fóruns e enquetes, assista às aulas ao vivo e participe das discussões. Além disso, lembre-se que existe uma equipe de professores e tutores que se encontra disponível para sanar suas dúvidas e auxiliá-lo(a) em seu processo de apren- dizagem, possibilitando-lhe trilhar com tranquili- dade e segurança sua trajetória acadêmica. APRESENTAÇÃO Caro(a) aluno(a), este livro iniciará seus estudos acerca dos chamados fenô- menos de transporte, disciplina fundamental para a maioria dos cursos de engenharia, uma vez que busca explicar como a transferência de momento (mecânica dos fluidos), de calor e de massa acontecem na natureza. Este entendimento permite desenvolver processos e equipamentos para diversas aplicações, mas, mais do que isso, desenvolveráa habilidade de observar e analisar os fenômenos da natureza. Suponha que você, buscando concentrar-se melhor na leitura deste livro, resolva preparar uma xícara de chá. Para isso, você precisará de água, a qual é fornecida até a sua casa através de longos sistemas de abastecimento que contam com tubulações, bombas, válvulas e caixas d’água. Entender quais são as energias associadas ao escoamento de um fluido (neste caso, o fluido é a água) é um clássico problema de mecânica dos fluidos. Após colocar a água em um recipiente, será necessário aquecê-la. Isto pode ser feito de diferentes maneiras, mas consiste, essencialmente, em adicio- nar energia à água, até alcançar a temperatura desejada – um problema de transferência de calor. Por fim, resta apenas colocar o saquinho de chá junto da água, iniciando um processo de infusão – moléculas que dão aroma e sabor saem das ervas do chá e são transportadas para a água. Tal processo está relacionado à transferência de massa. Você poderia então se perguntar: que potência seria necessária para que a bomba seja capaz de escoar a água da estação de tratamento até as torneiras de casa? Haverá diferença se você fizer o chá em um dia mais frio ou em um dia mais quente? Quanto tempo levará até que a infusão esteja completa? Quanto o chá terá esfriado por estar exposto ao ambiente? O estudo dos fenômenos de transporte procura responder a perguntas como essas, estando presente desde situações mais simples do cotidiano até aplicações complexas por estar inseparavelmente li- gado à natureza. O objetivo deste livro é dar um enfoque prático à disciplina de Fenô- menos de Transporte, apontando os caminhos que você, futuro Enge- nheiro(a), deverá seguir caso necessite se aprofundar em qualquer um dos assuntos aqui abordados. Assim, aproveite o processo de aprendi- zagem e entenda que só não gostamos daquilo que sabemos pouco. Siga o fluxo de leitura mesmo que naquele momento você não tenha entendido algum termo. Lá na frente, ele fará sentido. E se mesmo lá na frente você não entender? Não hesite em buscar outras fontes. Saber pesquisar é uma das competências que esperamos de um profissional de Engenharia. Quando tudo se conectar na sua mente, você comprovará que o conhecimento é realmente libertador! CURRÍCULO DOS PROFESSORES Dr. Rodrigo Orgeda Doutor em Engenharia Química pela UEM, em 2017, na qual trabalhou com simulação e oti- mização de processos, conceito de biorrefinaria e análise integrada, considerando aspectos econômicos e ambientais em destilarias de etanol. Mestre em Engenharia Química (2013) na área de desenvolvimento de novos processos. Possui graduação em Engenharia de Alimentos (2010) e em Engenharia Química (2014) pela Universidade Estadual de Maringá (UEM). Foi um dos candidatos aprovados, dentre alunos de diversos países, para participar do estágio de pesquisa do programa Mitacs Globalink, sob a supervisão de membros do corpo docente da Universidade de Guelph, no Canadá. Parte de sua pesquisa de doutorado foi realizada na Universidade Rovira i Virgili, na Espanha. Atualmente, trabalha como professor formador e conteudista dos cursos híbridos de Engenharia da Unicesumar, roteirizando práticas com metodologias ativas de aprendizagem em disciplinas técnicas e de gestão. Currículo Lattes disponível em: http://lattes.cnpq.br/3174430075612030 Esp. Henryck Cesar Massao Hungaro Yoshi Especialista em Gestão Industrial e Negócios pela Universidade Estadual de Londrina (2019). Graduado com láurea acadêmica em Engenharia Química pela Universidade Estadual de Maringá (2018). Foi membro bolsista do Programa de Educação Tutorial (PET – MEC/SESu) de 2014 a 2017. Atualmente, é mestrando em Engenharia Química pela Universidade Estadual de Maringá, atuando principalmente na área de síntese e otimização de processos por meio de modelagem e simulação. Currículo Lattes disponível em: http://lattes.cnpq.br/1729734963906608 Introdução aos Fenômenos de Transporte 13 Introdução à Mecânica dos Fluidos 61 Pressão e Estática dos Fluidos 97 Cinemática dos Fluidos Equação da Energia no Regime Permanente 137 169 Escoamento em Condutos Forçados 209 Introdução à Transferência de Calor Trocadores de Calor 297 Introdução à Transferência de Massa 331 257 113 Manômetro de Bourdon 188 Bombas e turbinas na equação da energia 219 Escoamento dos fluidos 281 Efeito do isolamento em tubos cilíndricos 304 Trocadores de calor de tubo e casco Utilize o aplicativo Unicesumar Experience para visualizar a Realidade Aumentada. PLANO DE ESTUDOS OBJETIVOS DE APRENDIZAGEM Dr. Rodrigo Orgeda Esp. Henryck Cesar Massao Hungaro Yoshi • Definir o que são os fenômenos de transporte: transfe- rência de momento (mecânica dos fluidos), calor e massa. • Estruturar os conceitos básicos necessários para li- dar com os problemas relacionados aos fenômenos de transporte, como conversão de unidades e fração mássica. • Estudar o conceito de balanço material, abordando estraté- gias de resolução e aplicações, como reciclo, bypass e purga. Definindo os Fenômenos de Transporte Conceitos Fundamentais Balanço Material Introdução aos Fenômenos de Transporte Definindo os Fenômenos de Transporte Iniciaremos a apresentação dos conceitos desta disciplina com uma notícia boa: os três fenômenos de transporte são estudados de forma conjunta, pois sua natureza é muito parecida, sendo, às vezes, até matematicamente similares (modelos matemáticos semelhantes para problemas análo- gos). Isso quer dizer que, entendendo o conceito de um dos fenômenos, não será difícil entender o conceito dos outros. Um ponto fundamental neste aspecto são as chamadas leis de conservação. 15UNIDADE 1 Leis de Conservação: definem que uma propriedade de um sistema isolado não varia ao longo do tempo. Em outras palavras: a propriedade não se cria, nem é destruída. Dessa forma, para cada relação de conservação, há uma equação de balanço que é obedecida pelo sistema. Três dessas leis serão individualmente abordadas nos capítulos a seguir (veja o Quadro 1). Fonte: adaptado de Welty, Rorrer e Foster (2017). Quadro 1 - Leis de conservação e suas equações correspondentes Lei Equação Lei da Conservação da Massa Equação da Continuidade Segunda Lei de Newton Teorema do Momento Primeira Lei da Termodinâmica Equação da Energia Fonte: adaptado de Welty, Rorrer e Foster (2017). As leis de conservação são mais facilmente entendidas observando a forma genérica das equações de balanço: Taxa de Entrada no sistema Taxa de Sa da no sistema Ta� � � � � � � � � � � � � � í xxa de Ac mulo no sistema ú� � � � � � Exemplificando: imagine que o sistema em questão seja uma pia de cozinha. Ao abrir a torneira, você permite uma entrada de água no sistema. A água que desce pelo ralo, por sua vez, é a saída de água do sistema. Se você tampar o ralo, você fecha a saída do sistema, de modo que a pia começa a encher – este é o acúmulo do sistema. Esta situação ilustra a lei de conservação da massa. Evidentemente, estamos desconsiderando outras possíveis saídas ou entradas de água (como a evaporação da água para a atmosfera), mas o intuito aqui é observar a natureza das leis de conservação: tudo que entra no sistema, ou sai, ou fica. Apesar de soar como um conceito bastante simples ou, até mesmo, óbvio, as leis de conservação são instrumentos essenciais para o entendimento dos fenômenos de transporte. 16 Introdução aos Fenômenos de Transporte Uma segunda observação fundamental acerca dos fenômenos de transporte é: se há um desequilíbrio de uma propriedade em um meio, a natureza tende a redis- tribuí-la, até que um equilíbrio seja estabelecido – a esta tendência é dado o nome de força motriz, frequentemente descrita no contexto dos fenômenos de transporte como os “gradientes”: • Mecânica dos Fluidos: gradiente de momento. • Transferência de Calor: gradiente de temperatura. • Transferência de Massa: gradiente de concentração.Caso o significado de “gradiente” ainda seja estranho a você, observe a Figura 1: Figura 1 - Gradiente de temperatura O objeto em questão, semelhante a um cilindro metálico, tem duas extremidades, e a sua cor está representada de acordo com a temperatura em cada ponto do objeto. A parte azul está a uma temperatura menor, enquanto a parte avermelhada está a uma temperatura maior. A variação de temperatura ao longo da superfície é gradativa, aumentando da extremidade azul até a extremidade vermelha. Esta variação gradativa é o chamado gradiente de temperatura. Os gradientes de momento e concentração funcionam de maneira análoga. 17UNIDADE 1 Neste exemplo, a tendência da natureza é fazer com que a temperatura da super- fície fique uniforme, transferindo energia da parte mais quente para a parte mais fria (considerando apenas a superfície, sem nenhuma interferência externa, promovendo o seu aquecimento ou resfriamento). Isto acontece molécula a molécula, por meio dos movimentos aleatórios e colisões entre elas – um processo de difusão molecular, que pode ser descrito por equações. A Tabela 1 compara as equações para as três propriedades em estudo. Tabela 1 – Equações unidimensionais para os fenômenos de difusão Propriedade Lei Equação Momento Lei de Newton da Viscosidade � �� dv dy Calor Lei de Fourier da Condução Térmi- ca q dT dy � �� Massa Lei de Fick da Difusão J D dC dy A AB� � Fonte: adaptada de Hauke (2008). Neste momento, é importante que você note a semelhança entre as equações apresentadas na Tabela 1. Este é um exemplo do que foi dito no início: “modelos matemáticos semelhantes para problemas análogos”. Estão sendo aqui apresen- tadas apenas para ilustrar esta relação e serão detalhadas nos capítulos a seguir. Até aqui, você esteve apenas conhecendo o que são os chamados fenômenos de trans- porte e de que maneira os observamos na natureza. A partir de agora, iniciaremos um estudo mais direcionado à definição de alguns conceitos básicos para entender e interpretar os problemas que você irá encontrar durante todo o curso. Aproveitaremos esta primeira unidade para tratar com mais rigor os chamados balanços materiais, conhecimento que irá ajudar você a se familiarizar com o uso das leis de conservação. 18 Introdução aos Fenômenos de Transporte Agora, revisaremos alguns conceitos que você cer- tamente já teve algum contato quando estudou disciplinas básicas de química e física. O objetivo é fazer isto da forma mais objetiva e direta possível, para que você possa progredir no estudo dos fe- nômenos de transporte com tranquilidade. Além disso, aproveite para se acostumar com alguns dos muitos termos e notações que serão utilizados até o fim deste material – literaturas e idiomas dife- rentes frequentemente utilizam símbolos distintos para os mesmos parâmetros (como “m” ou “w” para massa, por exemplo). Conceitos Fundamentais 19UNIDADE 1 Dimensões e Unidades de Medida Quando se trata de problemas de engenharia, a resposta dificilmente será apenas um número – ela geralmente será um número acompanhado de uma unidade de medi- da. Por exemplo: “a altura é de 9 metros”. Esta é uma resposta apropriada. Por outro lado, ao dizer “a altura é de 9”, você não define a sua unidade de medida, portanto, é uma resposta incompleta. Poderiam ser 9 centímetros, 9 metros ou, até mesmo, 9 quilômetros. Uma habilidade fundamental para um engenheiro é ter noção das grandezas que está trabalhando. Isto permite identificar quando algum valor parece errado e ajuda a fazer comparações entre situações distintas. Mais ainda, saber trabalhar com as di- mensões ajuda a interpretar o problema e muitas das grandezas físicas fundamentais para a engenharia. O primeiro passo para uma clara compreensão deste tópico é definir a diferença entre dimensão e unidade de medida. Dimensão: refere-se à grandeza física em questão, como distância/altura, veloci- dade, temperatura e tempo. Unidade de medida: refere-se à forma de expressar as dimensões, como metros (para a distância/altura), quilômetros por hora (velocidade), graus Celsius (tempe- ratura) e segundos (tempo). Fonte: adaptado de Himmelblau e Riggs (2003). Ao longo deste material, usaremos preferencialmente as unidades do Sistema Inter- nacional de Unidades (SI): metro (m) para distância, quilograma (kg) para massa, segundo (s) para tempo, Kelvin (K) para temperatura e mol (mol) para a quantidade de matéria. Possíveis exceções estarão presentes apenas quando importantes. Você observará que os cálculos apresentados frequentemente terão os números acompanhados de suas unidades. É altamente recomendado que você passe a fazer o mesmo, para que tenha uma melhor compreensão das operações e variáveis que estiver trabalhando. Vejamos o exemplo a seguir: 20 Introdução aos Fenômenos de Transporte Temos os seguintes fatores de conversão: uma milha são 5280 pés; um pé são 12 polegadas; uma polegada são 2,54 centímetros. Sabendo que a altura do Everest é de, aproximadamente, 5,49 milhas, converta este valor para metros. Solução: Um método organizado e eficiente de converter unidades é multiplicar o número de unidade conhecida (no caso, 5,498 milhas) pelos fatores de conversão necessários (milha-pés, pé-polegadas, polegada-centímetros e, é claro, centímetros-metro). Para melhor visualização, separaremos cada fator de conversão por uma barra vertical, que você pode entender como um operador de multiplicação ou parênteses. Observe: 5 498 5280 1 29029 44, ,milhas pés milha pés= 29029 44 12 1 348353 28, ,pés polegadas pé polegadas= 348353 28 2 54 1 884817 33 1 100 8848, , ,polegadas cm polegada cm m cm m� � Note que cada uma destas “frações” é igual a um: se uma milha equivale a 5280 pés, a divisão de 5280 pés por uma milha é igual a um. Isto comprova que não estamos alterando a altura (dimensão) do Monte Everest, apenas convertendo-a entre dife- rentes unidades de medida. Uma maneira prática de acompanhar se você está fazendo as conversões adequadas é escrever todas as conversões em uma única expressão e “cortar” as unidades que se “cance- lam”, da mesma forma que provavelmente fez quando estudou matemática e física básicas: 5 498 5280 1 12 1 2 54 1 1 100 , ,milhas pés milha polegadas pé cm polegada m ccm m≈ 8848 Você pode estar se perguntando: todos estes cálculos não poderiam ter sido resolvidos por uma série de regra de três? A pergunta é fantástica e significa que seu raciocínio está no caminho certo! Apesar de podermos utilizar uma série de regra de três para chegarmos no mesmo resultado, a maneira prática apresentada anteriormente nos ajuda a visualizar como as unidades irão se cancelar e qual será nossa unidade final. Acredite, isso será muito útil em cálculos mais complexos, pois será um indicador para saber se o resultado está correto. Dessa forma, os demais exemplos e problemas presentes neste material serão preferencialmente resolvidos dessa maneira. 1 EXEMPLO 21UNIDADE 1 Este exemplo teve por objetivo demonstrar o trabalho com dimensões e unida- des de medida, por meio de um problema de conversão de unidades. Contudo, note que o método descrito pode parecer problemático ao trabalhar com tem- peraturas, pois suas diferentes unidades não estão relacionadas por fatores de conversão, mas sim por equações. Assim, o correto é avaliar a variação de tem- peratura: uma variação de 1 °C equivale a uma variação de 1,8 °F, por exemplo. Frações Mássicas e Molares Na prática, ao tratar de processos, é fundamentalmente importante conhecer os componentes que estão presentes em cada uma de suas etapas. Mais do que isso, frequentemente encontraremos mais de um componente no processo, na forma de misturas e soluções. Conhecer as proporções em que cada componente se apresenta permite uma melhor compreensão do sistema, levando a melhores soluções para possíveis problemas. Para descrever estas proporções, utilizamos as chamadas frações molares e as frações mássicas.Fração mássica: a massa de uma substância dividida pela massa total de todos os componentes da mistura (ou solução) em que ela está presente. fração mássica do componente A x massa de A massa totalA � �( ) Fonte: adaptado de Himmelblau e Riggs (2003). Vamos iniciar com um exemplo simples sobre fração mássica de uma solução com dois componentes. 22 Introdução aos Fenômenos de Transporte Uma solução contém os componentes A e B, sendo 360 g de A e 700 g de B. Qual é a composição mássica desta solução? Solução: fração mássica do componente A x massa de A massa total g gA � � � � 360 360 7700 0 34 g � � � � � � � , fração mássica do componente B x massa de B massa total g gB � � � � 700 360 7700 0 66 g � � � � � � � , Conhecendo a fração mássica do componente A, podemos utilizar outra maneira para determinar a fração mássica do componente B. x xA B� �1 x xB A� � � � �1 1 0 34 0 66, , É fundamental notar que a somatória das frações mássicas ou molares deve sempre ser igual a 1, ou seja, a somatória das porcentagens deve ser igual a 100%. Matematicamente, para n componentes: x x x x xn i n n n � �� � � � � � � 1 1 2 1 1... Uma vez compreendido o conceito de fração mássica, fica fácil entender o conceito de fração molar, pois são bastante semelhantes. Fração molar: o número de mols de uma substância dividido pelo número total de mols da mistura (ou solução) em que ela está presente. fração molar do componente A y mols de A mols totaisA � � Fonte: adaptado de Himmelblau e Riggs (2003). 2 EXEMPLO 23UNIDADE 1 Qual é a composição molar de uma solução que contém os componentes A, B e C com 1 mol, 5 mols e 3 mols, respectivamente? Solução: fração molar do componente A y mols de A mols totais mol mol moA � � � � 1 1 5 lls mols� � � � � � � �3 0 11, fração molar do componente B y mols de B mols totais mols mol mB � � � � 5 1 5 ools mols� � � � � � � �3 0 55, fração molar do componente C y mols de C mols totais mols mol mC � � � � 3 1 5 ools mols� � � � � � � �3 0 33, y y yA B C� � �1 Um tipo de cálculo importante consiste na conversão da fração mássica de uma solução para fração molar ou o contrário. Para que possamos realizar tal conversão, faz-se necessário uma informação adicional sobre a massa molar dos componentes presentes na solução. Além disso, precisamos saber que o número de mols (n) pode ser determinado pela razão entre a massa do composto (m) e sua massa molar (MM): n m MM = A tabela a seguir mostra os dados de fração mássica e massa molar de cada composto presente em uma solução. Dessa forma, calcule a composição molar sabendo que a solução possui uma massa total de 100 g. Solução: Composto Massa Molar (g/gmol) Fração Mássica A 50 0,20 B 40 0,30 C 20 0,45 D 25 0,05 Total - 1 3 EXEMPLO 4 EXEMPLO 24 Introdução aos Fenômenos de Transporte Para o composto A, temos que: x massa de A massa totalA = massa de A x massa totalA= . massa de A g= =0 2 100 20, . Em posse dos valores de massa e massa molar do composto A, podemos facilmente determinar o número de mols desse composto. n m MM g g molsA A A = = = 20 50 0 40, Utilizando o mesmo raciocínio para os outros compostos, chegamos ao seguinte resultado: Composto Massa Molar (g/gmol) Fração Mássica Massa (g) Número de mols (mols) A 50 0,20 20 0,40 B 40 0,30 30 0,75 C 20 0,45 45 2,25 D 25 0,05 5 0,20 Total - 1 100 3,60 Finalmente, podemos calcular a fração molar do composto A na solução. y , , ,A mols de A mols totais mols mols = = = 0 40 3 6 0 111 Fazendo o mesmo cálculo para os outros compostos, obtemos a composição molar da solução. Composto Massa Molar (g/gmol) Fração Mássica Massa (g) Número de mols (mols) Fração molar A 50 0,20 20 0,40 0,111 B 40 0,30 30 0,75 0,208 C 20 0,45 45 2,25 0,625 D 25 0,05 5 0,20 0,056 Total - 1 100 3,60 1 25UNIDADE 1 O objetivo é que você tenha entendido o raciocínio para realizar a conversão, e não memorizado os passos. Para isso, faça a seguinte pergunta para si mesmo: eu consigo converter de fração molar para fração mássica? Se a resposta for positiva, você está no caminho certo! Caso seja negativa, aconselho a analisar o exercício novamente. Quando estiver trabalhando com soluções e misturas, há também a ideia de “massa molar média da mistura”, que nada mais é do que uma média ponderada das massas molares dos componentes, como na equação a seguir: Massa molar da mistura = Massa total da mistura N mero de mú ools total da mistura Massa molar da mistura = Massa do Compponente 1 + ... + Massa do Componente n Mols do Componente 1 + ... + Mols do componente n MM m m m mmistura n� � � � ��1 2 1... nn n nn n n n1 2 1� � � ��... Sabendo que: n m MM n MM m� � �. Temos que: MM n MM n MM n MM n MM n n n nmistura n n n n n n � � � � � � � � � � � � 1 1 2 2 1 1 1 2 1 ... ... Veja que, se conhecemos a composição da mistura, podemos lançar mão de uma base de cálculo arbitrária para calcular a massa molar média da mistura. Tente calcular este valor para a mistura do exemplo anterior. O resultado procurado é de 27,78 g/mol, que também poderia ser calculado simplesmente dividindo a massa da mistura pelo número de mols (afinal, esta é a definição da qual partimos para o desenvolvimento da última equação). Ao longo deste material, a composição de gases sempre será assumida como dada em base molar, a menos que seja especificado o contrário. Da mesma maneira, a composição de líquidos e sólidos será assumida como dada em base mássica, como é geralmente usada na indústria, a menos que seja especificado o contrário. 26 Introdução aos Fenômenos de Transporte A partir daqui, iremos começar a aplicar as leis de conservação discutidas no início da unidade, partindo do princípio de conservação da massa: a matéria não é nem criada, nem destruída. O assunto será tratado com certa profundidade, po- rém, por ser um tópico de caráter introdutório, as- pectos mais complexos não serão abordados (por exemplo, sistemas envolvendo reações químicas e outros que demandem o uso de métodos de cálculo numérico). Balanço Material 27UNIDADE 1 A descoberta do princípio de conservação da massa é atribuída ao cientista francês Antoine Laurent Lavoisier, nascido no dia 26 de agosto de 1743, em Paris. Vindo de uma família rica, desde jovem estudou em instituições reconhecidas pelo ensino da ciência. Em 1771, casou-se com Marie Anne Pierrette Paulze, na época com 14 anos. Mesmo jovem, Madame Lavoisier auxiliou em publicações com suas notáveis habilidades linguísticas e artísticas. Lavoisier publicou seu livro Tratado Elementar de Química em 1789, ano que deu início à revolução francesa. Devido aos seus envolvimentos com o estado, o cientista foi guilhotinado em 8 de maio de 1794. Fonte: adaptado de Partington (1943). Balanços materiais permitem uma melhor compreensão acerca de um processo, como uma indústria, por exemplo. Na essência, é semelhante à contabilidade, mas no lugar de dinheiro, usa-se matéria. Cálculos de balanço material são indispensáveis para se compreender problemas de fenômenos de transporte, tanto simples quanto complexos, e são sempre baseados na forma geral das equações de balanço. Assim, para a matéria: Taxa de Entrada de Mat ria no sistema Taxa de Sa da de Mat riaé í é � � � � � � � nno sistema Taxa de Ac mulo de Mat ria no sistema � � � � � � � � � � � � � ú é Sistemas Vamos começar por um exemplo: considere um tanque contendo 100 kg de água, como o da figura a seguir: 100 kg H2O Figura 2 - Sistema fechado Fonte: os autores. 28 Introdução aos Fenômenos de Transporte No contexto da engenharia, é comum o uso da palavra “sistema” para se referir a uma parte arbitrária do processo que você deseja analisar. Dessa forma, nosso sistema, aqui, coincide com o próprio tanque. É também usual se referir às “fronteiras do sistema”, linhas imaginárias (que podem coincidir com partes dos equipamentos e processos) que dãoforma ao seu sistema. Ainda, um sistema pode ser dito aberto ou fechado: aberto, se existe matéria entrando ou saindo do sistema; fechado, se a matéria não entra nem sai do sistema. Nosso tanque é, portanto, um sistema fechado. Nesse caso, se aplicarmos a equação de balanço material para nosso sistema, teremos: 0 0 0� � Este resultado é, evidentemente, uma conclusão lógica simples. Se não entra nem sai água do tanque, não haverá variação na quantidade de água dentro dele. Em outras palavras, a taxa de acúmulo de matéria do sistema é nula. Agora, suponha que este tanque faz parte de um processo industrial, que despeja dentro dele 50 kg de água por hora. Deste mesmo tanque, são também retirados 50 kg de água por hora. 100 kg H2O Fronteira do sistema 50 kg H2O/h50 kg H2O/h Figura 3 - Sistema aberto Fonte: os autores. Pela definição dada anteriormente, nosso tanque agora é um sistema aberto, pois existe matéria cruzando a fronteira do sistema. Ao aplicar novamente a equação de balanço material, temos: 50 50 02 2kg H O h kg H O h � � Como a vazão de entrada é igual à de saída, o acúmulo de água no sistema ainda é nulo. Sistemas nestas condições podem ser chamados de sistemas em estado estacionário. 29UNIDADE 1 Em processos no estado estacionário, parâmetros como temperatura, pressão, massa e vazão (entrada ou saída) permanecem constantes. Além disso, o processo pode também ser dito contínuo. Sistema em Estado Estacionário (Regime Permanente): • As condições do sistema permanecem inalteradas ao longo do tempo. • As correntes de entrada e saída permanecem inalteradas com o tempo. Processo Contínuo: aquele em que a matéria entra ou sai do sistema sem inter- rupções. Fonte: adaptado de Himmelblau e Riggs (2003). Na sua maioria, os problemas abordados ao longo desta disciplina serão processos contínuos em estado estacionário, por serem naturalmente mais simples e objetivos no sentido de aprendizagem. Contudo, é importante observar que, no mundo real, não existe processo perfeitamente contínuo ou estacionário – as condições mudam ao longo do tempo, às vezes até mesmo por ação de forças que não somos capazes de controlar (clima, por exemplo). A natureza é essencialmente dinâmica, e o máximo que se pode fazer é se aproximar de uma condição estacionária. Entretanto, você poderia propor a seguinte situação: e se a taxa de entrada de água no tanque fosse reduzida para 20 kg/h? Suponha a seguinte condição inicial para o sistema: 100 kg H2O Fronteira do sistema 50 kg H2O/h20 kg H2O/h Figura 4 - Sistema aberto com acúmulo Fonte: os autores. 30 Introdução aos Fenômenos de Transporte É fácil concluir que, se sai mais água do que entra, a quantidade de água no tanque diminuirá com o tempo. Na equação de balanço: 20 50 302 2 2kg H O h kg H O h kg H O h � � � Isto é, a taxa de acúmulo de água no sistema é de -30 kg H₂O por hora. Observe que, no contexto de balanços materiais, é comum o uso da palavra “acúmulo” tanto para valores positivos (que elevariam o nível de água do tanque) quanto negativos (que diminuem o nível de água no tanque). Com essa informação, você poderia, então, responder a seguinte pergunta: quanto tempo levará até que a quantidade de água no interior do tanque seja de 40 kg? Vamos começar identificando a variação de água no interior do tanque: Quantidade Final de gua no tanque Quantidade Inicial de gá á � � � � � � � uua no tanque Quantidade de gua que entra ou sai do s � � � � � � � á iistema � � � � � � 40 100 602 2 2kg H O kg H O kg H O� � � Para atingir uma quantidade de 40 kg de água dentro do tanque, deve-se retirar 60 kg. Por definição, temos que: Vaz o M ssica Massa Tempo ã á = Observe que a taxa de acúmulo de água do sistema é, evidentemente, uma vazão, pois tem dimensões de massa por tempo (estudaremos mais detalhadamente o conceito de vazão na Unidade 4). Podemos, portanto, aplicar a equação da seguinte forma: -30 kg H O - 60 kg H O Tempo 2 2 h = Tempo kg H O kg H O 2 2 � � � 60 30 h Tempo = 2 h Evidentemente, não é absurdo chegar a esta conclusão sem fazer quaisquer contas no papel. Se existem 100 kg de água dentro de um tanque, do qual são removidos 30 kg de água por hora (taxa de acúmulo negativa), o tempo necessário para que haja apenas 40 kg de água no tanque (remover 60 kg) é de 2 horas. Problemas de balanço material são resolvidos de maneira puramente lógica: não se trata de decorar equações, mas sim de ter habilidade em analisar o problema e saber como abordá-lo. 31UNIDADE 1 Sistemas como este último, em que a quantidade de água no sistema varia ao longo do tempo, podem ser chamados de sistemas em estado não estacionário. Sistema em Estado Não Estacionário (Regime Transiente ou Variado): • Nem todas as condições do sistema permanecem inalteradas ao longo do tempo. • As correntes de entrada e saída podem variar com o tempo. Fonte: adaptado de Himmelblau e Riggs (2003). Agora que você compreende os princípios dos balanços materiais, iremos aprimorar as suas capacidades analíticas estudando processos mais complexos, com múltiplos componentes, etapas e correntes de processo. Sistemas com Múltiplos Componentes Imagine que estamos trabalhando com uma solução com concentração de 50% em massa de soda cáustica (NaOH em H₂O). Isto significa que em 1000 kg de solução há 500 kg de soda e 500 kg de água. Uma corrente de processo entra em um tanque, enquanto outra sai deste mesmo tanque, como na figura a seguir: 1000 kg solução Fronteira do sistema 100 kg solução/h100 kg solução/h Comp. Água Soda Fração Más. 0,50 0,50 Comp. Água Soda Fração Más. 0,50 0,50 Figura 5 - Sistema aberto de balanço multicomponente Fonte: os autores. 32 Introdução aos Fenômenos de Transporte Observe que se trata de um sistema aberto em regime estacionário. Poderíamos analisar o sistema da seguinte forma: • Dentro do tanque: 1000 kg de solução • 500 kg de água + 500 kg de soda • Entra no tanque: 100 kg de solução por hora • 50 kg de água por hora + 50 kg de soda por hora • Sai do tanque: 100 kg de solução por hora • 50 kg de água por hora + 50 kg de soda por hora É importante evidenciar estas informações, pois quando trabalharmos com múltiplos componentes, abordaremos os balanços materiais por duas perspectivas: o balanço global e os balanços por componente. O balanço global considera inteiramente todas as correntes que entram e saem do sistema. Dessa forma, na equação: Taxa de Entrada de Mat ria no sistema Taxa de Sa da de Mat riaé í é � � � � � � � nno sistema Taxa de Ac mulo de Mat ria no sistema � � � � � � � � � � � � � ú é 100 kg solu o 100 kg solu o 0çã h çã h � � Evidentemente, estando em estado estacionário, a taxa de acúmulo é nula (a massa de solução dentro do tanque permanece a mesma ao longo do tempo). O balanço por componente, por outro lado, considera apenas o componente em análise para todas as correntes. Por exemplo, fazendo o balanço material para a água, teremos: Taxa de Entrada de Água no sistema Taxa de Saída de Água no sist � � � � � � � eema ú Água no sistema � � � � � � � � � � � � � Taxa de Ac mulo de 50 50 0kg água h kg água h � � Da mesma forma, para a soda: Taxa de Entrada de Soda no sistema Soda no sist � � � � � � � Taxa de Saída de eema Soda no sistema � � � � � � � � � � � � � Taxa de Acúmulo de 50 kg soda 50 kg soda 0 h h � � Este é um raciocínio bastante valioso para solucionar problemas de balanço material. Observe o exemplo a seguir, em que passamos a trabalhar com mais de um compo- nente e mais de duas correntes. 33UNIDADE 1 Em certa etapa de um processo industrial de balas e biscoitos, duas correntes contendo uma solução de açúcar (sacarose) em água devem ser misturadas. Para isto, elas são despejadas em um tanque de mistura que apresenta uma única saída, conforme mostra a figura a seguir. Conhecendo as correntes de entrada, admitindo que a mistura seja homogênea e que o processo operaem regime estacionário, qual a fração mássica de sacarose na corrente de saída? 30 kg solução/min 50 kg solução/min 15% Sacarose 85% Água SAÍDA A B C 40% Sacarose 60% Água Solução: Como conhecemos as correntes de entrada, podemos descrevê-las da seguinte ma- neira: • Corrente A: 30 kg solução/min • 12 kg sacarose/min + 18 kg água/min • Corrente B: 50 kg solução/min • 7,5 kg sacarose/min + 42,5 kg água/min Podemos, então, fazer o balanço global: Entradas de Solu o no sistema Sa as de Solu o no sistemaçã íd çã � � � � � � � � �� � � � � � � � � � � � Ac mulo de Solu no sistema ú ção As entradas são as correntes A e B, enquanto a única saída é a corrente C, e não há acúmulo no sistema (regime estacionário). Dessa forma: 5 EXEMPLO 34 Introdução aos Fenômenos de Transporte A B C� �- 0 30 min + 50 min - C = 0kg solução kg solução C kg solução= 80 min Agora, fazendo o balanço material para a sacarose: Sacarose em A + Sacarose em B - Sacarose em C = 0 Sendo xsac,i a fração mássica de sacarose na corrente “i”, podemos escrever esta equação da seguinte forma: x A x B x Csac A sac B sac C, , ,. . - .� � 0 0,40 kg sacarose 30 min +0,15 kg sacarose kg solução kg solução kg soluçção kg solução x50 min - . C = 0sac,C x Csac C, . , ,� � �12 kg sacarose min kg sacarose min kg sacarose mi 7 5 19 5 nn Como já calculamos o valor da vazão mássica da corrente C, temos que: x kg soluçãosac C, ,=19 5 80 kg sacarose min min x kg soluçãosac C, ,= 0 2437 kg sacarose Isto é, a concentração de sacarose na corrente de saída é de 24,37% em massa. Note que, sem fazer o balanço material para a água, podemos concluir que a fração mássica de água na corrente de saída é de 75,625% – afinal, estamos trabalhando apenas com açúcar e água. Esta ideia tem fundamento no conceito de “graus de liberdade”, que talvez você se lembre das suas disciplinas de álgebra linear. Exploraremos esta ideia melhor no tópico seguinte, em que será desenvolvida uma estratégia para solucionar problemas de balanço material. 35UNIDADE 1 Como já mencionado, não trataremos situações envolvendo reações químicas no escopo deste material. Contudo, é importante observar que, nesses casos, os balanços por componente ficam mais complexos, uma vez que o componente que entra não, necessariamente, sai com a mesma forma – eles podem ser “consumi- dos”, enquanto novas espécies químicas podem ser “geradas”. Estratégias para Resolução de Problemas Himmelblau e Riggs (2003) sugerem uma estratégia de 10 passos para a resolução de problemas de balanço material: 1. Leia e entenda o problema em questão. 2. Faça um esboço do processo e especifique a fronteira do sistema. 3. Anote todas as informações conhecidas no seu diagrama do processo, como vazões, composições e outras relações úteis. Atribua símbolos para os valores que você não conhecer. 4. Obtenha quaisquer informações necessárias para solucionar o problema que esteja faltando. 5. Adote uma base de cálculo (arbitrária), se necessário. 6. Determine o número de variáveis desconhecidas. 7. Determine o número de equações independentes e analise os graus de liber- dade do problema. 8. Escreva as equações a serem resolvidas em termos das variáveis conhecidas e desconhecidas. 9. Resolva as equações e responda o que foi solicitado pelo problema. 10. Confira suas respostas. Tenha sua dose extra de conhecimento assistindo ao vídeo. Para acessar, use seu leitor de QR Code. 36 Introdução aos Fenômenos de Transporte Na prática, você não é obrigado a seguir estes passos à risca nem os decorar, mas abordar os problemas de maneira ordenada e analítica ajuda a identificar possíveis pontos fracos, aprimorando suas habilidades de interpretação e resolução. Faremos, agora, um exemplo com uma complexidade maior aplicando esta estratégia. Duas correntes de processo, F1 e F2, são misturadas. A corrente resultante (W) é então direcionada para uma segunda etapa, que visa a purificação de um dos componentes, obtendo, assim, duas correntes de produto, P1 e P2. Conhecendo as informações a seguir, qual a vazão e a composição da corrente F1? As composições estão dadas em quantidades mássicas. • Corrente F2: • Vazão: metade de F1 • Composição: 80% A, 20% B • Corrente P1: • Vazão: 1200 kg/h • Composição: 60% A, 40% B • Corrente P2: • Vazão: 300 kg/h • Composição: 5% B, 95% C Solução: Passo 1: o problema é simples – conhecemos as saídas, queremos conhecer as entra- das. Estamos trabalhando com três componentes (A, B e C), cinco correntes (F1, F2, W, P1 e P2) e duas etapas (E1 e E2). A etapa E1 une as correntes F1 e F2, formando a corrente W. Em seguida, a etapa E2 separa a corrente W nas correntes P1 e P2. Passo 2: esboços podem, geralmente, ser feitos de forma bastante simples por meio de diagramas de blocos, em que as setas são as correntes de processo e os blocos são as etapas. E1 F1 W P1 F2 P2 E2 6 EXEMPLO 37UNIDADE 1 Quanto à fronteira do sistema, note que esta pode ser estabelecida de três diferentes formas: apenas o sistema 1, ou apenas o sistema 2, ou então analisar o processo de forma global. Veja o esquema a seguir: E1 F1 P1 F2 Fronteira do Sistema 1 Fronteira do Sistema Global Fronteira do Sistema 2 P2 E2 W • Fronteira do Sistema 1: • Correntes de entrada: F1 e F2 • Corrente de saída: W • Fronteira do Sistema 2: • Corrente de entrada: W • Correntes de saída: P1 e P2 • Fronteira do Sistema Global: • Correntes de entrada: F1 e F2 • Corrente de saída: P1 e P2 Note que a escolha de um sistema não invalida o outro – muito pelo contrário, talvez seja necessário estabelecer diferentes fronteiras até se obter os resultados procurados, os quais devem validar todos os sistemas possíveis de serem estabelecidos. Do con- trário, o princípio da conservação da massa não seria obedecido, indicando alguma falha ou ineficiência do processo. Passo 3: adicionamos os valores conhecidos ao esboço. E1 F1 = ? xA, F1 = ? xB, F1 = ? xC, F1 = ? F2 = F1/2 xA, F2 = 80% xB, F2 = 20% W = ? xA, W = ? xB, W = ? xC, W = ? P1 = 1200 kg/h xA, P1 = 60% xB, P1 = 40% P2 = 300 kg/h xB, P2 = 5% xC, P2 = 95% E2 38 Introdução aos Fenômenos de Transporte Passo 4: a princípio, nenhuma informação parece faltar, pois não estamos preocu- pados com quem são os componentes A, B ou C, nem com o que são, na prática, as etapas E1 e E2. Estamos preocupados apenas com valores de vazão e composição, então estas informações deverão ser suficientes. Passo 5: como o problema já nos forneceu valores de vazão, não precisamos adotar uma base de cálculo. Caso o enunciado fosse “a vazão de P1 é quatro vezes a de P2”, poderíamos adotar um valor arbitrário para a vazão P2, e com ela chegaríamos às mesmas composições em todas as correntes. Contudo, a vazão de F1 mudaria para cada base de cálculo adotada. Passo 6: nossas variáveis desconhecidas são as vazões e composições das correntes F1 e W, totalizando 8 variáveis desconhecidas. Passo 7: para determinar o número de equações independentes, faremos os balanços nos sistemas e usaremos as relações fornecidas. Uma informação que facilita a análise é que, ao escrever as equações dos balanços para cada componente, uma delas sempre será dependente das demais. • Na etapa E1: F F W x F x F x W x F x F x W x A F A F AW B F B F B W C 1 2 1 2 1 2 1 2 1 2 � � � � � � , , , , , , , . . . . . . FF C F C W A F B F C F AW BW C W F x F x W x x x x x x 1 2 1 1 1 1 2 1 1 . . ., , , , , , , , � � � � � � � � Nestas equações, temos as oito variáveis desconhecidas, junto de cinco equações independentes. Elas não são, portanto, suficientes para determinarmos todas as variáveis desconhecidas. • Na etapa E2: W P P x W x P x P x W x P x P x AW A P A P B W B P B P C � � � � � � 1 2 1 2 1 2 1 2 1 2 , , , , , , , . . . . . . WW C P C P AW BW C W W x P x P x x x . . ., , , , , � � � � � 1 21 2 1 Aqui, temos quatro das variáveis desconhecidas (referentes à correnteW), junto de quatro equações independentes. Como nosso número de equações é igual ao número de incógnitas, o sistema é possível e determinado (graus de liberdade iguais a zero). 39UNIDADE 1 • Global: F F P P x F x F x P x P x F x A F A F A P A P B F B 1 2 1 2 1 2 1 2 1 1 2 1 2 1 � � � � � � � , , , , , , . . . . . FF B P B P C F C F C P C P F x P x P x F x F x P x P 2 1 2 1 2 1 2 2 1 2 1 2 1 . . . . . . . , , , , , , � � � � � 22 11 1 1x x xA F B F C F, , ,� � � Observe que, para o balanço global, todas as variáveis referentes à corrente interme- diária W não estão presentes. Temos apenas as quatro variáveis desconhecidas para a corrente F1, junto de quatro equações independentes. Isto é, como o problema solicita apenas a caracterização da corrente F1, podemos utilizar este sistema para que não precisemos trabalhar com a corrente intermediária W. Passo 8: usando as equações para o sistema global (exceto uma das equações de ba- lanço por componentes, por ser dependente das demais) e substituindo as variáveis conhecidas. F F1 1 2 1200 300 x F FA F 1 0 80 1 2 0 60 1200 0 00 3001, . , . , . , . x FB F1, . 11 0 20 1 2 0 40 1200 0 05 300, . , . , .F 11 1 1, , ,x x xA F B F C F Passo 9: simplificando e resolvendo as equações, chegamos aos valores solicitados pelo problema – vazão e composições da corrente F1. 3 2 1 1500 1 1000 0 40 1 720 0 40 1000 1 1 F F kg h x F x A F A F � � � � � � � / ( , ) . ( , ) . , , 7720 0 320 0 10 1 495 0 10 1000 495 1 1 1 � � � � � � � x x F x x A F B F B F , , , , ( , ) . ( , ) . BB F C F A F B F C F C F X X X X X , , , , , , , , , , 1 1 1 1 1 1 0 395 1 1 0 32 0 395 0 2 � � � � � � � � � 885 40 Introdução aos Fenômenos de Transporte Passo 10: podemos conferir o resultado com a equação de balanço para o compo- nente C, que não utilizamos. x F x F x P x PC F C F C P C P, , , ,. . . . , . . . 1 2 1 21 2 1 2 0 285 1000 0 1000 2 0 12 � � � � � 000 0 95 300 285 285 � � , . Note que o fato de o componente C estar presente somente em uma corrente de entrada e uma corrente de saída (no sistema global) facilita consideravelmente o problema, pois tudo o que estava saindo de C na corrente P2 estava entrando no sistema por meio da corrente F1. Para praticar, você pode retornar aos balanços por etapas e caracterizar a corrente W. Conseguiu chegar aos seguintes resultados: vazão de 1500 kg/h, sendo 48% A, 33% B e 19% C? Reciclo, Bypass e Purga Neste tópico final, abordaremos brevemente três aspectos importantes quando tra- tamos dos balanços materiais em termos de aplicação industrial. Essencialmente, são manobras realizadas nas correntes de processo que permitem seu funcionamento de maneira eficiente, contínua e controlável. Os balanços materiais entram com o papel de mensurar estas manobras e passam a ter um nível de complexidade maior. Reciclo: corrente do processo que é alimentada em uma etapa anterior àquela que a originou (veja Figura 6). Fonte: adaptado de Himmelblau e Riggs (2003). Processo 1Alimentação Reciclo Processo 2 Produto Figura 6 - Diagrama de blocos representativo para processos envolvendo reciclo Fonte: os autores. 41UNIDADE 1 Em processos envolvendo reação química, o uso de reciclo pode aumentar a conver- são alcançada pelos reatores, retornando os reagentes não consumidos ao processo e garantindo que eles sejam transformados no produto desejado. Em operações de separação, como destilação ou filtração, o reciclo pode ser utilizado com uma ideia semelhante: aumentar a eficiência do processo e servir para manter alguma corrente dentro das suas especificações. Vejamos, a seguir, um exemplo de operação com uso de reciclos. Deseja-se concentrar uma corrente (F) contendo uma solução de 10% Hidróxido de Sódio (NaOH) em água por meio de um processo integrado de evaporação, cristaliza- ção e filtragem. Para atingir maior eficiência no processo, a corrente líquida que passa pelo filtro é retornada na forma de reciclo (R). O diagrama a seguir ilustra o processo e apresenta as concentrações em cada corrente. Qual a razão entre as vazões R e P? Processo AF 10% NaOH 90% H2O P 96% NaOH 4% H2O R 50% NaOH 50% H2O E 30% NaOH 70% H2O W 100% H2O Passos 1, 2, 3 e 4: o diagrama fornecido pelo problema já é o resultado dos primeiros passos. Passo 5: por praticidade ao trabalhar com porcentagens, adotaremos a base de cál- culo de F = 100 kg/h. Passo 6: nossas variáveis desconhecidas são as vazões P, R, E e W. Passo 7: mais de um sistema pode ser avaliado. Aqui, faremos em dois deles: no ponto em que o reciclo é adicionado à alimentação (ponto A) e o global. Passo 8: assim, teremos as seguintes equações: 7 EXEMPLO 42 Introdução aos Fenômenos de Transporte • No ponto A: F R E x F x R x E x F x R x NaOH F NaOH R NaOH E H O F H O R H O E � � � � � � , , , , , , . . . . . 2 2 2 .. E • Global: F P W x F x P x W x F x P x NaOH F NaOH P NaOH W H O F H O P H OW � � � � � � , , , , , , . . . . . 2 2 2 ..W Em ambos os casos, temos duas variáveis desconhecidas e duas equações indepen- dentes. Portanto, temos graus de liberdade zero em ambas. Passo 9: resolvendo as equações, chegamos nas respostas desejadas. • No ponto A: F R E R E R E x F x R x ENaOH F NaOH R NaOH E � � � � � � � � � � 100 100 0 10 100 , , ,. . . , . 00 50 0 30 10 0 50 100 0 30 10 0 50 50 0 30 20 , . , . , . ( ) , . , , . R E E E E E E � � � � � � � � 00 100kg h R kg h/ /� � Utilizando só o balanço por componente do hidróxido de sódio no ponto A foi suficiente para encontrar uma das variáveis desejadas (R). Caso tivéssemos usado o balanço por componente da água, chegaríamos no mesmo resultado. Se quiser, pode conferir. Aliás, você já deve ter percebido que este é um assunto que demanda curiosidade e exercita o raciocínio lógico. • Global: F P W P W x F x P x W P NaOH F NaOH P NaOH W � � � � � � � � 100 0 10 100 0 96 0 , , ,. . . , . , . .. , / , / W P kg h W kg h� � �10 42 89 58 43UNIDADE 1 Assim: R P kg h kg h � � 100 10 42 9 60/ , / , Passo 10: podemos conferir os resultados obtidos verificando as duas equações dependentes não utilizadas. x F x R x EH O F H O R H O E2 2 2 0 90 100 0 50 100 0 70 200 140 14 , , ,. . . , . . . , . � � � � � 00 0 90 100 0 04 10 42 1 00 89 58 2 2 2 x F x P x WH O F H O P H OW, , ,. . . , . , . , , . , � � � � 990 90� Um exercício interessante é repetir este balanço, mas sem a utilização de um reciclo: se quiséssemos obter exatamente o mesmo produto P (em vazão e composição), consi- derando que a razão R/P é mantida (R/P ≈ 9,60), qual seria a alimentação necessária? Processo F 10% NaOH 90% H2O P = 10,42 kg/h 96% NaOH 4% H2O R 50% NaOH 50% H2O R/P ≈ 9,60 W 100% H2O Temos o balanço material global e por componente: F W R P x F x W x R x P x F x NaOH F NaOH W NaOH R NaOH P H O F H � � � � � � � , , , , , . . . . . 2 2OOW H O R H O PW x R x P, , ,. . .� �2 2 44 Introdução aos Fenômenos de Transporte Resolvendo as duas primeiras equações com os valores conhecidos, e utilizando a relação R/P ≈ 9,60: F W R P F W P P F W F W x F xNaOH F N � � � � � � � � � � � � 9 60 10 60 10 42 110 452 , . , . , , ., aaOH W NaOH R NaOH PW x R x P F W P P , , ,. . . , . . , . , . , . � � � � �0 10 0 0 50 9 60 0 96 0,, . , . , . , , / , / 10 5 76 0 10 60 0192 600 192 489 74 10 F P F F kg h W kg h R � � � � � � � 00 032, /kg h Como você pode observar, para obter a mesma quantidade de produto, o processo sem reciclo exigiria uma alimentação seis vezes maior devido às perdas pela corrente R, que não foi reaproveitada. A indústria sempre irá buscar minimizar o desperdício. Bypass: corrente do processo que pula uma ou mais etapas de um processo, unindo-se novamente em um estágio posterior. Pode ser usada, por exemplo, para controlar a composição de saída de uma etapa (Figura 7). Purga: corrente retirada do processo com o objetivo de remover inertes (substân- ciasque não reagem quimicamente) e materiais indesejados, os quais poderiam se acumular no sistema pelo uso de correntes de reciclo (Figura 8). Fonte: adaptado de Himmelblau e Riggs (2003). Bypass ProcessoAlimentação Produto Figura 7 - Diagrama de blocos representativo para processos envolvendo bypass Fonte: os autores. 45UNIDADE 1 ProcessoAlimentação Reciclo Separador Produto Purga Figura 8 – Diagrama de blocos representativo para processos envolvendo bypass Fonte: os autores. Certo processo industrial é alimentado por uma corrente composta de 30% compo- nente X e 70% componente Y. O processo é responsável por remover apenas com- ponente Y, e a corrente de saída precisa sair com 80% de X e 20% de Y para atender às especificações de operação dos equipamentos. Contudo, um cliente solicita um produto contendo 60% X e 40% Y. Para atender a este pedido, o engenheiro de pro- cessos sugere o uso de uma corrente de bypass, conforme o diagrama a seguir. Calcule a razão entre as vazões B e F que deve ser utilizada para atender ao pedido. B E Processo F 30% X 70% Y P 60% X 40% YS 80% X 20% Y W 100% Y 1 2 Solução: Passos 1, 2, 3 e 4: o diagrama apresentado contém as informações necessárias. Observe que, no ponto 1, a corrente de alimentação se divide entre as correntes B e E – esta divisão é puramente física, ou seja, presume-se que as composições são as mesmas em ambas as correntes, diferenciando apenas em suas vazões. No ponto 2, a corrente de bypass retorna unindo-se à saída do processo (corrente S), formando o produto P na composição desejada. Passo 5: adotaremos a base de cálculo de F = 100 kg/h. Passo 6: como definimos um valor para F, as variáveis desconhecidas são agora as vazões B, E, W, S e P. 8 EXEMPLO 46 Introdução aos Fenômenos de Transporte Passo 7: os quatro principais sistemas que devemos prestar atenção são os pontos 1 e 2, o processo e o sistema global. Para o sistema global, temos as seguintes equações: F P W x F x P x W x F x P x W X F X P X W Y F Y P Y W � � � � � � , , , , , , . . . . . . Aqui temos duas variáveis desconhecidas e duas equações independentes. Dessa forma, conseguiremos determinar os valores de vazão para P e W. Conhecido o valor de P, faz sentido analisar o ponto 2 como segundo sistema. Para ele, temos as equações: B S P x B x S x P x B x S x P X B X S X P Y B Y S Y P � � � � � � , , , , , , . . . . . . Portanto, teremos apenas duas variáveis desconhecidas (B e S) e duas equações independentes. Com isso, podemos determinar B e calcular a resposta pedida pelo problema. Traçar a estratégia correta para a resolução de um balanço é uma questão clássica para o engenheiro na indústria. Passos 8 e 9: como proposto, vamos começar resolvendo as equações do sistema global. F P W P W x F x P x W P W P X F X P X W � � � � � � � � � 100 0 30 100 0 60 0 00 50 , , ,. . . , . , . , . kkg h W kg h/ /� � 50 Agora, para as equações do ponto 2: B S P B S B S x B x S x P B S X B X S X P � � � � � � � � � � � 50 50 0 30 0 80 0 60 5 , , ,. . . , . , . , . 00 0 30 50 0 80 30 15 0 30 0 80 30 0 50 15 30 , . ( ) , . , . , . , . / � � � � � � � � S S S S S S kg hh B kg h� � 20 / Portando, a razão B/F = 0,20. 47UNIDADE 1 Passo 10: apesar de não ser de extrema necessidade, você poderia conferir o seu resultado verificando que os valores obtidos são válidos para calcular a vazão da corrente E (80 kg/h). Em seguida, ao fazer o balanço no processo, você observará que as equações são válidas. Certo processo para a formação de água a partir dos gases hidrogênio (H2) e oxigênio (O2) foi implantado. Uma corrente (F), contendo ambos os componentes, é alimentada a um reator. Em seguida, a corrente de saída passa por um condensador, que remove água líquida do processo como produto. Para evitar a perda de material, procurou-se utilizar os gases remanescentes (que não reagiram) como uma corrente de reciclo do processo. Contudo, ao testar a nova configuração, observou-se que os níveis de argônio (Ar) – que é um gás inerte – no processo começaram a subir. Isto aconteceu porque a corrente contendo hidrogênio e oxigênio apresentava, também, baixos traços do gás. Como forma de solucionar o problema, você, engenheiro de processos, sugere utilizar uma corrente de purga (P). Considerando o diagrama a seguir, qual deve ser a razão entre as vazões P e F, se a concentração de argônio na corrente de reciclo não pode ser superior a 7,5%? F 99,7% H2 e O2 0,3% Ar 92,5% H2 e O2 7,5% Ar Reciclo CondensadorReator W 100% Água P Passos 1 a 4: o diagrama nos fornece todas as informações necessárias para analisar o problema. Note que, apesar de envolver um reator, o problema não está preocupado com a reação química, de modo que ela não será necessária. Além disso, é importante observar que o reciclo possui a mesma composição da purga, apesar de não estar especificado. Passo 5: como estamos interessados principalmente nas correntes F e P, definiremos como base de cálculo o valor de F = 100 kg/h. Passo 6: observe que os dados fornecidos são, essencialmente, as composições de entrada e saída do sistema global. Portanto, intuitivamente, parece fazer sentido analisá-lo. Assim, temos duas variáveis desconhecidas: P e W. 9 EXEMPLO 48 Introdução aos Fenômenos de Transporte Passo 7: note que não conhecemos as composições de H2 e O2 separadamente. Contudo, se fizermos o balanço global e o balanço por componente para o argônio, teremos duas equações independentes: F P W x F x P x WAr F Ar P Ar W � � � �, , ,. . . Logo, se temos duas equações independentes e duas variáveis desconhecidas, a solução do nosso problema é possível e determinada (grau de liberdade = 0). Passos 8, 9 e 10: substituindo os valores conhecidos e resolvendo as duas equações do balanço global, podemos calcular o valor pedido pelo problema. 100 0 003 100 0 075 0 000 4 96 4 100 0 � � � � � � � � � P W P W P kg h W kg h P F , . , . , . / / ,004 4� % Isto é, para manter a concentração de argônio no reciclo igual a 7,5%, deve-se purgar uma vazão equivalente a 4% da vazão de alimentação. Com isso, terminamos nossa introdução aos balanços materiais. Como você pode ter notado, apesar de não demandarem cálculos sofisticados, os balanços de massa trabalham fortes habilidades de interpretação do problema, análise crítica e organização. Aprimorar estas qualidades facilitará o seu estudo dos fenômenos de transporte, que começaremos propriamente na unidade a seguir. 49 Você pode utilizar seu diário de bordo para a resolução. 1. Um processo precisa produzir 300 libras de uma solução a 10% em massa de cloreto de potássio (KCl) em água. Para isso, deve-se misturar uma solução a 0,9% do sal e o próprio sal puro seco. Quais devem ser as quantidades misturadas? Apresente a resposta em quilogramas (1 kg ≈ 2,205 lb). 2. Deseja-se produzir 1000 kg/h de uma solução de soda cáustica, com concentra- ção molar de 14,89%. Devido ao alto calor de dissolução da soda em água, este processo deve ser feito em duas etapas, de modo que parte da água alimentada siga por uma corrente de bypass e retorne no tanque de diluição. Considerando o diagrama a seguir, calcule a razão entre as vazões mássicas das correntes E e B. As porcentagens são todas molares. Considere que MMNaOH = 40 g/mol, MMH2O = 18 g/mol. Tanque de Dissolução Tanque de Diluição B = ? Água de Alimentação Soda Cáustica Solução Produto P = 1000 kg/h 14,89% NaOH 31,03% NaOH S = ? 100% NaOH F = ? 100% H2O E = ? 50 3. A dessalinização da água do mar e de águas salobras é comum em países de- sérticos ou com pouca disponibilidade de água potável, como no Oriente Médio e na África. A dessalinização de água pode ser realizada por meio de processos de osmose reversa. Admitindo que estão presentes apenas sal e água e consi- derando a figura a seguir, determine: a) A vazão de água do mar necessária para alimentar o processo (F). b) A vazão de salmoura removida(W). c) A porcentagem da salmoura que sai das células de osmose reversa e é reciclada. Células de Osmose Reversa Reciclo de Salmoura R = ? Água do Mar Salmoura Removida W = ? 5,25% Sal S Água Dessalinizada P = 2000 kg/h 0,05% Sal F = ? 3,1% Sal E 4,0% Sal 51 Engenharia Química – Princípios e Cálculos 8ª Edição Autor: David M. Himmelblau e James B. Riggs Editora: LTC Editora – GEN | Grupo Editorial Nacional Sinopse: uma obra consagrada pela excelente fundamentação de habilidades e conhecimentos básicos no contexto da engenharia química. Seu principal objeto de estudo são os balanços de massa e de energia, mas trata também da descrição de gases, vapores, líquidos e sólidos e diagramas de fases. Comentário: as duas primeiras partes deste livro abordam os assuntos desta primeira unidade de maneira bastante extensiva, com vários exemplos aplicados. Além disso, são trabalhados os balanços materiais envolvendo reações quími- cas, caso o aluno tenha a curiosidade e deseje aprender mais sobre processos químicos industriais. LIVRO 52 HAUKE, G. An introduction to fluid mechanics and transport phenomena. 1. ed. Holanda: Springer Netherlands, 2008. HIMMELBLAU, D. M.; RIGGS, J. B. Engenharia química – princípios e cálculos. 7. ed. São Paulo: Editora LTC – GEN (Grupo Editorial Nacional), 2003. PARTINGTON, J. R. Antoine Laurent Lavoisier, 1743-1794. Nature, [S.l.], v. 152, p. 207-208, ago. 1943. WELTY, J. R.; RORRER, G. L.; FOSTER, D. G. Fundamentos de Transferência de Momento, de Calor e de Massa. 6. ed. São Paulo: Editora LTC – GEN (Grupo Editorial Nacional), 2017. 53 1. O processo descrito pode ser resumido pelo diagrama: M 100% KCI P = 300 lb 10% KCI 90% H2O F 0,9% KCI 99,1% H2O Fazendo o balanço do processo, temos as equações: F M P x F x M x P x F x M x P KCl F KCl M KCl P H O F H O M H O P � � � � � � , , , , , , . . . . . . 2 2 2 Temos duas variáveis desconhecidas e duas equações independentes. Substituindo os valores conhecidos e resolvendo as equações: F M M F F M F F � � � � � � � � � � 300 300 0 009 1 0 10 300 0 009 300 30 0 991 , . . , . , . ( ) , .. , , F F lb M lb � � � � 270 272 45 27 55 Por fim, convertendo os resultados em quilogramas: F lb kg lb kg M lb kg lb kg � � � � 272 45 1 2 205 123 56 27 55 1 2 205 12 49 , , , , , , 54 2. O diagrama contém todas as informações que conhecemos sobre o problema. Contudo, as composições das correntes de solução foram dadas em frações molares. Como estamos mais interessados em trabalhar com valores mássicos, calcularemos inicialmente as composições mássicas. Para a corrente P, temos, em base molar, 14,89% NaOH e, portanto, 85,11% H2O. Assumindo a base de cálculo de 100 mol de solução P, podemos calcular a massa molar da solução P da seguinte forma: MM n MM n MM n MM n MM n n n nmistura n n n n n n � � � � � � � � � � � � 1 1 2 2 1 1 1 2 1 ... ... MMM n MM n MM molP NaOH NaOH H O H O� � 2 2 100 Veja que, como conhecemos a composição molar para a base de cálculo empregada, teremos 14,89 mols de NaOH e 85,11 mols de H2O: MM mol MM mol MM molP NaOH H O� �14 89 85 11 100 2 , . , . Substituindo as massas molares: MM mol g mol mol g mol mol MM g mol P P � � � 14 89 40 85 11 40 100 21 2758 , . , . , / Este valor pode ser utilizado para converter a vazão mássica em molar: P P MM kg h mol g mol hmolar mássica P � � � 1000 1 1 21 2758 47000 , 55 Como conhecemos as frações molares, temos as seguintes vazões por componente na corrente de produto: P mol h mol h P NaOH molar H O molar , , , . , . � � � 0 1489 47000 7000 0 8511 470 2 000 40000mol h mol h � Convertendo estes valores em vazões mássicas: P mol h g mol kg h P mol h NaOH mássica H O mássica , , .= = = 7000 40 280 40000 2 ..18 720g mol kg h = Isto é, a corrente de produto P possui 28% NaOH e 72% H2O em massa. Agora, podemos fazer o balanço no sistema global, em termos das vazões mássicas: F S P x F x S x P x F x S x NaOH F NaOH S NaOH P H O F H O S H O P � � � � � � , , , , , , . . . . . 2 2 2 .. P Temos duas incógnitas (F e S) e duas equações independentes. Além disso, como F e S são correntes puras, a solução é bastante simples: 0 1 0 28 1000 280 1 0 0 72 1000 720 . . , . / . . , . / F S S kg h F S F kg h � � � � � � 56 Agora, como conhecemos F, podemos fazer o balanço no tanque de dissolução, do qual sai a corrente interme- diária I. Como não se sabe a composição e vazão mássica desta corrente, faz-se o balanço material em termos molares. Teremos o sistema: E S I X E X S X I X E X S X NaOH E NaOH S NaOH I H O E H O S H O I � � � � � � , , , , , , . . . . . 2 2 2 .. I Podemos calcular a vazão molar de S: S kg h mol g mol h = =280 40 7000 Substituindo os valores conhecidos nas duas primeiras equações do sistema, temos: E I E I I I mol h E I � � � � � � � � 7000 0 1 7000 0 3103 7000 0 3103 22558 81 . . , . , . , �� � �7000 15558 81E mol h , Observe que também podemos calcular a vazão mássica de E, por ser uma corrente de água pura: E mol h g mol kg h � �15558 81 18 280, Fazendo o balanço no ponto em que a corrente F se divide, temos: F B E kg h B kg h B kg h � � � � � 720 280 440 57 Assim, podemos enfim calcular a razão pedida pelo problema: E B � � 280 440 63 63, % 3. O diagrama nos fornece todas as composições das correntes e a vazão de água dessalinizada que deve ser atingida. Dessa forma, as únicas variáveis desconhecidas são as demais vazões. Fazendo o balanço global, temos as equações: F P W x F x P x W x F x P x W Sal F Sal P Sal W H O F H O P H OW � � � � � � , , , , , , . . . . . . 2 2 2 Portanto, temos duas equações independentes e duas variáveis desconhecidas (F e W). Resolvendo estas equações com os valores conhecidos, teremos: F W F W W � � � � � � � 2000 0 031 0 0005 2000 0 0525 0 031 2000 1 0 052 , . , . , . , . ( ) , 55 62 0 031 1 0 0525 2837 21 4837 21 . , . , . , / , / W W W W kg h F kg h � � � � � � 58 Com isso, chegamos às respostas pedidas nos itens (a) e (b). Em seguida, para chegar à porcentagem da salmoura que é reciclada, precisamos definir sua vazão. Para isto, faremos um balanço no ponto em que o reciclo se une à alimentação do sistema, formando a corrente resul- tante que entra na célula de osmose (E) com concentração de 4,0% em sal: F R E x F x R x E x F x R x E Sal F Sal R Sal E H O F H O R H O E � � � � � � , , , , , , . . . . . . 2 2 2 Como agora conhecemos F, temos novamente duas equações independentes e apenas duas variáveis desco- nhecidas (R e E). Logo: 4837 21 0 031 4837 21 0 0525 0 04 149 95 0 0525 19 , , . , , . , . , , . � � � � � � R E R E R 33 49 0 04 3483 2 8320 41 , , . , / , / � � � � R R kg h E kg h Agora, precisamos apenas saber a vazão de saída de salmoura do processo (S). Ela pode ser obtida fazendo o balanço nas células de osmose reversa ou, até mesmo, no ponto que se divide entre o reciclo e a salmoura removida: E P S S S kg h S R W S S � � � � � � � � � � 8320 41 2000 6320 41 3483 2 2837 21 632 , , / , , 00 41, /kg h Finalmente, podemos calcular a resposta pedida no terceiro item: R S � � 3483 2 6320 41 55 11, , , % 59 60 PLANO DE ESTUDOS OBJETIVOS DE APRENDIZAGEM • Introduzir o estudo da mecânica dos fluidos por meio da conceptualização dos fluidos, seguida da definição da tensão de cisalhamento. • Definir os conceitos de viscosidade absoluta (dinâmica), massa específica, peso específico e viscosidade cinemática. • Estudar a teoria matemática da análise dimensional, apre- sentando sua aplicação na mecânica dos fluidos e os nú- meros adimensionais. Definindo os Fluidos Propriedades dos Fluidos Análise Dimensional Dr. Rodrigo Orgeda Esp. Henryck Cesar Massao Hungaro Yoshi Introdução à Mecânica dos Fluidos Definindo os Fluidos Em suas aulas de física, muito provavelmente, você estudou assuntos relacionados aos chama- dos fluidos, comoo conceito de pressão e a Lei de Pascal, por exemplo. No contexto dos fenômenos de transporte, a mecânica dos fluidos busca levar este estudo adiante, explicando o comportamen- to físico dos fluidos e as leis que o regem. Ela é, portanto, uma ciência fundamental em diversas vertentes da engenharia, pois possui aplicação prática a muitas situações, como escoamentos em tubulações, pressões em barragens, deslocamento de fluidos e, até mesmo, aerodinâmica (afinal, o próprio ar atmosférico é um fluido). 63UNIDADE 2 Podemos afirmar que a mecânica dos fluidos é uma das ciências básicas mais fundamentais para os engenheiros. A palavra “mecânica” remete ao estudo do com- portamento de sistemas submetidos a uma ou mais forças. A palavra “fluido”, por outro lado, pode ser um pouco mais difícil de se definir. Vamos começar por uma definição mais elementar: fluido é uma substância que, ao ser colocada em um reci- piente, assume o formato do recipiente, não possuindo forma própria. Baseado nesta definição, podemos, então, concluir que líquidos e gases são fluidos, diferentemente dos sólidos, como ilustra a Figura 1: Superfície livre LíquidoSólido Fluidos Gás Figura 1 - Comparação entre fluidos e sólidos em um recipiente Fonte: Brunetti (2008, p. 1). É importante observar que, enquanto os gases ocupam todo o recipiente, os líquidos podem apresentar uma superfície livre caso o recipiente não esteja completamente cheio. Apesar de esta ser uma definição suficiente para dizer se uma substância é um fluido ou não, a mecânica dos fluidos faz mais sentido se partirmos de uma defi- nição um pouco mais abstrata: fluido é qualquer substância capaz de fluir. Para desenvolvermos melhor esta ideia, descreveremos a observação prática chamada de “experiência das duas placas”. Considere um sólido de material qualquer, preso entre duas placas planas, uma inferior e uma superior. É então exercida uma força sobre a placa tangencial ao sólido, na direção do plano da placa, como na Figura 2a. Mantendo a força constante, o que se observa é que o sólido é deformado de maneira angular até certo limite, no qual as tensões internas equilibram a força externa aplicada, atingindo uma condição de equilíbrio estático (Figura 2b). 64 Introdução à Mecânica dos Fluidos (a) (b) F = ct te F = ct te Figura 2 - Experiência das duas placas para um sólido Fonte: Brunetti (2008, p. 2). Dessa forma, podemos dizer que: ao aplicar uma força tangencial constante a um sólido, ele se deforma angularmente até atingir uma nova posição de equilíbrio estático. Agora, vejamos o que acontece com um fluido submetido a esta mesma expe- riência. Imagine que seja possível acompanhar cada unidade de fluido ao longo do experimento. Para facilitar a visualização, denominaremos o volume de ABCD, cada letra correspondendo a uma extremidade (Figura 3a). Ao aplicar a força tangencial à placa superior, ela passa a se deslocar a uma veloci- dade v. O que se observa é que os pontos do fluido em contato com a placa superior (lado AD) adquirem esta mesma velocidade v, enquanto os pontos do fluido em contato com a placa inferior (lado BC) ficam parados junto dela (veja a Figura 3b). Surge, portanto, o princípio da aderência: quando em contato com uma superfície sólida, os pontos de um fluido aderem-se aos pontos desta superfície. Dessa forma, se a força tangencial for mantida sobre a placa superior, movendo-a à velocidade v, as partículas de fluido em contato também se moverão à velocidade v, na mesma direção e sentido. Isto significa que a condição de equilíbrio estático não será atingida, de modo que o volume de fluido poderá se deformar continuamente (veja a Figura 3c). (a) A B D C (b) A B B D C F = ct te (c) A D C F = ct te Figura 3 - Experiência das duas placas para um fluido Fonte: Brunetti (2008, p. 2). 65UNIDADE 2 Essa experiência permite, portanto, diferenciar sólidos de fluidos sob a perspectiva da mecânica dos fluidos: quando submetidos a forças tangenciais, sólidos se deformam limitadamente, enquanto fluidos podem se deformar continuamente sem alcançar um novo equilíbrio estático. Nossa definição final de fluido será então: Fluido: substância que se deforma continuamente quando submetida à ação de uma força tangencial constante qualquer. Fonte: adaptado de Brunetti (2008). Apesar de parecer exagero chegar a esta definição, você verá, em capítulos futuros, que o princípio da aderência é fundamental para compreender certos conceitos, como o de camada limite, que é essencial no estudo tanto da mecânica dos fluidos quanto dos demais fenômenos de transporte. Outra observação importante pode ser feita com relação à experiência de duas placas. Para tanto, é necessário antes definir o conceito de tensão de cisalhamento. Tensão de Cisalhamento – Lei de Newton da Viscosidade Considere uma superfície de área A, sobre a qual é aplicada uma força F . Podemos decompor esta força na sua componente tangencial (Ft ) e na sua componente normal à superfície (Fn), como mostra a Figura 4. Nesta unidade, discutiremos sobre a com- ponente tangencial e, na próxima, analisaremos a componente normal. A Fn Ft F Figura 4 - Ação de uma força sobre uma superfície e suas componentes normal e tangencial Fonte: Brunetti (2008, p. 3). 66 Introdução à Mecânica dos Fluidos A tensão de cisalhamento é definida como a razão entre o módulo da componente tangencial da força e a área da superfície em que é aplicada: t = F A t Portanto, é a força tangencial por unidade de área, sendo dada, geralmente, em N/m² (SI), kgf/m² ou dina/cm². Voltando à experiência de duas placas, note que, no caso dos fluidos, ao exercer a força tangencial sobre a placa, ela passa a ser acelerada da velocidade nula até uma velocidade finita, v0, que permanece constante ao longo do experimento. Isto é, a partir de um determinado momento, não há mais aceleração. Pela segunda Lei de Newton da dinâmica, isto significa que a resultante das forças deve ser nula (condição de equilíbrio dinâmico). Como não existem outras forças externas atuando no sistema, conclui-se que a força aplicada na placa é equilibrada por forças internas do fluido. Para entender estas forças internas, podemos recorrer ao princípio da aderência. Na experiência, a camada de fluido junto à superfície superior move-se à velocidade v0, enquanto a camada de fluido junto à superfície inferior terá velocidade nula. As camadas intermediárias, por sua vez, passam a se mover conforme um gradiente de velocidades, indo de zero (na placa inferior) até v0 (na placa superior), como mostra a Figura 5a. (a) (b) (c) Ft A y y + dy v + dv v B Diagrama de velocidades v0 v0v v1 v2 y v2 v1 (v1 é maior que v2) � � � Figura 5 - Gradiente de velocidade e tensões de cisalhamento entre as camadas de fluido na expe- riência de duas placas Fonte: adaptada de Brunetti (2008). 67UNIDADE 2 Este deslizamento entre camadas (por estarem em velocidades diferentes) faz com que elas exerçam forças tangenciais umas sobre as outras, criando tensões de cisa- lhamento (veja a Figura 5(b)), equilibrando a força externa Ft, e fazendo com que a placa superior fique com a velocidade constante v0. Newton evidenciou que, para a grande maioria dos fluidos, a tensão de cisalhamento é proporcional ao gradiente de velocidade (variação da velocidade v na coordenada y – veja a Figura 5(c)). Ma- tematicamente, podemos escrever esta afirmação da seguinte forma: τ α τdv dy ou dv dy cte= . Esta é a chamada lei de Newton da viscosidade. Fluidos que obedecem esta relação são chamados de fluidos newtonianos, como água, ar e óleos, por exemplo. Fluidos não newtonianos não serão trabalhados, pois são de menor interesse geral e pode ser bastante difícil descrever seu comportamento. Sir Isaac Newton (4 de janeiro de 1643 – 31 de março de 1727) foi um físico e ma- temático inglês reconhecido como o ícone da revolução científica do século XVII. A descoberta da decomposiçãoda luz branca, suas três leis da mecânica clássica, a lei da gravitação universal e suas contribuições no desenvolvimento do cálculo diferencial e integral são consideradas como alguns de seus principais trabalhos. Fonte: Westfall (2018, on-line)1. 68 Introdução à Mecânica dos Fluidos Vamos, agora, discutir algumas propriedades bastante importantes para a análise dos fluidos e escoamentos. A primeira delas é encontrada no tópico que você acabou de estudar: a lei de New- ton da viscosidade; mas afinal, você saberia definir o que é a viscosidade? Propriedades dos Fluidos 69UNIDADE 2 Quando um objeto sólido desliza em relação a outro, observamos o surgimento de uma força na superfície de contato, na direção oposta ao movimento – a chamada força de atrito. De forma análoga, quando um fluido se movimenta em relação a um sólido ou a outro fluido, observa-se que também existe uma resistência ao movimento. A propriedade que representa esta resistência é a viscosidade. Naturalmente, existem fluidos com maiores ou menores viscosidades, afinal, é muito mais fácil correr ao ar livre (onde estamos imersos em ar, um fluido) do que em uma piscina cheia de água. Como vimos, para fluidos newtonianos, a tensão de cisalhamento é proporcional ao gradiente de velocidade. A constante de proporcionalidade é justamente a visco- sidade dinâmica ou absoluta (m) do fluido: τ τ µdv dy cte dv dy � � �. No SI, três formas comuns de expressar as unidades de viscosidade são: kg/(m.s), N.s/m² ou Pa.s (em que Pa é a unidade de pressão, pascal). Outra unidade comum é o poise (P), equivalente a 0,1 Pa.s, sendo também frequentemente utilizado como centipoise (cP, um centésimo de poise). A viscosidade da água a 20 ºC é de 1 cP, por isso a unidade serve como uma referência conveniente. De forma prática, podemos dizer que a viscosidade é a propriedade que representa a dificuldade de o fluido escoar. Ela surge em nível microscópico, devido à coesão das moléculas e os choques entre elas. Por causa disso, ela é também variável com a temperatura. Você pode verificar este fenômeno fazendo a seguinte comparação: o óleo de cozinha espalha melhor antes ou depois de aquecê-lo? Em líquidos, o aumento da temperatura reduz a viscosidade, enquanto nos gases, o aumento da temperatura aumenta a viscosidade. A seguir, analisaremos um exemplo para nos apropriar melhor do assunto que estamos discutindo. Muitos dos exemplos abordados no livro são utilizados para que possamos, também, aprender conceitos novos. Por isso, não se preocupe se, neste momento, você não conseguir desenvolvê-lo sozinho. Às vezes a teoria é melhor compreendida quando utilizamos um exemplo prático, não é mesmo? 70 Introdução à Mecânica dos Fluidos É necessário substituir o lubrificante do pistão de certo equipamento. Você sabe que o pistão é cilíndrico, com massa de 500 g, diâmetro de 15 cm e altura de 6 cm. Ele trabalha dentro de um cilindro com 15,1 centímetros de diâmetro e deve cair com a velocidade constante de 1,4 m/s. Qual deve ser a viscosidade do lubrificante para atender a estas condições de operação? Considere uma aceleração da gravidade de 10 m/s². Solução: Para facilitar a visualização, podemos fazer um esboço do problema: Força Peso (P) Lubrificante h = 6 cm D = 15,1 cmc D = 15,0 cmp � Para que o pistão caia à velocidade constante, é necessário que ele esteja em equilíbrio dinâmico: há movimento, mas não há aceleração. Pela segunda lei de Newton, temos: F m a� � �. 0 Aqui, duas forças estão atuando: o próprio peso do pistão (P) e a força da tensão de ci- salhamento (Ft), que é a resistência do lubrificante ao movimento. Assim, em módulo: F Pt = Lembre-se que, pela definição de tensão de cisalhamento: t = F A t F At = t . 1 EXEMPLO 71UNIDADE 2 A tensão de cisalhamento (t ) pode ser avaliada por meio da lei de Newton da viscosidade, enquanto a área em questão é a área lateral do pistão. Lembre-se que o pistão é um cilindro, cuja área lateral é calculada pelo produto da sua circunferência e seu comprimento. Logo: τ µ π= = dv dy A D hp; . . F A dv dy D h Pt p� � � � � � � � �τ µ π. . ( . . ) Note que, para calcularmos a viscosidade por meio desta equação, é necessário ava- liarmos o gradiente de velocidades de alguma maneira. O procedimento rigoroso e de resultado mais preciso seria empregar coordenadas polares para resolver a integral. Entretanto, em algumas situações, é possível simplificar o gradiente de velocidade, assumindo a variação de velocidade como linear. Observe o diagrama a seguir: � y dy dy v2 dv v1 Nesta representação, uma variação dy na direção do eixo y corresponde a uma va- riação dv na velocidade. Contudo, quando a distância (ε) entre as superfícies for relativamente pequena, é razoável considerar que esta variação é linear, como na figura a seguir: � y dy v0 dv 72 Introdução à Mecânica dos Fluidos Assim, podemos simplificar a lei de Newton para a seguinte forma: τ µ ε = v0 Retornando ao exemplo, note que a distância ε da parede do cilindro ao pistão é correspondente a: e � � � D D cmc p 2 0 05, Esta é uma distância razoavelmente pequena para considerarmos um gradiente de velocidade linear. Assim: µ ε π v D h Pp0 � � � � � � �. ( . . ) A força peso do pistão é dada por: P m g= . Portanto, isolando a viscosidade e admitindo uma aceleração da gravidade de 10 m/s², chegamos ao resultado desejado: µ ε π µ � � m g v D h kg m s m m s p . . . . . ( , ) . ( / ²) . ( , ) ( , / ) . ( , 0 0 500 10 0 0005 1 4 3 114 0 15 0 06 6 32 10 2 3 ) . ( , ) . ( , ) , . . ². ². m m kg m s s m µ � � A unidade base de Newton é N kg m s = . 2 . Assim, temos que: � � �6 32 10 2 2, . .N s m Apenas para fins comparativos, o resultado mais preciso para este problema (não consi- derando o gradiente de velocidade linear) seria de, aproximadamente, 6,29.10-2 N.s/m². Isso indica um erro de 0,48%, que pode ser admitido como desprezível, comprovando a viabilidade da simplificação feita. 73UNIDADE 2 A viscosidade é uma das características mais importantes no momento de escolher o melhor óleo lubrificante para um carro. Na prática, o produto precisa ser viscoso o suficiente para criar uma película protetora entre as partes do motor, mas não pode ser tão viscoso a ponto de oferecer muita resistência ao movimento das peças, exigir mais força para ser bombeado e fluir lentamente pelo motor. Os menos viscosos circulam com mais facilidade, permitindo uma lubrificação mais rápida e que alcança cada centímetro das peças. Essa excelente fluidez faz com que nenhuma parte se desgaste mais do que outra, diminuindo a necessidade de pequenas manutenções. Fonte: Stabelini ([2019], on-line)2. As próximas propriedades que iremos abordar são relativamente simples, mas seus nomes podem causar certas confusões. Para evitar que isso ocorra, iremos caracteri- zar: densidade, massa específica e peso específico. Nos seus estudos, os fluidos serão admitidos como meios contínuos e homogêneos, ou seja: as propriedades em cada ponto do fluido coincidem com as suas propriedades médias. Com isso em mente, vamos começar diferenciando densidade de massa específica. Considere um corpo de massa ( m ) e volume total (V ), seja ele maciço ou oco. É possível definir, matematicamente, a densidade desse corpo por meio da seguinte relação: d m V = Caso o corpo analisado seja maciço e homogêneo ou caso a parte oca seja descon- siderada, a densidade é chamada de massa específica (ρ). Em geral, depende da temperatura e da pressão, sendo característica do fluido. No SI, a unidade é kg/m³. r = m V É também comum chamar a massa específica de “densidade absoluta”. Contudo, al- guns materiais utilizam o termo “densidade” de forma mais genérica, referindo-se a corpos e objetos, em vez de substâncias específicas. Isso pode gerar dúvidas quando os objetos forem maciços ou ocos, por isso, será evitado ao longo deste material. 74 Introdução à Mecânicados Fluidos Por sua vez, o peso específico (γ) segue uma lógica semelhante: é o peso (P) por unidade de volume (V). No SI, a unidade é N/m³, sendo comum também encontrá-la dada em kgf/m³: g = P V Como o peso é o produto da massa com a aceleração da gravidade, ou seja,P m g= . , é possível traçar uma relação entre peso específico e massa específica: γ γ ρ� � � m g V g. . Para líquidos, estas duas propriedades são essencialmente constantes, pois podem ser consideradas substâncias incompressíveis, ou seja, uma variação na pressão não varia o seu volume. Para gases, os efeitos da pressão não podem ser desprezados. Vejamos, agora, um exemplo para esclarecer o que acabamos de estudar. Você possui duas esferas, uma maciça e uma oca, feitas de um único e mesmo material. Conhecendo suas massas e volumes, calcule a massa específica e o peso específico deste material, e a densidade de cada esfera. Esfera A Maciça Volume: 3 cm³ Massa: 9 g Esfera B Oca Volume: 5 cm³ Volume vazio: 2 cm³ Massa: 9 g Solução: Ambas as esferas são do mesmo material. Calculando a massa específica do material para a esfera A, temos: rA A A m V g cm g cm kg m= = = =9 3 3 3000 ³ / ³ / ³ 2 EXEMPLO 75UNIDADE 2 Ao fazer o mesmo para a esfera B, devemos nos atentar a utilizar apenas o volume de material, ou seja, descontando a parte oca. Dessa forma: rB B B total B vazio m V V g cm cm g cm kg m� � � � � � , , ( ³ ³) / ³ / 9 5 2 3 3000 3 De fato, se o material de ambas as esferas é o mesmo, a massa específica deve ser a mesma. Considerando uma aceleração da gravidade de 10 m/s², podemos avaliar o peso específico facilmente: γ ρ= = = =. ³ g kg m m s N m 3000 10 30 300002 3 Agora, calculando a densidade da esfera A: d m V g cm g cm kg mA A A = = = = 9 3 3 30003 3 3 Note que este resultado é igual à massa específica do material. Isto faz sentido pois ela é maciça. Por outro lado, ao calcularmos a densidade da esfera B, veremos que, apesar de ter massa e volume de material idênticos ao da esfera A, o fato dela ser oca faz com que sua densidade seja menor: d m V g cm g cm kg mB B B total = = = = , ,9 5 1 8 18003 3 3 Sabendo o que é viscosidade dinâmica/absoluta e a massa específica, podemos defi- nir a chamada viscosidade cinemática (n ), obtida pela razão entre a viscosidade absoluta e a massa específica: ν µ ρ = No SI, sua unidade é m²/s. Existe também outra unidade utilizada com frequência, o stoke (St), equivalente a cm²/s, sendo também frequentemente utilizado o centistoke (cSt). Este é um parâmetro importante para a mecânica dos fluidos, sendo também chamado de “difusividade de momento”. Por fim, conhecidas estas propriedades, é importante definirmos dois conceitos fundamentais para o restante de seu estudo: 76 Introdução à Mecânica dos Fluidos A seguir, abordaremos a técnica de análise dimen- sional, importante para compreender as variáveis e grandezas fisicamente. Demonstraremos o seu uso com as propriedades que você acabou de es- tudar neste tópico. Fluido ideal: aquele cuja viscosidade é nula, sem perdas de energia por atrito e sendo também in- compressível. Naturalmente, não existem fluidos ideais, mas às vezes este conceito é utilizado em problemas de mecânica dos fluidos. Escoamento incompressível: escoamento de fluido, em que seu volume não varia ao modificar a pressão. Em geral, os escoamentos podem ser considerados incompressíveis, pois ou o fluido é um líquido ou as velocidades em questão são baixas. Fonte: adaptado de Çengel e Cimbala (2015). 77UNIDADE 2 Muitos casos da engenharia na vida real não são viáveis de serem resolvidos de forma puramente analítica, seja porque não conhecemos ou não conseguimos resolver as equações ou, ainda, por- que a quantidade de variáveis é muito grande. Por isso, às vezes, a experimentação é o único méto- do que permite produzir modelos matemáticos capazes de descrever os fenômenos observados. Contudo, experimentos exigem tempo e dinheiro, sendo fundamental projetá-los de maneira en- xuta, em que seus resultados são aproveitados de forma eficiente. A análise dimensional surge para alcançar esta eficiência, racionalizando a pesquisa e reduzindo custos e tempo. Análise Dimensional 78 Introdução à Mecânica dos Fluidos Os três principais propósitos da análise dimensional são: • Desenvolver modelos matemáticos capazes de descrever o fenômeno em estudo. • Elaborar parâmetros adimensionais (sem dimensão) que facilitam a interpre- tação de resultados experimentais e o design de experimentos. • Prever semelhanças entre parâmetros e fenômenos. O objetivo aqui não é desenvolver matematicamente as estratégias de análise dimen- sional, mas fornecer formas de utilização prática deste assunto. Para isso, começaremos com o conceito de equações dimensionais. Equações Dimensionais Na descrição de fenômenos físicos, encontramos diversos tipos de grandezas diferentes, por exemplo: força, aceleração, velocidade, energia, tempo e espaço. Como você bem sabe, cada uma destas grandezas é dada por dimensões e unidades diferentes. Contudo, ao ana- lisá-las, podemos identificar que elas não são todas independentes entre si, uma vez que estão relacionadas por leis físicas e definições. Assim, podemos reduzir este conjunto de grandezas para apenas três grandezas independentes, a partir das quais podem ser obtidas todas as outras, sendo chamadas de base completa da Mecânica. Por exemplo, a grandeza “velocidade” nada mais é do que uma combinação das grandezas “espaço” e “tempo”. Afinal, se um corpo percorre 20 metros (espaço) em 5 segundos (tempo), podemos dizer que ele está se movendo a 4 metros por segundo (velocidade). Assim, a grandeza “velocidade” depende das grandezas independentes “espaço” e “tempo”. As grandezas utilizadas como independentes podem ser escolhidas conforme a conve- niência, mas, em geral, costumam ser: força, comprimento e tempo (base FLT). Esta será a base adotada ao longo deste material, mas fique atento, pois não é tão raro encontrar materiais que utilizem a base MLT: massa, comprimento e tempo. As demais grandezas que não fazem parte da sua base completa são denominadas grandezas derivadas. Tenha sua dose extra de conhecimento assistindo ao vídeo. Para acessar, use seu leitor de QR Code. 79UNIDADE 2 Estabelecidos estes conceitos, podemos então definir o que são as chamadas equações dimensionais. Equação dimensional: equação monômia (ou seja, de um único termo) que relaciona uma grandeza derivada com a base completa. Fonte: Brunetti (2008). Agora, vamos explorar o uso da análise dimensional por meio das propriedades dos fluidos que estudamos anteriormente. Escreva a equação dimensional da viscosidade cinemática na base FLT. Solução: Sabemos que a viscosidade cinemática é dada pela razão entre a viscosidade dinâmica e a massa específica: ν µ ρ = É necessário, inicialmente, analisar as dimensões destas duas propriedades. A massa específica, por definição, é a razão entre massa e volume: r = m V Note que estamos trabalhando com a base FLT: força, comprimento e tempo. Isso significa que a massa é uma de suas grandezas derivadas e deve ser escrita em função das grandezas fundamentais. A lei física que consegue expressar a massa nessa base é a segunda lei de Newton: F m a m F a � � �. 3 EXEMPLO 80 Introdução à Mecânica dos Fluidos A força (F) é uma de nossas grandezas fundamentais. Portanto, ao analisar sua di- mensão, temos que [F] = F. A aceleração (a), por outro lado, tem unidades de compri- mento dividido por tempo ao quadrado, como m/s², por exemplo. Suas dimensões são, portanto: [a] = L/T² = LT-2. Assim: m F a m F a F LT FT L FT L� � � � � �� � [ ] [ ] [ ] 2 2 2 1 De forma semelhante, sabemos da geometria que volume (V) tem dimensões de comprimento ao cubo, ou seja: [V] = L³. Combinando [m] e [V], temos para a massa específica: [ ] [ ] [ ] r � � � � �m V FT L L FT L 2 1 3 2 4 Resta agora verificar as dimensõesda viscosidade absoluta. Pela lei de Newton da viscosidade, temos: τ µ µ τ � � � dv dy dvdy Como definimos anteriormente, a tensão de cisalhamento é: t = F A t A força tangencial (Ft) é, evidentemente, uma força, portanto, uma grandeza funda- mental: [Ft] = F. Por sua vez, da geometria sabemos que a área (A) tem dimensões de comprimento ao quadrado: [A] = L². Combinando-as, temos, então: [ ] [ ] [ ] t � � � � F A F L FLt 2 2 O gradiente de velocidade dv dy� � também pode ser analisado da mesma maneira: são variações de velocidade (comprimento/tempo) por variações de posição (com- primento). Assim: dv dy v y LT L T� � � � � � � � � � �[ ] [ ] 1 1 81UNIDADE 2 Portanto, as dimensões da viscosidade absoluta são: [ ] [ ] µ τ � � �� � �� � � � � � dv dy FL T FL T 2 1 2 Finalmente, combinando a viscosidade absoluta e a massa específica, podemos es- crever a equação dimensional da viscosidade cinemática na base FLT, que é o que desejamos: [ ] [ ] [ ] ν µ ρ � � � � � � � �FL T FT L F L T L T 2 2 4 0 2 1 2 1 O nome viscosidade “cinemática” é devido ao fato de suas dimensões não envolve- rem força, apenas comprimento e tempo – as próprias grandezas fundamentais da cinemática, suficientes para relacionar todas as grandezas derivadas deste campo da física. Outros, como termodinâmica e eletromagnetismo, podem demandar mais do que três grandezas fundamentais. Números Adimensionais No estudo dos fenômenos de transporte, é comum nos depararmos com alguns nú- meros que, apesar de possuírem grande significado prático e físico, não apresentam unidades. São os chamados números adimensionais, que independem de todas as grandezas fundamentais e costumam ser indicados pela letra grega π. Para melhor ilustrar como eles funcionam, vamos começar por um dos números adimensionais mais fundamentais e conhecidos da mecânica dos fluidos: o número de Reynolds (Re). Re . . . = = ρ µ ν v D v D Em que ρ é a massa específica do fluido, v é a velocidade do escoamento, D é o diâmetro da tubulação, µ é a viscosidade absoluta do fluido e n (letra grega) é a viscosidade cinemática. 82 Introdução à Mecânica dos Fluidos Façamos, inicialmente, a análise dimensional desta equação. Nos exemplos ante- riores, verificamos que [ ]r � �FT L2 4 e [ ]� � �FL T2 . Além disso, v é uma velocidade e D é um comprimento, então: [ ]v LT� �1 e [ ]D L= . Combinando-os na forma do número de Reynolds, teremos: [Re] [ ] .[ ] . [ ] [ ] . . � � � � � � ρ µ v D FT L LT L FL T F T L 2 4 1 2 0 0 0 Como todos os expoentes são iguais a zero, conclui-se que o número de Reynolds independe das grandezas fundamentais força, comprimento e tempo. Assim, por definição, é um número adimensional. As utilidades do número de Reynolds serão mais bem discutidas nas unidades a seguir, mas já vale mencionar de antemão que seu principal uso é na caracterização de escoamentos de fluidos, como laminares ou turbulentos, sendo de grande impor- tância tanto na mecânica dos fluidos quanto nos processos de transferência de calor e massa. Dessa forma, o número de Reynolds demonstra que este comportamento do escoamento depende de um conjunto de grandezas e não delas individualmente. Afinal, de onde surgem os números adimensionais e como eles têm tamanha significância? Neste material, você será poupado das raízes matemáticas rigorosas e exaustivas que existem por trás destes números, como o chamado Teorema Pi de Buckingham, utilizado na concepção de um número adimensional para um certo fenômeno. Em vez disso, faremos uma apresentação qualitativa em que seja mais fácil compreender o papel dos números adimensionais. Brunetti (2008) sugere o seguinte exemplo: imagine que você deseja determinar a força F de resistência ao avanço de uma esfera lisa mergulhada em um fluido. Tal força costuma ser chamada de força de arrasto ou arraste. Experimentalmente, observa-se que esta força é uma função de variáveis, como o diâmetro ( D ) e a velocidade ( v ) da esfera, e a massa específica (r ) e viscosidade (µ ) do fluido. Isto é: F f D v= ( , , , )ρ µ D v F ρ, μ Figura 6 - Representação do experimento para estudo da força de arraste Fonte: adaptada de Brunetti (2008). 83UNIDADE 2 Considere, agora, que você gostaria de testar, pelo menos, cinco valores distintos para cada variável. Isto seria o equivalente a 625 pontos experimentais (D, v, ρ, m), ou seja, por assim dizer, o experimento seria realizado 625 vezes. Da sua vivência com disciplinas experimentais, você deve ter noção que isto demandaria um grande tempo e possivelmente muitos recursos. Este número iria ainda mais longe se fossem consideradas mais variáveis ou se tentássemos mais valores para cada uma. Além disso, há ainda outro problema fundamental: como você faria a representação gráfica de seus resultados? Se, por exemplo, inicialmente você optasse por fixar ρ e µ , você poderia construir um diagrama FxD com diferentes curvas para as diferentes velocidades, como representado na Figura 7. F vn v2 v1 D ρ1, μ1 Figura 7 - Diagrama FxD para diferentes velocidades com massa específica e viscosidade constantes Fonte: Brunetti (2008, p. 145). Ainda seguindo nosso exemplo, observe quantos dos seus resultados seriam con- templados por este diagrama: • 1 valor de massa específica ( )r . • 1 valor de viscosidade ( )µ . • 5 valores de diâmetro ( )D . • 5 valores de velocidade ( )v . Isto é, um único diagrama destes contemplaria apenas 25 dos seus 625 resultados: cinco curvas, uma para cada velocidade, cada uma com cinco pontos para cada um dos diâmetros testados. Isto significa que seriam necessários 25 diagramas diferentes para representar todos os resultados, basicamente formando uma matriz ρ (linhas) x µ (colunas), em que cada elemento da matriz é um diagrama. 84 Introdução à Mecânica dos Fluidos F vn v2 v1 D ρ1, μ1 ρ fixo μ variável F vn v2 v1 D ρ fixo μ variável ρ1, μn F vn v2 v1 D ρn , μ1 F vn v2 v1 D ρn, μn ρ variável μ fixo ρ variável μ fixo Figura 8 - Matriz de diagramas FxD para avaliação da força de arraste em diferentes diâmetros, velo- cidades, massas específicas e viscosidades Fonte: Brunetti (2008, p. 145). Como se isto tudo já não fosse exaustivo o bastante, reflita acerca de duas últimas perguntas: seria viável tentar identificar e descrever o comportamento desejado tendo que observar e analisar 625 diagramas diferentes simultaneamente? Se o número de variáveis ou de valores testados para cada uma fosse reduzido, visando simplificar o experimento e a análise, será que os resultados seriam realmente bons e suficientes para descrever um fenômeno físico rigorosamente? Vamos verificar como os números adimensionais podem simplificar este experi- mento. Considere os seguintes números: π ρ π ρ µ1 2 2 2 = = F v D e vD Note que π2 é justamente o número de Reynolds. Caso queira praticar, você pode fazer a análise dimensional de π1 para verificar se ele é mesmo adimensional. O im- portante neste momento é que você perceba que p1 e p2 , juntos, contemplam as quatro variáveis em estudo ( , , , )D v ρ µ . Agora, voltemos para o experimento. Se utilizarmos uma única esfera de diâme- tro D e um único fluido de massa específica r e viscosidade µ , pode-se variar a 85UNIDADE 2 velocidade v e medir a força F . Isto é, teremos pares ( , )F v para um trio ( , , )D ρ µ fixo. Note que, se você conhece todos estes cinco valores em cada ponto experimen- tal, você pode também avaliar p1 e p2 em cada um destes pontos. Assim, você po- deria organizar a seguinte tabela: Tabela 1 - Resultados para o experimento da força de arraste variando a velocidade Ponto F v D ρ � π1 π2 1 F1 v1 D r µ π ρ 1 1 1 2 1 2, = F v D π ρ µ2 1 1 , = v D 2 F2 v2 D r µ π ρ 1 2 2 2 2 2, = F v D π ρ µ2 2 2 , = v D 3 F3 v3 D r µ π ρ 1 3 3 2 3 2, = F v D π ρ µ2 3 3 , = v D 4 F4 v4 D r µ π ρ 1 4 4 2 4 2, = F v D π ρ µ2 4 4 , = v D 5 F5 v5 D r µ π ρ 1 5 5 2 5 2, = F v D π ρ µ2 5 5 ,= v D Fonte: os autores. Além disso, ambos os números adimensionais contêm a velocidade, que é o parâmetro que foi variado. Assim, é possível afirmar que para cada π1 existe um π2 correspon- dente, sendo possível construir o diagrama π1 x π2: ρv²D² 1,6 0,5 80 200 (80; 1,6) (200; 0,5) π1 = F ρvD π2 = µ Figura 9 - Diagrama hipotético π1 x π2 Fonte: os autores. Agora, é importante que você compreenda a seguinte afirmação: os pontos desta curva dependem do conjunto ( , , , , )ρ µv D F e não de seus valores individuais. Isto significa que o experimento foi genérico, e os resultados são válidos para outras 86 Introdução à Mecânica dos Fluidos esferas de diâmetros diferentes ou outros fluidos com massas específicas e viscosi- dades diferentes. Por exemplo, o ponto (200; 0,5), na Figura 9, é válido para qualquer conjunto ( , , , , )ρ µv D F , desde que: π ρ π ρ µ1 2 2 2 0 5 200= = = =F v D e vD, Dessa forma, a curva contempla todas as infinitas combinações de valores das cin- co variáveis, sendo capaz de descrever o fenômeno em estudo com versatilidade e economizando tempo e recursos. Diagramas como este são chamados de diagramas universais do fenômeno. Vamos fixar esta ideia por meio de um exemplo quantitativo. Você possui um óleo cuja massa específica é 930 kg/m³ e a viscosidade dinâmica é de 5,81x10-2 N.s/m². Se uma esfera de 1 centímetro de diâmetro se desloca neste fluido à velocidade de 0,5 m/s, qual a força de arrasto sobre ela? Considere o diagrama hipotético da Figura 9. Solução: Os parâmetros que conhecemos são suficientes para calcular o número adimensional π2: π ρ µ2 3 2 2 930 0 5 0 01 5 81 10 80� � � � vD kg m m s m N s m . , . , , . . Pelo diagrama da Figura 9, quando π2 = 80, temos que π1 = 1,6. Assim, é possível calcular F: π ρ π ρ1 2 2 1 2 2 2 21 6 930 0 5 0 01 3 7� � � � � � � � � � � � � F v D F v D kg m m s m. , . ³ . , . , , 22 10 2. � N Como você deve ter notado, os números adimensionais podem facilitar bastante o estudo de leis e fenômenos físicos. Assim como o número de Reynolds, alguns núme- ros que aparecem com certa frequência nos fenômenos de transporte recebem nomes próprios, como os números de Mach, Euler, Fourier, Biot, Nusselt, Prandtl, Schmidt, Sherwood e muitos outros. Uma vez que este material é de natureza introdutória, eles não serão todos abordados, mas caso você procure conhecê-los, certamente sua visão analítica acerca dos fenômenos de transporte ficará mais aguçada. 4 EXEMPLO 87 Você pode utilizar seu diário de bordo para a resolução. 1. Duas placas planas paralelas estão posicionadas a uma distância ε = 3 mm. O espaço entre elas é preenchido com um óleo de viscosidade cinemática de ν = 0,2 St e massa específica ρ = 850 kg/m³. A placa inferior fica imóvel, enquanto a placa superior passa a se mover horizontalmente com velocidade v0 = 3 m/s. Qual a tensão de cisalhamento agindo sobre o óleo? v0 = 3 m/s 3 mm 2. Uma película de óleo de 2,5 mm foi colocada sobre uma superfície plana inclinada em 45°. Em seguida, uma placa quadrada, com peso de 30 N e 1 metro de lado, foi colocada para deslizar sobre este plano. Observou-se que, ao longo de sua descida, a placa atingiu a velocidade de 4,2 m/s, que se manteve constante até o final do deslocamento. Qual a viscosidade dinâmica do óleo? 30 N 2,5 mm 45° 4,2 m/s 88 3. Sendo a pressão (p) em um ponto qualquer de um líquido em repouso dada pela equação: p g h= r . . Em que ρ é a massa específica, g é a aceleração da gravidade e h é a profundidade do ponto em relação à superfície livre do líquido. Escreva a equação dimensional da pressão na base FLT. 4. Deseja-se determinar a viscosidade cinemática do metanol a 20 °C. Sabe-se que, nesta temperatura, a massa específica deste fluido é de 788,4 kg/m³. Experimen- talmente, você observou que, quando uma esfera de 1 centímetro de diâmetro se desloca no metanol à velocidade de 1,49x10-2 m/s, a força de arrasto sobre a esfera era de 8,75x10-6 N. Dessa forma, qual a viscosidade cinemática do meta- nol? Considere, de maneira hipotética, que o diagrama da Figura 9 seja válido. 89 Mecânica dos Fluidos Autor: Franco Brunetti Editora: Pearson Prentice Hall Sinopse: livro que se destaca por tratar a mecânica dos fluidos de maneira bastante didática e prática, por vezes evitando explorar as raízes matemáticas dos conceitos em prol de desenvolver no leitor a habilidade de usá-los. O con- teúdo é organizado de maneira que o aluno se acostume mais facilmente com a disciplina, em grau crescente de dificuldade e realismo. Comentário: este livro é uma das principais referências utilizadas neste material. Nesta unidade, tratamos de forma compacta e introdutória os conteúdos dos capítulos 1 e 6. De forma semelhante, as unidades futuras contemplarão também os conteúdos dos capítulos 2 e 7. Recomenda-se que o aluno, futuramente, faça a leitura do capítulo 8, que trata de instrumentação para medidas das proprie- dades dos fluidos e escoamentos, mas que, para uma boa compreensão, exige alguns conceitos que ainda serão estudados nas próximas unidades. LIVRO 90 BRUNETTI, F. Mecânica dos Fluidos. 2. ed. São Paulo: Pearson Prentice Hall, 2008. ÇENGEL, Y. A.; CIMBALA, J. M. Mecânica dos fluidos: fundamentos e aplicações. 3. ed. Brasil: AMGH Edi- tora, 2015. WELTY, J. R.; RORRER, G. L.; FOSTER, D. G. Fundamentos de Transferência de Momento, de Calor e de Massa. 6. ed. São Paulo: Editora LTC – GEN (Grupo Editorial Nacional), 2017. REFERÊNCIAS ON-LINE ¹Em: https://www.britannica.com/biography/Isaac-Newton. Acesso em: 02 out. 2019. ²Em: https://blog.texaco.com.br/havoline/viscosidade-do-oleo/. Acesso em: 02 out. 2019. 91 1. O problema pode ser resolvido utilizando a lei de Newton da viscosidade: τ τ µdv dy cte dv dy � � �. Por conveniência, como a distância ε é relativamente pequena, é razoável considerar um gradiente de velocidade linear, conforme indicado na figura. Neste caso, podemos simplificar a expressão para a forma: τ µ ε = v0 Para utilizar esta equação, precisamos da viscosidade dinâmica do óleo, que pode ser calculada a partir da viscosidade cinemática e da massa específica, que foram fornecidas. Convertendo em unidades do SI: n � � � �0 2 1 1 10 1 2 10 4 2 5 2 , ² / ² .St cm s St m cm m s Calculando a viscosidade dinâmica: ν µ ρ µ ρ ν µ � � � � � �� � � . . . , . . , . .850 2 10 1 7 10 1 7 103 5 2 2 2 2 kg m m s kg m s N s m Então, a tensão de cisalhamento pode ser encontrada: t t � � � � � � � � � � � � � � 1 7 10 3 3 10 17 2 2 3 2 , . . / . / N s m m s m N m 92 2. A viscosidade dinâmica pode ser encontrada por meio da avaliação da tensão de cisalhamento que atua sobre a placa. O primeiro passo é realizar o balanço de forças, decompondo a força peso (P) em uma com- ponente normal (Pn) e uma tangente (Pt) à superfície inclinada, e indicando a força que impõe resistência ao movimento da placa (Ft): 45° Pn P Pt Ft Se a velocidade da placa estava constante, significa que a aceleração na direção do deslocamento era nula. Portanto, pela segunda lei de Newton (F = m.a), a força resultante (FR) nessa direção também será nula, ou seja: F P F P F R t t t t � � � � 0 Como conhecemos G, a geometria nos possibilita determinar Gt, pois o ângulo interno deve ser justamente a inclinação da superfície, 45°: sen P P P P sen P N sen P N t t t t q q � � � �� � . ( ) . ,30 45 21 21 Portanto: P F F Nt t t� � � 21 21, Agora, pela definição de tensão de cisalhamento (t ), temos: t = F A t 93 Observe que a força Ft está atuando sobre toda a superfície inferior da placa, a qual está em contato com a película de óleo. Dessa forma, como é uma placa quadrada de um metro de lado, a área em questão será: A l m m= = =2 2 21 1( ) Como conhecemos Ft e A, podemos determinar t : t = = = F A N m N m t 21 21 1 21 212 2 , , Em posse deste valor, podemos alcançar o objetivo da questão utilizandoa lei de Newton da viscosidade: τ µ= dv dy Precisamos, agora, determinar, de alguma maneira, o gradiente de velocidades. Note que a distância da placa à superfície (ε) é justamente a espessura da película: 2,5 mm. Por ser uma espessura pequena (afinal, é uma película), é razoável considerar um gradiente de velocidades linear. Assim: τ µ µ τ τ ε � � � � dv dy dy dv v . . 0 � � � � � � � � � � � �� � � �� � � � 21 21 2 5 10 4 2 1 26 10 2 3 2 2 , . , . , / , . . N m m m s N s m 3. Nos Exemplos 3 e 4 desta unidade, já foi demonstrado que as dimensões da massa específica na base FLT são: [ ] [ ] [ ] r � � � � �m V FT L L FT L 2 1 3 2 4 Além disso, sabemos que g é a aceleração da gravidade e, portanto, possui dimensões de comprimento por tempo ao quadrado, como apresentado no Exemplo 4: [ ]g L T LT� � �2 2 94 A última variável que resta, h, representa a profundidade do ponto. Logo, sua dimensão deve ser unicamente de comprimento: [ ]h L= Com estes três parâmetros, podemos fazer a análise dimensional da pressão conforme a equação enunciada: [ ] [ ] . [ ] . [ ] . .p g h FT L LT L FL� � �� � �r 2 4 2 2 De fato, este resultado faz sentido, pois significa “força por unidade de área”, sendo compatível com unidades típicas de pressão como N/m² (ou Pa). 4. Conhecemos a massa específica (ρ) do metanol, o diâmetro (D) da esfera utilizada, a velocidade (v) e a força de arrasto (F) observadas no experimento. Considerando válido o diagrama hipotético da Figura 9, dois números adimensionais são importantes: π ρ π ρ µ1 2 2 2 = = F v D e vD As informações que possuímos são suficientes para avaliar π1: π ρ 1 2 2 6 3 2 2 2 2 8 75 10 788 4 1 49 10 10 � � � � � � � � � � � � � � F v D N kg m m s m , . , . , . . 00 50, Pela Figura 9, temos que quando π1 = 0,5, π2 = 200. Conhecendo este valor, é possível utilizar a equação de π2 para determinar a viscosidade absoluta do metanol: π ρ µ µ ρ π2 2 3 2 4 788 4 1 49 10 0 01 200 5 87 10� � � � � � �vD vD kg m m s m kg, . , . . , , . mm s kg m s N kg m s N s m . , . . . , . . µ � �� � �5 87 10 1 1 5 87 104 2 4 Cuidado, o exercício ainda não acabou! Foi solicitada a viscosidade cinemática e não a absoluta (dinâmica). Assim, para concluir a questão, basta dividir este último resultado pela massa específica: ν µ ρ � � � � � 5 87 10 788 4 7 45 10 4 2 3 7 2, . . , , . N s m kg m m s 95 96 PLANO DE ESTUDOS OBJETIVOS DE APRENDIZAGEM • Resgatar o estudo da pressão por meio da sua definição, do Teorema de Stevin, da Lei de Pascal e do conceito de carga de pressão. • Determinar os diferentes referenciais físicos existentes para a medição da pressão e as principais unidades de medida empregadas. • Apresentar os principais instrumentos empregados para a medição de pressões em diferentes situações. • Revisar a definição de empuxo. Pressão Escalas e Unidades de Pressão Empuxo Medidores de Pressão Dr. Rodrigo Orgeda Esp. Henryck Cesar Massao Hungaro Yoshi Pressão e Estática dos Fluidos Pressão Se você está cursando uma disciplina de fenô- menos de transporte, é de se esperar que esteja familiarizado com algumas definições básicas de física, por exemplo pressão. Por via das dúvidas, vamos relembrar este conceito, que é um dos mais importantes para a mecânica dos fluidos: pressão é a força normal exercida por um fluido por uni- dade de área. Repare que estamos falando apenas de líquidos e gases – geralmente, a “pressão” em corpos rígidos é chamada de tensão mecânica. 99UNIDADE 3 Sendo FN a força normal que atua numa superfície de área A , a pressão p é avaliada pela equação: p F A N= Uma vez que a pressão é definida como força sobre área, sua dimensão é de força por comprimento ao quadrado. No SI, define-se então a unidade de medida Pascal (Pa): [ ] [ ] [ ] ² p F A F L N m PaN� � � �2 Assim, imagine dois recipientes, submetidos à mesma força, mas de dimensões dis- tintas. p1 A1 = 5 cm² A2 = 2 cm² (a) (b) p2 10 N 10 N Figura 1 - Recipientes distintos submetidos a forças semelhantes Fonte: adaptada de Brunetti (2008). Evidentemente, a pressão em cada recipiente será diferente: p F A N cm N m N m Pa1 1 1 2 4 2 2 10 5 10 5 10 20000 20000� � � � ��. p F A N cm N m N m Pa2 2 2 2 4 2 2 10 2 10 2 10 50000 50000� � � � ��. É importante notar que, enquanto no capítulo anterior nos interessamos pelas forças tangenciais (para definir a tensão de cisalhamento), neste capítulo o nosso foco será nas forças normais sobre o fluido. Por isso, será importante sempre ter em mente o chamado “plano horizontal de referência” (PHR) que, basicamente, é um plano horizontal arbitrário que marca a altura z = 0 de um sistema. Veja a figura a seguir: 100 Pressão e Estática dos Fluidos B(1) (0) (2) (3) 10 m 2 m 1 m PHR Figura 2 - Sistema de tubulações indicando o plano horizontal de referência Fonte: adaptada de Brunetti (2008). Para o PHR identificado na figura, teremos: • Altura da cota (0): z0 = 0 m. • Altura da cota (1): z1 = 2 m. • Altura da cota (2): z2 = 2 m + 10 m = 12 m. • Altura da cota (3): z3 = 2 m + 10 m + 1 m = 13 m. Esta será frequentemente uma de inúmeras considerações e hipóteses que serão adotadas a partir desta unidade para que seja possível analisar e solucionar os pro- blemas. Ao longo das unidades e dos exemplos trabalhados, você verá que estas são ferramentas práticas e eficientes. Lei de Pascal A unidade de pressão no SI descrita anteriormente, Pascal (Pa), é uma homenagem ao matemático e físico francês Blaise Pascal (1623–1662). De fato, uma de suas prin- cipais contribuições à física foi a chamada Lei de Pascal, enunciada da seguinte forma: a pressão aplicada num ponto de um fluido confinado em repouso transmite-se integralmente a todos os pontos do fluido. Isto é uma consequência do fato de que a pressão em um fluido permanece constante na direção horizontal. Para ilustrar este fenômeno, observe o seguinte esquema: 101UNIDADE 3 (a) (b) 10 N A = 5 m² 1 2 3 4 1 2 3 4 Figura 3 - Experimento evidenciando a Lei de Pascal Fonte: adaptada de Brunetti (2008). Em (a), o recipiente apresenta uma superfície livre à atmosfera. Suponha que as pressões em cada um dos pontos seja: p N m p N m p N m p N m1 2 2 2 3 2 4 22 2 4 5= = = =; ; ; Em (b), o fluido no recipiente é então submetido a uma força, que corresponde à pressão de: p F A N m N m = = = 10 5 22 2 Assim, as pressões nos pontos indicados passam a ser incrementadas deste valor: p1 = 4 N/m²; p2 = 4 N/m²; p3 = 6 N/m²; p4 = 7 N/m² Por fim, note que em ambos os casos as pressões nos pontos 1 e 2, aparentemente no mesmo nível (linha horizontal), são iguais. Além desta importante definição para a estática dos fluidos, Pascal também ob- servou que, uma vez que a pressão aplicada a um fluido é proporcional à superfície (área), seria possível conectar cilindros de áreas distintas, de modo que o menor poderia ser utilizado para exercer uma força superior no maior. Assim, um objeto pesado poderia ser levantado empregando uma força inferior. O exemplo a seguir ilustra este mecanismo. 102 Pressão e Estática dos Fluidos Em uma oficina, é necessário fazer reparos em um carro de uma tonelada. A manuten- ção deve ser feita na parte inferior do veículo e, para facilitar o trabalho do mecânico, deseja-se elevar o carro. Uma ferramenta que pode ser empregada para esta tarefa é o chamado elevador hidráulico, cujo funcionamento é baseado justamente na lei de Pascal. Supondo que, para levantar o veículo em questão, uma pessoa aplica uma força de 1000 N no macaco hidráulico, cujo pistão menor apresenta área de 10 cm², qual é a área do pistão maior? Solução: Podemos ilustrar o problema da seguinte maneira: A1 p1 F1 = p1A1 F2 = p2A2 A2 p21 2 Figura 4 - Representação esquemática de um elevador hidráulico Fonte: Çengel e Cimbala (2015, p. 61). É razoável considerar que os pistões estão no mesmo nível, pois o efeito de pequenasdiferenças de altura é desprezível, especialmente em grandes pressões. Assim, temos que: p p1 2= Pela definição de pressão, podemos escrever: F A F A 1 1 2 2 = 1 EXEMPLO 103UNIDADE 3 Conhecemos três destes quatro parâmetros: F1 é a força aplicada pela pessoa, A1 é a área do pistão menor, e F2 deve ser, pelo menos, o peso do carro, para que o pistão seja capaz de movimentá-lo. Assim, considerando uma aceleração da gravidade de 10 m/s²: 1000 10 1000 10 100 100002 2 2 2 2 N cm kg m s A N cm N A � � � . A cm2 2100= A razão entre áreas A2/A1 é chamada de ganho mecânico ideal do elevador hidráulico. Esta denominação também pode ser entendida como: a razão entre a força exercida por um mecanismo e a força aplicada sobre ele. Neste caso, por exemplo, A2/A1 = 10, de modo que um objeto de 10000 N de peso pode ser levantado com uma força de apenas 1000 N. Teorema de Stevin e Carga de Pressão Outra importante ferramenta da estática dos fluidos que você já pode ter estudado em suas aulas de física é o Teorema de Stevin. O matemático holandês Simon Stevin (1548–1620) observou que, enquanto a pressão em um fluido em repouso é inde- pendente da forma ou seção transversal do recipiente (sendo também constante na direção horizontal), ela varia com a distância vertical. Stevin publicou este princípio em 1586, e seu teorema pode ser enunciado da seguinte forma: a diferença de pressão entre dois pontos de um fluido em repouso é igual ao produto do peso específico do fluido pela diferença de cotas dos dois pontos. Este teorema pode ser escrito como a seguinte equação, sendo z as distâncias verticais em relação ao plano horizontal de referência e g o peso específico: D D Dp z g z= =γ ρ. ( . ) . Note que você talvez já esteja acostumado, de suas aulas de física, a utilizar esta relação na seguinte forma: p g h= r . . Por exemplo, sendo um recipiente aberto para a atmosfera com certo volume de fluido em repouso, pode-se esboçar o seguinte esquema: 104 Pressão e Estática dos Fluidos p1 = patm p2 = p + pghatm 1 2 h Figura 5 - Representação verificando o Teorema de Stevin Fonte: Çengel e Cimbala (2015, p. 70). Se utilizarmos a equação do Teorema de Stevin à risca, teremos: D D Dp z g z p p g z z p p g h p p � � �� � � �� � �� � � �� � �� γ ρ ρ ρ . ( . ) . . . . . 2 1 2 1 2 1 2 1 0 �� � ρ . .g h De fato, o resultado faz sentido: enquanto a pressão na superfície do fluido é somente a pressão atmosférica, no ponto 2 ela é acrescida do peso da coluna de fluido. Você pode comparar esta situação com uma piscina, por exemplo: ao mergulhar, a água que está acima de você faz peso sobre o seu corpo. Dessa forma, quanto mais fundo você mergulhar, maior é a pressão sobre o seu corpo, pois maior será a quantidade de água sobre ele. É por isto que, às vezes, encontramos dispositivos, tais como relógios, que são ditos “à prova d’água” ou “resistentes a água” até uma determinada pressão ou profundidade. Observe que o plano horizontal de referência pode ser entendido como a super- fície do fluido. Neste caso, você poderia argumentar que a cota “h” teria um valor negativo, afinal, estaria abaixo do “zero” de referência. Contudo, se este valor fosse negativo, a equação indicaria que a pressão no ponto 2 seria menor que no ponto 1, o que sabemos não ser verdade. Assim, para garantir resultados corretos, é im- portante sempre analisar se o valor obtido faz sentido. 105UNIDADE 3 É também comum encontrar a pressão sendo descrita por um parâmetro chamado de “carga de pressão”, dado em unidade de comprimento. De forma simples, você pode entender que a carga de pressão é o parâmetro h em: p g h h h p g p � � � � �ρ γ ρ γ . . . . Evidentemente, para que o conceito de carga de pressão faça sentido, deve-se co- nhecer a massa específica (ou o peso específico) do fluido em questão. Entretanto, por que este parâmetro é importante a ponto de ser conveniente dar um nome mais particular a ele? Imagine uma tubulação pela qual escoa um líquido de peso específico γ sob uma pressão p (Figura 6a). Agora, considere que seja feito um orifício na parte superior deste tubo, ao qual é ligado uma nova tubulação. Se a pressão p for maior que a pressão externa, parte do líquido vai subir por esta nova tubulação até alcançar uma altura h (veja a Figura 6b). pγ (a) pγ (b) h Figura 6 - Representação esquemática da carga de pressão em tubulações Fonte: Brunetti (2008, p. 23). Para que esta coluna de líquido fique em repouso, ela deverá equilibrar justamente a pressão P da tubulação, ou seja: p htubo líquido coluna= g . Isto é, a altura h é a própria carga de pressão da pressão p. Com isso, você pode con- cluir que uma pressão qualquer p pode ser associada a uma altura h de fluido, dada por p g , chamada de carga de pressão. 106 Pressão e Estática dos Fluidos Agora que conhecemos os principais conceitos e definições relacionados à pressão, fundamentais para o estudo da estática dos fluidos, é hora de aprimorar suas habilidades técnicas, compreen- dendo como a pressão é medida e quais as prin- cipais unidades que você poderá encontrar tanto em outros livros quanto em sua vida profissional. Escalas de Pressão Um ponto que frequentemente gera bastante con- fusão é compreender que há duas referências para as medidas de pressão, classificando-as como: pres- sões absolutas ou pressões manométricas (também chamadas de pressões efetivas). Para facilitar a com- preensão, primeiro entenda a seguinte afirmação: a maioria dos aparelhos de medição de pressão (os chamados “manômetros”) são calibrados para regis- trar valores nulos (zero) quando abertos à atmosfera. Em outras palavras, eles adotam a pressão atmos- férica como seu valor nulo de referência. Assim, as pressões medidas nestes aparelhos são as chamadas pressões manométricas. Escalas e Unidades de Pressão 107UNIDADE 3 Por outro lado, você sabe que, na prática, a pressão atmosférica não é nula, afinal de contas, a pressão ambiente varia até mesmo de acordo com a altitude. Então, para que as medições façam sentido, o valor nulo de referência adotado é o vácuo (ou zero absoluto), e por isso são chamadas de pressões absolutas. Em resumo, de forma simples: se é medida em relação ao vácuo, é pressão absoluta; se é medida em relação à pressão atmosférica, é pressão manométrica. Se a pressão medida é menor que a atmosférica, é comum dizer que existe um “vácuo”, apesar de que o termo mais apropriado seria “depressão”. Estas definições são demonstradas no esquema a seguir, para duas pressões hipotéticas p1 e p2, em que pabs é a pressão abso- luta, pman é a pressão manométrica, patm é a pressão atmosférica e pvácuo é a depressão: p2 pman patmpatm patm pabs pabs p = 0abs p p1 vácuo Vácuo Vácuo absolutoabsoluto Figura 7 - Esquema indicando as diferenças entre as escalas de pressão Fonte: adaptada de Çengel e Cimbala (2015). Acompanhando pela Figura 7, note que podemos escrever as seguintes equações. Para p1: p p pvácuo atm abs� � Para p2: p p pman abs atm� � Observe, ainda, que as pressões de vácuo são, basicamente, pressões manométricas negativas. Assim, apesar de os parâmetros das equações anteriores serem quantidades positivas, é possível falar sobre pressões negativas. Por exemplo, imagine que deseja- mos calcular a pressão manométrica de p1. Como pabs,1 < patm, temos: p p pman abs atm, ,1 1 0� � � 108 Pressão e Estática dos Fluidos Logo, se multiplicarmos esta equação por (-1), o valor será positivo: � � � � �p p pman abs atm, ,1 1 0 E, se compararmos com a equação da pressão de vácuo em p1 apresentada anterior- mente, podemos observar que: p p p pvácuo man atm abs, , ,1 1 1 0� � � � � Dito isto, é importante que você entenda que, para ser capaz de compreender e tra- balhar com pressão na vida profissional, em vez de tentar decorar equações lógicas, é muito mais valioso e eficiente que você compreenda os referenciais utilizados nas duas escalas. Mesmoque estas ideias ainda estejam nebulosas, um pouco de prática certamente fará com que você se acostume rapidamente. Unidades de Pressão Antes de praticarmos, vamos apenas tratar ainda de mais um tópico importante: unidades de pressão. Como já mencionado, no SI, a unidade é o N/m², equivalente ao Pascal (Pa). Além disso, sabemos que as pressões podem também ser descritas como cargas de pressão, as quais apresentam unidades de comprimento. Vejamos algumas das principais unidades empregadas e seus fatores de conversão: a) Unidades de Pressão: Essencialmente, são aquelas baseadas na razão força/área, apresentando dimensão de força por comprimento ao quadrado, como: N/m² = Pa, kgf/cm², kgf/m² e lb/pol² (equivalente ao inglês psi, pounds per square inches). Os fatores de conversão são: 1 kgf/cm² = 104 kgf/m² = 9,8.104 Pa = 14,2 psi b) Unidades de Carga de Pressão: Como já discutimos, são aquelas que correspondem à altura de uma coluna de determinado fluido, sendo os mais comuns o mercúrio (por ser um líquido pesado) e a água. Como já vimos, estas unidades são convenientes, pois nos permitem dizer imediatamente a que altura uma certa pressão é capaz de elevar um fluido. As uni- dades mais típicas são: mmHg (milímetros de coluna de mercúrio) e mca (metros de coluna d’água). Para seu uso, é importante saber que: g g água Hg N m N m = = 10000 136000 3 3 / / 109UNIDADE 3 Os fatores de conversão, com relação ao Pascal, são: 101325 Pa = 760 mmHg = 10,33 mca Por fim, vale mencionar duas exceções: a unidade atmosfera (atm), que por de- finição é a pressão capaz de elevar uma coluna de 760 mm de mercúrio, e o bar, que equivale a, exatamente, 100 000 Pascals (105 Pa). Com isso, temos os seguintes fatores de conversão: 1 atm = 760 mmHg = 1,01 bar = 101325 Pa = 10332,27 kgf/m² = 14,7 psi = 10,33 mca Vamos, agora, trabalhar alguns exemplos para que você se familiarize com as escalas e unidades de pressão que trabalhamos neste tópico. Um manômetro indica a pressão de 7 psi. Ainda na escala manométrica, converta este valor para as unidades mmHg e atm. Depois, converta este valor para as unidades Pa e mca, mas na escala absoluta. Considere a pressão atmosférica patm = 101325 Pa. Solução: A pressão indicada pelo manômetro está na escala manométrica, como o nome sugere. Assim, para atender à primeira parte do problema, basta utilizar os fatores de conversão conhecidos. Primeiramente, convertendo de psi para mmHg: 7 760 14 7 361 91psi mmHg psi mmHg , ,= Depois, convertendo para atm: 7 1 14 7 0 48psi atm psi atm , ,= Em seguida, devemos fazer novas conversões, mas agora na escala absoluta. Para isso, devemos lembrar que a pressão absoluta pode ser avaliada por: p p pabs man atm� � 2 EXEMPLO 110 Pressão e Estática dos Fluidos Naturalmente, para que a soma faça sentido, a pressão manométrica e a pressão atmosférica devem estar nas mesmas unidades. Como a primeira unidade pedida é o Pa – a mesma unidade da pressão atmosférica dada – é conveniente converter a pressão manométrica: 7 101325 14 7 48250psi Pa psi Pa , = Agora, passando para a escala absoluta: p Pa Pa Paabs � � �48250 101325 149575 Fazendo o mesmo processo, mas agora para mca: 7 10 33 14 7 4 92psi mca psi mca, , ,= Convertendo a pressão atmosférica para mca: 101325 10 33 101325 10 33Pa mca Pa mca, ,= E, então, na escala absoluta: p mca mca mcaabs � � �4 92 10 33 15 25, , , É importante notar que poderíamos ter convertido diretamente o valor da pressão absoluta de Pa para mca: 149575 10 33 101325 15 25Pa mca Pa mca, ,= Como os fatores de conversão estão listados com até 2 decimais, alguns dos resultados podem variar ligeiramente em relação aos valores reais. 111UNIDADE 3 Vejamos, agora, alguns dos principais instrumen- tos capazes de medir pressões. Como estaremos mais focados em compreender os diferentes princípios de funcionamento, é natural que aqui eles pareçam de grande simplicidade, enquan- to instrumentos comerciais poderão apresentar tecnologias mais sofisticadas e complexas, mas pautadas nestes mesmos princípios. Barômetro O barômetro é um dispositivo utilizado para me- dir a pressão atmosférica – por causa disto, ela também é chamada, às vezes, de pressão baro- métrica. Tal instrumento consiste basicamente em um tubo cheio de líquido invertido em uma vasilha cheia do mesmo líquido e aberta à atmos- fera (veja na Figura 8). Medidores de Pressão 112 Pressão e Estática dos Fluidos h γ vácuo 0 Patm A Figura 8 - Representação de um barômetro básico Fonte: Brunetti (2008, p. 26). Observe que parte do conteúdo do tubo permanecerá nele, na forma de uma coluna de líquido. Talvez isto não pareça intuitivo, mas podemos dar uma explicação física com base nos tópicos que estudamos durante esta unidade. Primeiro, note que enquanto a vasilha está aberta à atmosfera, o tubo está fechado. Isto significa que a pressão atmosférica atua na superfície do líquido da vasilha, mas não atua na superfície da coluna de líquido no tubo. Em segundo lugar, lembre-se que, pelo Teorema de Stevin, a pressão no ponto 0 deve ser igual à pressão no ponto A. Isto é: p pA0 = Agora, note que a pressão em A é a própria pressão atmosférica, enquanto a pressão em 0 é justamente a pressão causada pela coluna de líquido no tubo. Assim: p h p p p hlíq A atm atm líq0 � � � �g g. ; . Em posse de um barômetro, se conhecermos o peso específico γ do líquido empre- gado, podemos medir a altura h da coluna de líquido no tubo, e com isto calcular a pressão atmosférica. Geralmente, o líquido utilizado é o mercúrio, por apresentar peso específico elevado, de modo que a altura da coluna possa ser menor, facilitando a construção do dispositivo. A criação do barômetro é atribuída ao italiano Evangelista Torricelli (1608–1647) e, por isso, a unidade mmHg é também chamada de “torr”. Manômetro de Bourdon Outro dispositivo mecânico utilizado para a medição de pressões são os chamados manômetros de Bourdon, denominados assim em referência ao engenheiro e inventor francês Eugene Bourdon (1808–1884). Seu funcionamento é baseado na deformação 113UNIDADE 3 de um tubo de metal oco quando submetido à pressão medida. A extremidade do tubo, então, movimenta-se, ligada a um sistema de alavancas e um ponteiro, que indica a pressão analogicamente em um mostrador, devidamente calibrado. Fluido à pressão p Tomada de pressão Sistema de ampliaçãoTubo metálico Figura 9 - Representação esquemática do funcionamento de um manômetro de Bourdon Fonte: Brunetti (2008, p. 26). Piezômetro (Coluna Piezométrica) O piezômetro é um instrumento que mede a carga de pressão, sendo de construção muito simples: apenas um tubo de vidro ligado ao reservatório que se deseja medir a pressão. Dessa forma, como no barômetro, é necessário conhecer o peso específico do fluido. Manômetro de BourdonFigura 10 - Manômetro de Bourdon e diferentes tipos de tubos empregados 114 Pressão e Estática dos Fluidos h = p/γ Figura 11 - Representação esquemática de um piezômetro Fonte: Brunetti (2008, p. 27). Seu uso, contudo, tem algumas limitações. Por exemplo, ele só funciona para pressões manométricas positivas: se houver uma depressão, o ar entra no reservatório, em vez de uma coluna de líquido subir. Em segundo lugar, não funciona para gases, pois obviamente eles escapariam sem formar uma coluna. Por fim, ele é útil somente para pequenas pressões: se forem muito elevadas, as colunas podem ser muito grandes e, diferentemente do barômetro, não é possível simplesmente escolher usar o mercúrio. Tubo em U É possível fazer uma pequena alteração para corrigir o problema do piezômetro de não conseguir medir depressões. Tais dispositivos são então os chamados tubos em U, cujo nome remete à sua forma. Neles, utiliza-se um fluido manométrico: um segundo fluido, cujas propriedades são melhores para utilização em manômetros – em geral, escolhe-se o mercúrio. Veja a Figura 12: 1 2 hGás Figura 12 – Representaçãoesquemática de um manômetro de tubo em U Fonte: Çengel e Cimbala (2015, p. 61). O princípio é o mesmo do piezômetro: mede-a carga de pressão. Outra vantagem deste tipo de manômetro é a possibilidade de medir a pressão de gases, pois o fluido manométrico impede que eles escapem. Vejamos um exemplo. 115UNIDADE 3 Deseja-se avaliar a pressão em um reservatório de gás. Para isto, um manômetro de tubo em U é acoplado, cujo fluido manométrico é o mercúrio (γHg = 1,36.10⁵ N/m³). Se a pressão atmosférica no local é de 90 kPa, e considerando o esquema a seguir, determine a pressão desejada nas escalas absoluta e manométrica. A B PHR h = 65 cm p = 90 kPaatm p = ? Solução: Sabemos que, por estarem na mesma linha horizontal do mesmo fluido, as pressões nos pontos A e B são iguais. Podemos desprezar a pequena coluna de gás acima do ponto A, o que é razoável, pois o peso específico de gases é pequeno. Assim, a única pressão que precisamos considerar é a do próprio reservatório. No ponto B, como o tubo está aberto para atmosfera, temos a ação da pressão atmosférica e do peso da coluna de fluido manométrico. Colocando estas informações em equações, temos: p p p p p p h p p p p h A B atm coluna atm Hg A B atm Hg � � � � � � � � � g g . . Com isso, fica fácil resolver o problema: p kPa N m m p Pa � � � � � � � � � 90 1 36 10 0 65 178400 5 3, . . ( , ) Repare que esta é a pressão do reservatório na escala absoluta. Para verificar na escala manométrica, basta desconsiderar a pressão atmosférica: p N m m p Pa � � � � � � � � 1 36 10 0 65 88400 5 3, . . ( , ) 3 EXEMPLO 116 Pressão e Estática dos Fluidos Os manômetros de tubo em U podem também ter uma configuração diferente: os chamados manômetros diferenciais, os quais são ligados a dois reservatórios, em vez de serem abertos para a atmosfera. No tópico a seguir, veremos como abordar estes manômetros matematicamente. A B A B Figura 13 - Representação esquemática dos manômetros diferenciais Fonte: Brunetti (2008, p. 28). Equação Manométrica Denomina-se equação manométrica aquela que permite determinar a pressão de um reservatório ou a diferença de pressão entre dois reservatórios. Aqui, estaremos particularmente interessados no seu estudo aplicado aos manômetros diferenciais. Considere a figura a seguir: h1 h2 h3 h4 γApA pB γM γB Figura 14 - Esquema genérico para a elaboração da equação manométrica de manômetros diferenciais Fonte: Brunetti (2008, p. 28). Considerando o que você estudou sobre o Teorema de Stevin e a Lei de Pascal, ire- mos avaliar a pressão na parte mais baixa do tubo (indicado pela linha sublinhada inferior), do lado esquerdo ( pe ) e do lado direito ( pd ). No lado esquerdo, temos que considerar: a pressão no reservatório A ( pA ), a pressão causada pela coluna de fluido A (cuja altura é h h1 2− ) e a pressão causada pela coluna de fluido manométrico (altura h2 ). Assim, podemos escrever a equação: 117UNIDADE 3 p p h h he A A M� � �� � �g g. .1 2 2 De forma semelhante, para o lado direito, temos: a pressão no reservatório B ( pB ), a pressão causada pela coluna de fluido B (de altura h h4 3− ) e a pressão da coluna de fluido manométrico (altura h3 ). Dessa forma: p p h h hd B B M� � �� � �g g. .4 3 3 Se o sistema está em equilíbrio, por estarem no mesmo nível (direção horizontal), sabemos que ambas pressões devem ser iguais. Portanto: p h h h p h h hA A M B B M� �� � � � � �� � �g g g g. . . .1 2 2 4 3 3 Agora, vamos analisar como esta equação pode ser utilizada. Primeiramente, é de se esperar que você conheça os pesos específicos dos três fluidos. Em segundo lugar, se você está olhando para o manômetro, deve ser capaz de medir as alturas de cada coluna. Com isso, os únicos dois parâmetros que você provavelmente não conhece são as pressões nos reservatórios ( pA e pB ). Dessa forma, como mencionado no início, você pode utilizar a equação manométrica para avaliar a diferença de pressão entre os reservatórios: p p h h h h h hA B B M A� � �� � � � � �� �g g g. . ( ) .4 3 3 2 1 2 E, evidentemente, se você já conhecer a pressão de um dos reservatórios, será possível determinar a pressão do outro. Existe também uma regra prática que pode facilitar seu uso da equação manométrica. Observe, na equação anterior, que cada peso específico sempre multiplica a altura da sua respectiva coluna. Agora, considere a figura a seguir: Tenha sua dose extra de conhecimento assistindo ao vídeo. Para acessar, use seu leitor de QR Code. 118 Pressão e Estática dos Fluidos h1 h2 h3 h4 h6 h5 γ1 γ4 γ6 γ3 γ2 γ5 pA pB Figura 15 - Representação de um manômetro genérico Fonte: Brunetti (2008, p. 29). É importante que as alturas sejam marcadas sempre na interface entre dois fluidos do manômetro. A regra funciona da seguinte forma: começando pela esquerda, so- ma-se à pressão pA as pressões das colunas descendentes e subtrai-se as pressões das colunas ascendentes. Isto é, “tudo que está descendo soma, e tudo que está subindo subtrai”. Veja o esquema anterior simplificado da seguinte maneira: h1 h2 h3 h4 h6 h5 pA pB + + + – – – Figura 16 - Representação simplificada de um manômetro Fonte: Brunetti (2008, p. 29). Aplicando a regra, podemos escrever: p h h h h h h pA B� � � � � � �g g g g g g1 1 2 2 3 3 4 4 5 5 6 6. . . . . . A escolha de usar esta regra ou de igualar as pressões do lado esquerdo e direito pode ficar a seu critério. Vejamos alguns exemplos para colocar estes conceitos em prática. 119UNIDADE 3 Considere o manômetro diferencial esquematizado a seguir. O fluido A é óleo, o fluido B é água e o fluido manométrico é mercúrio. Calcule a diferença de pressão entre os reservatórios, sabendo que h1 = 15 cm, h2 = 40 cm, h3 = 40 cm, h4 = 10 cm. Dados: γH₂O = 10000 N/m³; γHg = 136000 N/m³; γóleo = 8000 N/m³. h1 h2 h3 h4 A B Solução: Como estamos comparando as pressões entre dois reservatórios por meio de um manômetro diferencial, utilizaremos a equação manométrica para responder ao que é solicitado. Tendo como referência o nível mais baixo da tubulação (indicada na figura pela linha pontilhada inferior de h4), podemos escrever as seguintes equações para o lado esquerdo e o lado direito do tubo: p p h h h p p h h e A óleo Hg d B H O Hg � � � �� � � � � g g g g . . . . 1 2 4 3 42 Como você bem sabe, se o sistema está em equilíbrio, ambas pressões devem ser iguais. Igualando-as e remanejando a equação para que a diferença ( p pA B− ) fique isolada, temos: p p h h h h h p p h A B H O Hg óleo Hg A B H O ól � � � � � �� � � � � g g g g g g 2 2 3 4 1 2 4 3 . . . . . eeo Hgh h. .1 2� g Uma vez que todos os parâmetros do membro direito da equação são conhecidos, basta substituir os valores e calcular a diferença: p p N m m N m m N m m p p A B A B � � � � � � � 10000 0 40 8000 0 15 136000 0 40 5 3 3 3. , . , . , 11600 51 6Pa kPa� � , Então, o problema está resolvido: a pressão no reservatório A é 51,6 kPa menor do que a pressão no reservatório B. 4 EXEMPLO 120 Pressão e Estática dos Fluidos Poderíamos também aplicar a regra da equação manométrica para chegar à mesma equação facilmente: p h h h p p p h h h A óleo Hg H O B A B H O óleo Hg � � � � � � � � g g g g g g . . . . . . 1 2 3 3 1 2 2 2 Considerando o esquema da figura a seguir, determine a pressão indicada pelo manômetro. Em posse deste valor, calcule a força que age na parede superior interna do reservatório. pM patmγ0 = 8.000 N/m³ Área do topo = 20 m² γ = 10.000 N/m³ H2O ArAr Óleo Água 10 cm 20 cm 35 cm 30° 110 cm Solução: Apesar de talvez não parecer intuitivo, o problema pode ser solucionado utilizando a equação manométrica. É conveniente adotar a linha pontilhada como referência (afinal, é com relação a ela que conhecemos as dimensões do sistema). Do lado es- querdo, teremos: p p h h he M Ar Ar o o H O H O� � � �g g g. . .2 2 Do lado direito: p p L send atm H O� � g 2 30. . º Mais uma vez, comovocê já deve estar acostumado, por estarem no mesmo nível, a pressão do lado esquerdo deve ser igual à do lado direito. Com isso, podemos isolar o parâmetro que desejamos descobrir. p h h h P L sen p p M Ar Ar o o H O H O atm H O M atm H O � � � � � � � g g g g g . . . . . º . 2 2 2 2 30 LL sen h h hAr Ar o o H O H O. º . . .30 2 2� � �g g g Veja que também poderíamos ter usado a regra da equação manométrica neste caso: p h h h L sen pM Ar Ar o o H O H O H O atm� � � � � �g g g g. . . . .2 2 2 30 5 EXEMPLO 121UNIDADE 3 Agora, lembre-se que, já mencionamos que para solucionar problemas de fenômenos de transporte, é comum termos de fazer algumas considerações. Aqui, faremos duas: 1. O peso específico do ar é tão pequeno que podemos desprezar a pressão causada pela sua coluna. 2. O manômetro mede pressão manométrica e, portanto, está calibrado para indicar 0 para a pressão atmosférica. Assim, pode-se anular este termo na equação. Com essas considerações, podemos simplificar a equação para a forma: p L sen h hM H O o o H O H O� � �g g g2 2 230. . º . . Agora, podemos substituir os valores (pois conhecemos todos) e chegar ao resultado procurado: p N m m N m m N mM � � � � � � � � � � � � � � � � � � �10000 1 1 0 5 8000 0 20 100003 3. , . , . , 33 2 0 35 400 � � � � � � � � � . , m p N mM Com este resultado, é fácil calcular a força na parede do reservatório. Pela definição de pressão, temos que: F p A F N m m N topo M topo � � � � � � � � � . .400 20 80002 2 Até aqui, estudamos somente medidores de pressão analógicos tradicionais e importantes no contexto da mecânica dos fluidos. Existem também sensores mais modernos, como os transdutores de pressão, que convertem os efeitos da pressão em algum efeito elétrico, como mudanças na tensão, resistência ou capacitância, por meio da deformação de um diafragma ou do efeito piezoelétrico (capacidade de uma substância cristalina gerar tensão elétrica quando sujeita à pressão mecâni- ca). Em geral, são mais compactos e rápidos, podendo ser também mais sensíveis, confiáveis e precisos. Fonte: adaptado de Çengel e Cimbala (2015). 122 Pressão e Estática dos Fluidos Veremos, agora, um último tópico que, particular- mente, já se distancia um pouco dos conceitos de pressão que foram estudados nesta unidade, mas que é bastante importante para compreender o funcionamento de alguns mecanismos. Trata-se, novamente, de um conceito que você já pode ter estudado nas aulas de física: o empuxo. Empuxo 123UNIDADE 3 Este fenômeno está diretamente relacionado com aspectos, tais como flutuabi- lidade e estabilidade de corpos rígidos em fluidos. Uma observação experimental bastante importante é que um objeto parece mais leve quando imerso em um líquido do que no ar. De fato, se você pesasse o objeto dentro da água (com uma balança à prova d’água), o peso indicado seria menor. Tal observação sugere que um fluido exerce uma força vertical para cima em corpos imersos nele. A esta força, damos o nome de empuxo. Aqui, estaremos mais interessados no uso deste conceito do que no desenvolvimen- to e análise das forças envolvidas. Para isso, partiremos do Princípio de Arquimedes. Princípio de Arquimedes: quando um corpo está total ou parcialmente imerso em um fluido, uma força vertical (chamada empuxo) age nele de baixo para cima, equivalente ao peso do volume de fluido deslocado. Fonte: adaptado de Brunetti (2008). Em posse deste enunciado, podemos escrever: E g V Vf deslocado f deslocado= =ρ γ. . . Em que “E” é o empuxo, “ρf” e “γf” são a massa e o peso específicos do fluido, “g” é a aceleração da gravidade e “Vdeslocado” é o volume de fluido deslocado. Caso esta última variável pareça confusa, entenda-a como: “volume do corpo rígido que está submerso”. Assim, se o sólido estiver completamente imerso no fluido, por exemplo, temos que: V Vdeslocado corpo= 124 Pressão e Estática dos Fluidos Como mencionado, o empuxo é particularmente importante para estabelecer a condição de flutuação de um corpo. Considere a figura a seguir, em que P é o peso do corpo: E P Figura 17 - Forças atuando em um corpo rígido imerso em fluido Fonte: adaptada de Brunetti (2008). Veja que, como apontado no início desta unidade, nosso foco está em forças verticais. Fazendo o balanço destas duas forças, podemos afirmar que, para que o corpo flutue: E P≥ Utilizando a definição de empuxo e de força peso, podemos desenvolver ambos os termos deste critério: g gf deslocado corpo corpoV V. .≥ Se o corpo for totalmente submerso, Vcorpo = Vdeslocado, o critério de flutuabilidade será: g gf corpo≥ O matemático grego Arquimedes, que viveu, aproximadamente, de 287 a 212 a.C., é também reconhecido como o autor da expressão “Eureka!”. A lenda diz que ele estava tomando banho quando percebeu que poderia determinar a densidade da coroa do rei submergindo-a em água e medindo o volume deslocado. Com isso, poderia confirmar se ela era feita de ouro puro ou não. Os relatos são de que ele saiu correndo pelado pelas ruas gritando “Eureka!”, exclamação que ficou famosa mundialmente e que hoje significa algo como “Descobri!”. Fonte: adaptado de Leslie (2004). Vamos, agora, trabalhar um exemplo que mostra como o empuxo é importante até mesmo em tarefas simples de engenharia. 125UNIDADE 3 Em um projeto de construção civil submarina, um guindaste é utilizado para levar grandes blocos de concreto até o mar. Durante a operação, surge a suspeita de que um dos blocos está fora dos padrões exigidos. Como engenheiro, você sabe que, caso a massa específica do bloco esteja na faixa de 2100 a 2300 kg/m³, o bloco estará de acordo com as especificações necessárias. As únicas informações à sua disposição são a massa específica da água do mar (ρmar = 1040 kg/m³), a tensão na corda do guindaste segurando o bloco dentro da água (FT,água = 6,5 kN) e o volume do bloco (V = 0,64 m³). Adotando a aceleração da gravidade como g = 10 m/s², qual sua ava- liação sobre o bloco? Solução: Para facilitar a visualização, o primeiro passo pode ser fazer o esboço do problema. Considere a situação em que o bloco está sendo levantado pelo guindaste na água: Água P FT, Água E Agora, é importante ter seu objetivo bastante claro: desejamos verificar se a massa específica do bloco está na faixa de 2100 a 2300 kg/m³. Observe que, se conhecemos o volume do corpo, este parâmetro pode ser utilizado para calcular a força peso P: P m g V gbloco bloco bloco= =. ( . ) .r Assim, se conseguirmos calcular a força peso, será possível resolver o problema. Como conhecemos a massa específica da água do mar e a tensão da corda quando o bloco está submerso, temos informações suficientes para chegar até a força peso. Fazendo o balanço de forças na direção vertical: For a Resultante na Dir o Vertical = For as para Cimaç eçã ç� � � �� � � - For as para Baixoç 6 EXEMPLO 126 Pressão e Estática dos Fluidos Para o sistema em equilíbrio: For a Resultante na Dire o Vertical = 0 For as para Baix ç çã ç � � oo For as para Cima� � � � �ç E então: P E FT água� � , Além disso, pelo princípio de Arquimedes: P g V Ff deslocado T água� �r . . , Como o bloco está completamente submerso, Vdeslocado = Vbloco. Podemos então subs- tituir todos os parâmetros: P kg m m s m N P N N P N � � � � � 1040 10 0 64 6500 6656 6500 13156 3 2 3 . . , Agora, retornando à definição da força peso: r r bloco bloco bloco P V g N m m s kg m = = = . , ³ . / ² , ³ 13156 0 64 10 2055 63 Dessa forma, podemos concluir que o bloco está, de fato, fora das especificações exigidas. Outro detalhe importante de se observar neste exemplo é o aparente efeito “redutor de peso” do empuxo: no ar, todo o peso do bloco estaria na forma de tração na corda, enquanto na água a tração caiu para menos da metade. 127 Você pode utilizar seu diário de bordo para a resolução. 1. Um pistão vertical cilíndrico opera acoplado a uma mola. Um manômetroé utili- zado para verificar a pressão no gás que fica contido neste pistão. Considerando os parâmetros apresentados na figura a seguir, determine a pressão absoluta do gás e a massa do pistão. Adote a aceleração da gravidade como 10 m/s². 50 Np = 16 kPaman p = 98 kPa m = ? A = 50 cm² p = ? atm 128 2. Considere o manômetro da figura a seguir. Sendo o fluido A um óleo e B um fluido manométrico de pesos específicos γóleo = 8800 N/m³ e γfluido = 120000 N/ m³, determine a pressão p1 na escala manométrica. P1 B 10 cm 25 cm 18 cm A 3. Um tubo em U é conectado a um tanque que contém diferentes fluidos. Determi- ne a pressão manométrica no manômetro A, considerando os pesos específicos e as alturas das colunas de cada um dos fluidos indicados na figura a seguir. Qual a altura necessária de uma coluna de água para que ela cause uma pressão equivalente à indicada no manômetro A? 80 cm 120 cm 20 cm A 40 cm 60 cm Óleo 8500 N/m³ Água 10000 N/m³ Glicerina 12600 N/m³ 129 Animação desenvolvida pelo TED-Ed que conta a história do barômetro e como ele funciona. Conteúdo em inglês, mas o vídeo apresenta legendas em portu- guês disponíveis. Para acessar, use seu leitor de QR Code. WEB Animação desenvolvida pelo TED-Ed que vai mais longe na história de Arquime- des e comenta a lei da flutuabilidade. Conteúdo em inglês, mas o vídeo apresenta legendas em português disponíveis. Para acessar, use seu leitor de QR Code. WEB https://apigame.unicesumar.edu.br/qrcode/2416 https://ed.ted.com/lessons/the-real-story-behind-archimedes-eureka-armand-d-angour 130 BRUNETTI, F. Mecânica dos Fluidos. 2. ed. São Paulo: Pearson Prentice Hall, 2008. ÇENGEL, Y. A.; CIMBALA, J. M. Mecânica dos fluidos: fundamentos e aplicações. 3. ed. Brasil: AMGH Editora, 2015. LESLIE, M. The First Eureka Moment. Science, [S.l.], v. 305, n. 5688, p. 1219, ago. 2004. Disponível em: http://science.sciencemag.org/content/sci/305/5688/1219.5.full.pdf. Acesso em: 3 out. 2019. WELTY, J. R.; RORRER, G. L.; FOSTER, D. G. Fundamentos de Transferência de Momento, de Calor e de Massa. 6. ed. São Paulo: Editora LTC – GEN (Grupo Editorial Nacional), 2017. 131 1. O exercício pede dois resultados: a pressão absoluta no gás e a massa do pistão. O primeiro destes pode ser facilmente avaliado: p p P p kPa kPa kPa abs man atm abs � � � � �16 98 114 Agora, para calcular a massa do pistão, deve-se partir da definição de pressão: p F A F p A� � � . Como já conhecemos a área, é necessário avaliar as forças atuando sobre o gás. Para isso, você poderia usar tanto a escala absoluta quanto a manométrica – por conveniência, utilizaremos a escala manométrica. Temos duas forças para analisar: a força exercida pela mola (Fmola) e a força peso (P): F F P F m g F m g p A mola mola pistão mola pistão man � �� � � � � � . . . Isolando o termo que desejamos determinar (a massa do pistão) e substituindo os valores de cada parâmetro: m p A F g m Pa m N m s m pistão man mola pistão pis � � � � . . , ² / ² 16000 0 005 50 10 ttão kg� 3 2. Para resolver este exercício, usamos a equação manométrica, adotando como plano horizontal de referência a parte mais baixa do manômetro. A pressão do lado esquerdo pode ser equacionada por: p p h h p p h e A óleo óleo fluido fluido e A óleo fluido � � � � � � g g g . . . ( , , 1 2 hh hfluido fluido fluido, ,) .1 1� g Do lado direito: p p hd atm fluido fluido� � g . ,3 132 Se o sistema está em equilíbrio, é válido: p h h h pA óleo fluido fluido fluido fluido atm flu� � � � �g g g. ( ) ., , ,2 1 1 iido fluido A atm fluido fluido óleo fluido h p p h h h . . . ( , , , 3 3 2� � � �g g ffluido fluido fluido A atm fluido fluido fl h p p h h , , , ) . . ( 1 1 3 � � � � g g uuido óleo fluido fluidoh h, , ,) . ( )1 2 1� �g Esta mesma equação poderia ser alcançada utilizando a regra da equação manométrica: p h h h hA óleo fluido fluido fluido fluido fluido� � � �g g. ( ) . (, , , ,2 1 3 11 3 1 ) . ( ) . (, , � � � � � p p p h h h atm A atm fluido fluido fluido óleo fluig g ddo fluidoh, , )2 1� Como estamos na escala manométrica, podemos desconsiderar o termo referente à pressão atmosférica. Substituindo os valores na equação: p N m m m N m m m p Pa A A � � � � � 120000 0 25 0 10 8800 0 18 0 10 17296 ³ . ( , , ) ³ . ( , , ) ��17 30, kPa 3. Este exercício pode ser resolvido utilizando o conceito de equação manométrica. O usual seria utilizar como plano horizontal de referência o fundo do manômetro (a parte inferior do tubo na horizontal), contudo, pela configuração da figura, é conveniente utilizar outro plano: a interface água-glicerina no tanque. Veja o novo esquema: 80 cm 60 cm A 40 cm Óleo 8500 N/m³ Água 10000 N/m³ PHR 133 Esta aparente “simplificação” é válida porque, na prática, abaixo deste segmento do sistema, as colunas de glicerina são iguais de ambos os lados, logo, elas se anulariam na equação manométrica. Equacionando as pressões do lado esquerdo, temos: p p h he atm óleo óleo água água� � �g g. . Do lado direito: p p hd A glicerina glicerina� � g . Igualando ambas e isolando o termo solicitado pelo problema, pA: p p h h hA atm óleo óleo água água glicerina glicerina� � � �g g g. . . A regra da equação manométrica ainda pode ser aplicada, e levaria a esta mesma equação. Como estamos interessados na pressão manométrica, podemos desconsiderar a pressão atmosférica da equa- ção. Com isso, basta substituir os valores dos pesos específicos e das alturas de cada coluna: p N m m N m m N m m p Pa A A � � � � 8500 0 8 10000 0 4 12600 0 6 3240 ³ . , ³ . , ³ . , Por fim, o exercício solicita a altura necessária para que uma coluna de água causasse esta mesma pressão. Na prática, isso pode ser entendido como converter o resultado para alguma unidade apropriada, como metros de coluna d’água: p Pa mca Pa mcaA = =3240 10 33 101325 0 33, , Veja que o mesmo resultado seria obtido utilizando o Teorema de Stevin: h p PaN m h mca água A água água ' ' ³ , = = = g 3240 10000 0 324 A pequena diferença observada é decorrente de aproximações no peso específico da água devido à acelera- ção da gravidade empregada (10 m/s² em vez de um valor mais rigoroso, como 9,8 m/s²). Como observação final, sugere-se que você experimente resolver este exercício novamente, mas adotando a parte mais baixa do manômetro como plano horizontal de referência. Isto facilitará a compreensão da estratégia que foi utilizada nesta resolução. 134 135 136 PLANO DE ESTUDOS OBJETIVOS DE APRENDIZAGEM • Revisitar os conceitos de regime permanente e transien- te, apresentando as definições de escoamento laminar, turbulento e unidimensional. • Trabalhar com a lei de conservação da massa para definir a equação da continuidade para o escoamento de fluidos em regime permanente. Caracterização do Escoamento Vazão e a Equação da Continuidade Dr. Rodrigo Orgeda Esp. Henryck Cesar Massao Hungaro Yoshi Cinemática dos Fluidos Caracterização do Escoamento Na Unidade 1, introduzimos conceitos impor- tantes, como os regimes permanente e transiente, sistemas, leis de conservação e vazão. Na Unidade 2, definimos a viscosidade, característica funda- mental dos fluidos, e apontamos ligeiramente os conceitos de fluido ideal, escoamento incompres- sível e do número de Reynolds. Na Unidade 3, trabalhamos os tópicos referentes à estática dos fluidos, ou seja, os aspectos importantes de serem analisados nos fluidos quando estão em repouso. Agora, iremos aprimorar estes conhecimentos ob- servando nosso novo objeto de estudo: o movi- mento dos fluidos, frequentemente chamado de escoamento. Os problemas de mecânica dos fluidos po- dem ser muito diversos, e por isso é conveniente classificá-los com respeito às suas caraterísticas para que possam ser estudados conforme sua se- melhança. A seguir, você estudará algumas das principais classificações de problemas envolvendo escoamento.139UNIDADE 4 Viscoso ou Não Viscoso Anteriormente, você estudou que a viscosidade é a propriedade que representa a resistência do fluido ao movimento. Em líquidos, a viscosidade é resultado das forças coesivas entre as moléculas, enquanto em gases ela é causada pelas colisões entre as moléculas. Ademais, vimos que a viscosidade nula é uma das condições necessárias para um fluido ser considerado ideal. Esta é uma aproximação útil, pois em diversos escoamentos existem regiões em que as forças viscosas são pequenas se comparadas às forças inerciais e de pressão, podendo ser consideradas desprezíveis. Nestas situa- ções, pode-se ignorar os efeitos viscosos para simplificar a análise do escoamento sem perda considerável de precisão. É válido lembrar que, na prática, não existe fluido com viscosidade nula. Dessa forma, o escoamento pode ser dito: • Viscoso: se os efeitos viscosos são significantes. • Não viscoso (invíscido): se os efeitos viscosos podem ser desprezados. Por exemplo, lembre-se do princípio da aderência: quando em contato com uma superfície sólida, os pontos de um fluido aderem-se aos pontos desta superfície. Isto significa que a região do escoamento próxima a uma superfície sólida (como a parede de um tubo, por exemplo) é onde os efeitos viscosos estão mais acentuados (veja a Figura 1). Esta ideia será melhor abordada na Unidade 6, quando tratarmos da chamada camada limite. Escoamento Uniforme Região não viscosa Região viscosa Superfície Sólida v0 v(y) Figura 1 - Perfil de velocidade v(y) de um escoamento uniforme sobre uma superfície sólida Fonte: os autores. 140 Cinemática dos Fluidos Interno ou Externo Um escoamento pode ser dito interno ou externo de acordo com o local onde ele acontece: dentro de um conduto ou sobre uma superfície. Caso a palavra “conduto” soe estranha aos seus ouvidos, ela se refere a qualquer estrutura sólida destinada ao transporte de fluidos, como tubulações. Dessa forma, as definições são bastante simples – o escoamento pode ser dito: • Interno: se o fluido escoa cercado por superfícies sólidas (como dentro de tubos). • Externo: se o fluido escoa sobre superfícies, como placas, esferas ou, até mes- mo, por fora de tubos. Além disso, pode-se ainda dizer que os condutos são livres (ou abertos), se o fluido em movimento apresenta uma superfície livre (Figura 2b), ou forçados, quando o fluido preenche o conduto completamente sem apresentar superfície livre (Figura 2a). (a) (b) Superfície livre Superfície livre Figura 2 - Comparação entre condutos forçados (a) e condutos livres (b) Fonte: Brunetti (2008, p. 164). Compressível ou Incompressível O conceito de escoamento incompressível foi estabelecido na Unidade 2. Lembran- do: um escoamento é dito incompressível quando seu volume (ou densidade) não varia com a pressão. Assim como no caso dos escoamentos não viscosos, esta é uma aproximação: na prática, todo fluido apresenta alguma compressibilidade, mas nos casos em que ela é pequena o suficiente para ser desprezada, pode-se considerar que a densidade do fluido é constante – em geral, isto é verdade para os líquidos. A incompressibilidade é o segundo critério necessário para a condição de fluido ideal. 141UNIDADE 4 Por outro lado, gases são altamente compressíveis, sendo importante considerar as variações de densidade observadas em escoamentos gasosos com altas velocidades, como na análise de espaçonaves e foguetes, por exemplo. Nesses casos, a velocidade do escoamento é frequentemente descrita por meio do número de Mach, um número adimensional, definido pela expressão: Ma v c Velocidade do Escoamento Velocidade do Som = = O Número de Mach (Ma) é medida adimensional da velocidade, definida como a razão entre a velocidade do escoamento e a velocidade do som (346 m/s em ar nas condições ambiente de temperatura e pressão). O escoamento é dito sônico quando Ma = 1, subsônico quando Ma < 1, supersônico quando Ma > 1 e hipersônico quando Ma >> 1. O número de Mach pode ser utilizado como parâmetro para avaliar se é razoável aproximar um escoamento gasoso como incompressível. Geralmente, para Ma < 0,3, as variações de densidade observadas são inferiores a 5%, podendo ser aproximado como incompressível. Assim, em condições ambientes, a compressibilidade pode ser desprezada em velocidades inferiores a cerca de 100 m/s. Natural ou Forçado Outra classificação diz respeito à origem do escoamento. Se o fluido começa a escoar devido à ação externa, como uma bomba ou um ventilador, ele é dito forçado. Em contrapartida, se o movimento do fluido acontece por causas naturais, como a convec- ção (movimento ascendente ou descendente devido à diferença de densidade dentro do próprio fluido, especialmente por diferenças de temperatura), ele é dito natural. Permanente ou Transiente Na Unidade 1, conceituamos o estado estacionário (regime permanente) e o estado não estacionário (regime transiente) para os sistemas. Para os escoamentos, estas classificações terão significados análogos – o escoamento pode ser dito em regime: • Permanente: as condições em todos os pontos do escoamento permanecem constantes ao longo do tempo (mas podem variar entre os pontos). • Não Permanente (ou Transiente): as condições em um ou mais pontos do escoamento variam ao longo do tempo. A Figura 3a apresenta um reservatório de grandes dimensões. Isso significa que, apesar de haver uma descarga do fluido, o nível do reservatório não varia de maneira 142 Cinemática dos Fluidos significativa com o tempo, podendo ser considerado regime permanente. A Figura 3b mostra um reservatório em que o nível varia sensivelmente com o tempo, pois a seção transversal é relativamente pequena comparada à descarga do fluido, caracte- rizando um regime transiente. NC (a) Reservatório de grandes dimensões (regime permanente) (b) Nível variável (regime variado)t2 t2 t3 t3 t1 t1 Figura 3 - Comparação entre regime permanente (a) e regime transiente (b) Fonte: Brunetti (2008, p. 68). Repare que, na prática, os processos e escoamentos sempre terão alguma variação ao longo do tempo, por menor que seja. Com isso, pode-se entender como condi- ções de regime permanente aquelas observadas em média ao longo do tempo (que se espera serem próximas das condições de operação planejadas). Uma das tarefas fundamentais de um engenheiro é determinar se um problema pode ser analisado aproximando-o para regime permanente ou se é necessário avaliar as variações ob- servadas ao longo do tempo. É importante observar que, apesar de o termo “transiente” ser frequentemente utilizado no lugar de “não permanente”, o mais apropriado é utilizar “transiente” para escoamentos que ainda estão se desenvolvendo. Por exemplo, ao dar partida em um carro, leva algum tempo para que o motor aqueça até suas condições de operação – este intervalo de transição é, como o nome sugere, transiente. Quando devidamente preparado, o motor pode passar a operar em condições constantes – regime permanente. Laminar ou Turbulento Você certamente já notou que, ao abrir ligeiramente uma torneira, o fluxo é bastante suave e ordenado (Figura 4). Este tipo de escoamento é chamado de laminar, carac- terizado pelo movimento suave entre as partículas de fluido em camadas (“lâminas”). Fluidos de viscosidade alta em baixas velocidades costumam escoar desta forma. 143UNIDADE 4 Figura 4 - Escoamento laminar Por outro lado, se você abrir ainda mais a torneira, a velocidade e a vazão de água aumentam e o escoamento passa a ser mais desordenado. De fato, se você coletar esta água em um copo, verá que a formação de bolhas é muito mais intensa (Figura 5). Este tipo de escoamento é chamado de turbulento, sendo comum em fluidos de baixa viscosidade em altas velocidades. Figura 5 - Escoamento turbulento 144 Cinemática dos Fluidos Quando as condições de escoamento estão entre o laminar e o turbulento, diz-se que o escoamento está em regime de transição. O regime laminar ou turbulentoafeta consideravelmente diversos processos envolvendo fluidos, como a potência necessária para bombeamento ou a transferência de calor, por exemplo. Dessa forma, surge a necessidade de um parâmetro capaz de determinar se um escoamento será laminar ou turbulento. Este parâmetro é o número de Reynolds, que você conheceu na Unidade 2, definido pela seguinte relação: Re . . . = = = For as Inerciais For as Viscosas ç ç v D v Dρ µ ν Em que ρ é a massa específica do fluido, v é a velocidade do escoamento, D é o diâme- tro da tubulação, μ é a viscosidade absoluta do fluido e n é a viscosidade cinemática. Osborne Reynolds (1842-1912) foi o engenheiro britânico que observou a existência destes regimes de escoamento por meio do seguinte experimento: injetou corante em um tubo de vidro onde escoava um fluido, em diferentes velocidades. Para pequenas velocidades, o corante seguia o escoamento de forma ordenada (laminar, Figura 6a). Após passar um valor crítico de velocidade, o movimento do corante passava a ser bastante desordenado (turbulento, Figura 6b). Corante (a) Injeção de Corante vméd Corante (b) Injeção de Corante vméd Figura 6 - Experimento de Reynolds Fonte: Çengel e Cimbala (2015, p. 279). Tenha sua dose extra de conhecimento assistindo ao vídeo. Para acessar, use seu leitor de QR Code. 145UNIDADE 4 Observa-se que a turbulência promove uma mistura intensa no fluido, aumentando a transferência de momento entre as partículas, resultando no aumento do atrito com as superfícies, o que demanda maior potência de bombeamento para deslocar o fluido. Reynolds observou que o regime do escoamento dependia principalmente da razão entre as forças inerciais e as forças viscosas do fluido – o número de Reynolds. Para água em tubos cilíndricos, os seguintes limites são geralmente admitidos: • Re < 2000: escoamento laminar • 2000 < Re < 2400: escoamento de transição • Re > 2400: escoamento turbulento Por fim, é importante apontar que, em geral, o regime turbulento pode ser admitido como permanente, mesmo sendo caracterizado por flutuações na velocidade. Isto é razoável, pois as velocidades ficarão sempre em torno de um valor médio (Figura 7). De fato, alguns aparelhos sequer são capazes de indicar as flutuações com elevada precisão. v Flutuações Tempo Valor médio indicado pelo aparelho medidor de velocidade Figura 7 - Flutuações na velocidade de um escoamento turbulento ao longo do tempo Fonte: Brunetti (2008, p. 69). Unidimensional, Bidimensional ou Tridimensional Uma das principais formas de descrever um escoamento é por meio de seu gradiente de velocidades. Podemos dizer que ele é uni-, bi- ou tridimensional se a velocidade varia com uma, duas ou três dimensões, respectivamente. Por exemplo: o escoamento é unidimensional quando precisamos de apenas uma coordenada para descrever sua velocidade, como na Figura 8, em que a velocidade depende apenas da posição x, ou seja, v = f(x). 146 Cinemática dos Fluidos x1 (1) (2) v1 v2 x2 x Figura 8 - Escoamento unidimensional Fonte: Brunetti (2008, p. 71). Se a velocidade também varia de acordo com a posição y, ela é dita bidimensional (v = f(x,y)): x1 (1) (2) v = ƒ(x, y) x2 x y y1 v1 Figura 9 - Escoamento bidimensional Fonte: Brunetti (2008, p. 71). Ou, ainda, pode variar nas três dimensões ( ( , , ))v f x y z= : v = ƒ(x, y, z) z y x Figura 10 - Escoamento tridimensional Fonte: Brunetti (2008, p. 71). 147UNIDADE 4 Naturalmente, quanto mais dimensões forem consideradas, maior será a complexi- dade da análise. Em geral, procure sempre que possível descrever o escoamento de forma unidimensional, por conveniência, adotando uma velocidade média na seção (trataremos desta aproximação no próximo tópico). É comum encontrar o escoamento sendo descrito como “uniforme”, que pode causar certa confusão ao comparar bibliografias e traduções diferentes. Por “uniforme”, entenda: sem variação com a posição em uma determinada região. O escoamento da Figura 8, por exemplo, pode ser dito: “uniforme na seção”, pois não varia com as posições y ou z para cada seção na posição x. Trajetória e Linha de Corrente Por fim, como estamos interessados em caracterizar o movimento do fluido (escoa- mento), é fundamental saber descrever a direção deste. Assim, surgem os conceitos de trajetória e linha de corrente. A trajetória é simplesmente o conjunto dos pontos ocupados por uma partícula em instantes sucessivos. Por exemplo, se registrássemos a posição de um corpo flu- tuando ao longo do escoamento, poderíamos ter uma trajetória correspondente à linha pontilhada da figura a seguir: Flutuante t0 t1 t2 tn Figura 11 - Trajetória de um corpo flutuante ao longo de um escoamento Fonte: Brunetti (2008, p. 70). A linha de corrente, por sua vez, é a curva tangente aos vetores da velocidade em diferentes pontos no mesmo instante, servindo como indicador da direção do es- coamento naquele instante. Por exemplo, na Figura 12, as linhas pretas são as linhas de corrente para um escoamento bidimensional: 148 Cinemática dos Fluidos 5 4 3 2 1 0 -1 y 0 1 2 3 4 5 x Figura 12 - Linhas de corrente para um escoamento bidimensional Fonte: Çengel e Cimbala (2015, p. 111). É possível desenvolver expressões algébricas para descrever as linhas de corrente a partir da sua definição, mas isto está fora do escopo deste material. O interesse aqui é que você compreenda como visualizar o movimento do fluido: se medirmos a velocidade em diferentes pontos do escoamento, podemos determinar as linhas de corrente, que coincidem geometricamente com as trajetórias no regime permanente. Existem diversas formas e técnicas para visualizar o escoamento, muitas das quais são particularmente importantes para o desenvolvimento de soluções numéricas para problemas de escoamento. A simulação numérica destas soluções é chamada de fluidodinâmica computacional (CFD) e transforma números em imagens, provi- denciando ao engenheiro uma perspectiva privilegiada do escoamento. Algumas técnicas modernas de análise do movimento de partículas em fluidos envolvem também métodos ópticos como a velocimetria por imagem de partículas (PIV), grá- ficos de sombras, fotografia schlieren e interferometria. Isso é importante porque a mente humana é capaz de processar rapidamente uma quantidade enorme de informações visuais em vez de apenas listar dados quantitativos. Fonte: adaptado de Çengel e Cimbala (2015). 149UNIDADE 4 Agora que você sabe identificar as principais características de um escoamento, o passo se- guinte é quantificá-lo quanto à vazão de fluido. De forma análoga ao desenvolvido na Unidade 1, utilizaremos o conceito de vazão para então aplicar o princípio de conservação da massa aos escoamentos. O resultado será a chamada equação da continuidade. Vazão e a Equação da Continuidade 150 Cinemática dos Fluidos Vazão e Velocidade Média Utilizamos a ideia de “vazão” na Unidade 1, mas sem dar atenção particular a ela. No contexto da mecânica dos fluidos, podemos entender esta expressão da seguinte forma: a quantidade de massa de fluido que atravessa uma determinada seção do escoamento por unidade de tempo. Por esta definição, sendo Qm o símbolo utilizado para representar a vazão mássica, m para massa e t para tempo, pode-se escrever Vazão Mássica Massa Tempo Q m tm = = Como [ ]Q MTm � �1 , unidades típicas para a vazão mássica são kg/h e o lb/h, por exemplo. Também é bastante comum pensar na vazão em termos do volume de fluido: VazãoVolumétrica Volume Tempo Q V t = = Neste caso, [Q] = L³T-1, de modo que várias unidades são comuns: m³/s, m³/h, l/s, l/h, ft³/s. É importante observar que estas duas vazões se relacionam da seguinte maneira: Q Qm = r . Então, se, por exemplo, um chuveiro aberto gasta 150 litros de água durante um banho de 15 minutos, podemos dizer que a vazão é de 10 litros de água por minuto. Adotando a massa específica da água como 1000 kg/m³, isto corresponde à vazãomássica de 10 kg/min: Q Q Q kg m m l l kg m m = = = r . . min min 1000 1 1 1000 10 103 3 151UNIDADE 4 Uma mangueira é utilizada para encher de água uma piscina com capacidade de 12.000 litros. Sabendo que o tempo necessário para preenchê-la completamente foi de 40 minutos, qual a vazão da mangueira em volume e em massa? Apresente a res- posta em unidades do SI e considere ρH2O = 1000 kg/m³. Solução: Se a mangueira é a única fonte de água enchendo a piscina, podemos determinar a vazão de água com base na definição: VazãoVolumétrica Volume Tempo l l Q l = = = = 12000 40 300 300 min min min Agora, para atender à solicitação do enunciado, é necessário converter as unidades para o SI: Q l m l s m s � � �300 1 1000 1 60 5 10 3 3 min min . ³ Conhecida a vazão volumétrica, pode-se calcular a vazão mássica: Q m s kg m kg sm � ��5 10 1000 53 3. ³ Observe que, na definição dada para a vazão, é mencionada uma determinada seção do escoamento. Esta ideia é importante, pois possibilita relacionar a vazão em volu- me com a velocidade do fluido. Imagine um fluido em movimento dentro de uma tubulação, em que atravessa a seção de área A no tempo t = 0, deslocando-se uma distância s em um intervalo de tempo t, como na Figura 13: γ A γ A s t = 0 t Figura 13 - Vazão volumétrica de fluido em escoamento uniforme Fonte: Brunetti (2008, p. 72). 1 EXEMPLO 152 Cinemática dos Fluidos Agora, atente-se à seguinte afirmação: o volume (V) de fluido que atravessou a seção de área A no intervalo de tempo t é equivalente ao volume do cilindro de altura s e área da base A. Assim, temos matematicamente que: V s A= . Pela definição de vazão volumétrica: Q V t s A t = = . Utilizando a definição de velocidade (v = s/t), podemos escrever, ainda, que: Q v A= . Em que v é a velocidade do escoamento. Contudo, é fundamental observar que este raciocínio só faz sentido se estivermos considerando um perfil de velocidades uniforme na seção. Como já foi mencionado anteriormente, em situações práticas, o escoamento dificilmente será uniforme, mas é possível adotar uma velocidade média na seção para abordar o problema como se ele fosse, de fato, uniforme. Veja, por exemplo, a Figura 14: dA v A Figura 14 - Vazão volumétrica de fluido em escoamento tridimensional Fonte: Brunetti (2008, p. 73). 153UNIDADE 4 A velocidade (v) é diferente em cada ponto da seção (dA). A vazão (dQ) em cada um destes pontos pode ser escrita como: dQ v dA= . Então, a vazão na seção de área A pode ser avaliada por meio da integral: Q v dA A � � Agora, vamos considerar a seguinte definição para a velocidade média (vm): uma velocidade uniforme que, substituindo a velocidade real, resulta na mesma vazão por meio da seção: Q v dA v A A m � �� . Esta expressão pode ser arranjada conforme a devida definição de velocidade média na seção: v A v dAm A� � 1 Isto é, em problemas em que o perfil de velocidades real (vreal) é variado, podemos adotar uma velocidade média (vm) uniforme na seção, que resulta na mesma vazão volumétrica (Q) por meio da seção (veja a Figura 15). Vejamos agora um exemplo para fixar os conceitos abordados. vm vreal Figura 15 - Perfil de velocidades (vreal) e velocidade uniforme média na seção (vm) que resultam em vazões volumétricas equivalentes por meio da seção Fonte: Brunetti (2008, p. 73). 154 Cinemática dos Fluidos Um óleo (ρ = 850 kg/m³) escoa em uma tubulação que apresenta seções de tamanhos diferentes: A1 = 30 cm² e A2 = 18 cm². Se a velocidade média na seção (1) é de v1 = 6 m/s, determine as vazões em volume, em massa e a velocidade média na seção (2) em unidades do SI. Solução: (1) (2) v1 Inicialmente, é conveniente já converter as áreas conhecidas para o SI: A cm m A cm m 1 2 4 2 2 2 4 2 30 30 10 18 18 10 � � � � � � . . Como a velocidade média na seção (1) é fornecida, é possível calcular a vazão vo- lumétrica: Q v A m s m Q m s � � � � � 1 1 4 2 2 3 6 30 10 1 8 10 . . . , . Agora, como conhecemos a massa específica do óleo, podemos utilizá-la para calcular a vazão em massa: Q Q kg m m s kg sm � � ��r . . , . ,850 1 8 10 15 303 2 3 Para calcular a velocidade média na seção (2), é necessário recorrer a um conceito que você estudou na Unidade 1: no regime permanente, tudo que entra no sistema tem de sair. Aqui, você pode entender a seção (1) como a entrada e a seção (2) como a saída do sistema. Isto é, a vazão de óleo que entra na seção (1) sai pela seção (2). Se a massa específica do óleo, uma substância líquida, não varia consideravelmente com a diminuição da área da seção, podemos afirmar que é um fluido incompressível. Assim, temos que: Q Q v A v A v v A A 1 2 1 1 2 2 2 1 1 2 = = = . . . 2 EXEMPLO 155UNIDADE 4 E com isso, a velocidade média na seção (2) pode ser avaliada: v m s m m m s2 4 2 4 26 30 10 18 10 10� � � �. . . Caso esta última etapa não tenha sido tão clara para você, não se preocupe: na ver- dade esta ideia será melhor desenvolvida a seguir, conhecendo a famosa equação da continuidade. Equação da Continuidade em Regime Permanente Considere o escoamento de um fluido por um tubo, com formato e dimensões ge- néricas (Figura 16). Este tubo será o sistema que analisaremos a seguir. Qm2 Q A1 A2 v m m1 Figura 16 - Representação esquemática de um tubo de corrente genérico Fonte Brunetti (2008, p. 75). Na seção (1), de área A1, há uma vazão mássica de entrada Qm1. Na seção (2), de área A2, há uma vazão mássica de saída Qm2. Em regime permanente, as propriedades em cada ponto do fluido são constantes ao longo do tempo. Além disso, pelo princípio de conservação da massa, sabemos que Qm1 = Qm2 (do contrário, em algum ponto no interior do tubo haveria redução ou acúmulo de massa). A chamada equação da continuidade para um fluido qualquer em regime perma- nente é simplesmente esta relação, que, como vimos, pode ser escrita das seguintes formas: Q Q ou Q Q ou v A v Am m1 2 1 1 2 2 1 1 1 2 2 2= = =r r r r. . . . . . Ainda, se o fluido for incompressível (ρ1 = ρ2): Q Q ou Q Q ou v A v Am m1 2 1 2 1 1 2 2= = =. . 156 Cinemática dos Fluidos Por mais que este conceito talvez pareça simples demais para tanta ênfase, não o subestime: ele é fundamentalmente necessário para solução de diversos problemas de mecânica dos fluidos. Vejamos um exemplo a seguir. Os tubos de Venturi são aparatos utilizados para medir a velocidade do escoamento por meio da variação de pressão. Para tanto, eles apresentam uma seção larga e depois outra mais estreita, como na figura a seguir. Um gás escoa em regime permanente por este trecho de tubulação e, devido à sua compressibilidade, apresenta diferentes massas específicas na entrada (ρe = 5 kg/m³) e na garganta (ρG = 10 kg/m³). Sendo Ae = 30 cm², AG = 10 cm² e ve = 40 m/s, qual a velocidade média do escoamento na garganta do tubo de Venturi? Venturi Garganta Ae AG Solução: Em regime permanente, pelo princípio de conservação da massa, temos a equação da continuidade: Q Q ou Q Q ou v A v Am m1 2 1 1 2 2 1 1 1 2 2 2= = =r r r r. . . . . . Como o fluido em questão é compressível, não podemos fazer as simplificações com as massas específicas. Então, temos: r re e e G G Gv A v A. . . .= Isolando o termo que desejamos avaliar, basta substituir os valores conhecidos para chegar à resposta: v v A A v m s kg m kg m cm cm v m s G e e G e G G G = = = . . r r 40 5 10 30 10 60 3 3 2 2 3 EXEMPLO 157UNIDADE 4 Note que é intuitivo concluir que, ao comparar duas seções diferentes da tubulação de um mesmo escoamento, as velocidades médias e as áreas são inversamente pro- porcionais. Isto é, na garganta do tubo de Venturi, a velocidade é maior, pois a área é menor. Você possivelmente já observou isso em seus experimentos de infância, apertando uma mangueira ou obstruindo uma torneira para que o jato de água saísse mais “forte” (rápido). Além disso, tome um instante para lembrar que estamosno regime permanente: as condições em todos os pontos do escoamento permanecem constantes ao longo do tempo, mas podem variar entre os pontos! Aqui tivemos um bom exemplo disto: a massa específica na entrada era de 5 kg/m³, constante ao longo do tempo, enquanto a massa específica na garganta era de 10 kg/m³, também constante ao longo do tempo. Por fim, é importantíssimo mencionar que nem sempre haverá apenas uma entrada e uma saída de fluido. Podemos generalizar a equação da continuidade como a soma das vazões de entrada (“e”) e a soma das vazões de saída (“s”): Q Qm e m s �� � E, de forma análoga, se o fluido for incompressível e homogêneo (ou seja, se não forem misturadas substâncias diferentes que sejam compressíveis ou que alterem as massas específicas presentes): Q Q e s �� � Com isto, podemos concluir mais uma etapa no seu estudo dos fenômenos de trans- porte. Nesta unidade, você estudou os escoamentos (fluidos em movimento), como caracterizá-los e como aplicar o princípio de conservação da massa a eles. O próximo passo será aplicar o princípio de conservação da energia, que nos levará a mais uma das equações fundamentais da mecânica dos fluidos. 158 Você pode utilizar seu diário de bordo para a resolução. 1. Um tanque cilíndrico completamente cheio de água, com altura de 5 metros, leva 2.000 segundos para ser completamente esvaziado. Ele é descarregado por um tubo cuja vazão é de 50 litros/segundo, constante ao longo de todo o processo. Determine a área ocupada por este tanque e a velocidade de descida da superfície livre da água no tanque. Este processo opera em regime perma- nente ou transiente? 2. Ar entra em um difusor à velocidade de 200 m/s, como na figura a seguir. A área da seção de entrada é de 20 cm², enquanto a área da seção de saída é de 50 cm². Sabendo que a massa específica do ar na entrada e na saída é de 1,2 kg/m³ e 1,5 kg/m³, respectivamente, determine as vazões em volume e em massa e a velocidade média na saída. Avalie, também, o escoamento em ambas as seções de acordo com o número de Mach. Considere a velocidade do som de 346 m/s. Difusor Ar v1 = 200 m/s (1) (2) 159 3. Uma tubulação direciona água para dois reservatórios, ambos cúbicos, como representado na figura a seguir. O reservatório (1) leva 100 segundos para ser completamente preenchido, enquanto o reservatório (2) leva 180 segundos. Sabendo que a velocidade média do escoamento na seção (A) é de 1,25 m/s, determine o diâmetro da tubulação nesta mesma seção. Avalie o escoamento nessa seção de acordo com o número de Reynolds (considere ρH₂O = 1000 kg/ m³ e μH₂O = 1,00 x 10 -3 Pa.s). (1) (2) 6 m 4 m (A) vA = 1,25 m/s 160 Animação desenvolvida pelo TED-Ed que aborda o número de Mach, os estron- dos sônicos e os efeitos físicos por trás destes fenômenos. Conteúdo em inglês, com legendas disponíveis em português. Para acessar, use seu leitor de QR Code. WEB O Monge e o Executivo Vídeo do canal SciShow, que trata dos desafios da aviação com relação aos voos supersônicos e hipersônicos. Disponível apenas em inglês. Para acessar, use seu leitor de QR Code. WEB http:// http:// 161 BRUNETTI, F. Mecânica dos Fluidos. 2. ed. São Paulo: Pearson Prentice Hall, 2008. ÇENGEL, Y. A.; CIMBALA, J. M. Mecânica dos fluidos: fundamentos e aplicações. 3. ed. Brasil: AMGH Editora, 2015. WELTY, J. R.; RORRER, G. L.; FOSTER, D. G. Fundamentos de Transferência de Momento, de Calor e de Massa. 6. ed. São Paulo: Editora LTC – GEN (Grupo Editorial Nacional), 2017. 162 1. Para encontrar a área do tanque, basta unir os conceitos de vazão e de geometria. Note que a única vazão presente no sistema é justamente a corrente que descarrega o tanque, que permanece constante durante todo o processo. Convertendo-a para unidades do SI, temos: Q l s m l m s � � �50 1 1000 5 10 3 2 3 . Agora, lembre-se da própria definição de vazão volumétrica: quantidade de volume por unidade de tempo. Se conhecemos a vazão e o tempo necessário para esvaziar completamente o tanque, é fácil calcular o volume total: Q V t V Q t� � �tanque total descarga total tanque total descarga tot. aal tanque total tanque total V m s s V m � � �5 10 2000 100 2 3 3 . . Da geometria, o volume de um cilindro pode ser calculado pelo produto da área da base com a sua altura. Então: V A h A V h A m m m cilindro base base cilindro base � � � � � . 100 5 20 3 2 Uma vez que a vazão de saída é constante, a velocidade de descida da superfície livre da água no tanque, por sua vez, pode ser calculada utilizando a altura total do tanque e o tempo necessário para que ele esvazie com- pletamente: • No tempo t = 0 s, o tanque está completamente cheio (altura da superfície livre da água: 5 m). • No tempo t = 2.000 s, o tanque está completamente vazio (altura da superfície livre da água: 0 m). Pela definição tradicional de velocidade: velocidade= var na posi o intervalo de tempo superf cie liv iação çã v í rre superf cie livre � � � � 0 5 2000 0 0025 m m s v m sí , 163 Naturalmente, o sinal negativo indica que a superfície livre está descendo (afinal, o tanque está sendo descar- regado). Este mesmo resultado também poderia ser alcançado utilizando a área do tanque que calculamos anteriormente: velocidade= vaz o volum trica rea da base erf cie l ã é á Q A v base í � sup iivre � � � � �5 10 20 0 0025 2 3 2 . , m s m m s Esta operação faz sentido, pois considerando fluido incompressível, o volume de água que sai pela tubulação deve ser o volume de água que diminui no tanque. Dividindo pela área da base do tanque, sabemos a altura de coluna de água que é diminuída no tanque por unidade de tempo. Novamente, o sinal negativo indica que a água está saindo do tanque. Se o tanque passasse a ser alimentado por uma corrente de vazão maior que a da corrente de descarga, a água passaria a acumular no tanque, ou seja, a altura da superfície livre iria subir (ou, se completamente cheio, o tanque começaria a transbordar). Por fim, devemos afirmar que este processo opera, por natureza, em regime transiente. Afinal, mesmo que a vazão de saída seja constante, o conteúdo de água no tanque está variando com o tempo. Dessa forma, um ponto do tanque em que t = 0 s existe água, em t = 2.000 s não teria nada, pois o tanque teria sido completa- mente descarregado. 2. O ar entra no difusor em alta velocidade e deseja-se avaliar as vazões e velocidades do escoamento neste sistema. Admitindo condição de regime permanente, é possível resolver este problema por meio da equa- ção da continuidade. Como o fluido em questão é compressível: Q Q ou Q Q ou v A v Am m1 2 1 1 2 2 1 1 1 2 2 2= = =r r r r. . . . . . Uma vez que a velocidade na entrada é conhecida, é conveniente determinar as vazões nesta seção. Para a vazão volumétrica: Q v A Q m s cm m cm m s � � � � . . ,1 2 4 2 2 3 200 20 10 1 0 4 Com isso, é fácil determinar a vazão mássica: Q Q Q Q Q kg m m s Q kg s m m m m � � � � � r r. . , . , , 1 1 1 1 3 3 1 1 2 0 4 0 48 164 Novamente, pela equação da continuidade, sabemos que: Q Q Q kg sm m m1 2 2 0 48� � � , Assim, podemos fazer o processo inverso para chegar à vazão volumétrica e à velocidade média na seção de saída: Q Q Q kg s kg m Q m s m 2 2 2 2 3 2 30 48 1 5 0 32 � � � � r , , , v Q A v m s cm m cm v m s 2 2 2 2 3 2 4 2 2 2 0 32 50 10 1 64 � � � �� , Por fim, devemos avaliar o escoamento conforme o número de Mach, que é definido como: Ma v c Velocidade do Escoamento Velocidade do Som = = Para a velocidade do som de 346 m/s, chegamos aos seguintes valores na entrada e saída do difusor, respec- tivamente: Ma v c m s m s Ma v c m s m s 1 1 2 2 200 346 0 578 64 346 0 185 = = = = = = , , Como Ma < 1 em ambos os casos, podemos dizer que o escoamento é subsônico em ambas as seções. 165 3. Este problema pode ser resolvido utilizando a equação da continuidade. Conhecemosas dimensões dos tanques, o tempo necessário para enchê-los e a velocidade na seção (A). O objetivo é encontrar o diâmetro da tubulação nesta mesma seção. Para isso, o primeiro passo será avaliar o volume dos reservatórios (1) e (2). Como são cúbicos, temos: V l V m m V m m cubo = = = = = 3 1 3 3 2 3 3 6 216 4 64 tanque tanque ( ) ( ) Agora, baseado na definição de vazão, como conhecemos o tempo necessário para enchê-los completamente, podemos determinar a vazão de alimentação em cada tanque: Q V t Q V t m = = = tanque total carga total tanque carga total 1 1 1 3216 1000 2 16 64 180 0 36 3 2 2 3 3 s m s Q V t m s m s = = = = , ,tanque carga total 2 Conhecidas estas vazões, podemos aplicar a equação da continuidade para calcular a vazão volumétrica na seção (A). Note que o sistema apresenta uma entrada e duas saídas. Com a condição de fluido incompressível e homogêneo ao longo da tubulação, teremos: Q Q Q Q Q Q m s m s Q m s e s A A A � � � � � � � � 1 2 3 3 3 2 16 0 36 2 52 , , , 166 Em posse deste resultado, como conhecemos a velocidade média do escoamento na seção (A), é possível avaliar a área da tubulação nesta seção: Q v A A Q v A Q v m s m s mA A A � � � � � � . , , , 2 52 1 25 2 02 3 2 Agora, considerando um tubo de seção circular, é possível calcular o diâmetro da tubulação: A D D A D m mA � � � � � � � � � � � p p . . , , , 2 4 4 2 02 3 14 1 60 2 2 Por fim, pede-se uma avaliação do escoamento conforme o número de Reynolds. Para calculá-lo, temos a equação: Re . . . = = = For as Inerciais For as Viscosas ç ç v D v Dρ µ ν Utilizando os valores fornecidos de massa específica, viscosidade e velocidade média do escoamento e o diâ- metro que foi calculado para a seção: Re . , . , , . . .� �� 1000 1 25 1 60 1 00 10 2 10 3 3 6 kg m m s m Pa s Escoamentos com números de Reynolds nesta ordem de grandeza são turbulentos. 167 168 PLANO DE ESTUDOS OBJETIVOS DE APRENDIZAGEM • Estudar o conceito de balanço de energia, definindo a terminologia empregada, conceitos e unidades. • Definir a equação de Bernoulli a partir da análise das ener- gias mecânicas associadas a um fluido em escoamento. • Tratar do princípio de funcionamento da instrumentação para a medição de velocidade dos fluidos. • Analisar os efeitos da presença de máquinas que realizam trabalho na equação da energia. • Examinar a equação da energia sem a hipótese de fluido ideal, desenvolvendo o conceito de perda de carga. Balanço de Energia Equação de Bernoulli Bombas e Turbinas na Equação da Energia Equação da Energia para Fluidos Reais Medida da Velocidade com Tubo de Pitot Dr. Rodrigo Orgeda Esp. Henryck Cesar Massao Hungaro Yoshi Equação da Energia no Regime Permanente Balanço de Energia Na Unidade 1, vimos o conceito de balanço ma- terial e também as leis de conservação, em que foi mencionado que propriedades, como massa e energia de um sistema (isolado), não variam ao longo do tempo. Na unidade anterior, aplicamos esta ideia de conservação de massa ao escoamento. Agora, é hora de conhecermos os balanços de energia e de analisar o escoamento sob esta nova perspectiva. Aqui, iremos trabalhar com duas equações principais: a equação da energia propriamente dita (que representa o enunciado da conservação de energia) e a famosa equação de Bernoulli (que analisa as energias associadas ao escoamento por meio de hipóteses simplificadoras). No contexto da mecânica dos fluidos, a primeira importante observação a ser feita é quanto à relação entre energia mecânica e energia térmica – a conversão de energia mecânica em energia térmica se dá por meio de efeitos viscosos (atrito), significando uma perda de energia mecânica. 171UNIDADE 5 Com isso em mente, o primeiro passo é você conhecer o enunciado do princípio de conservação da energia: a primeira lei da termodinâmica. Durante um processo, para um sistema isolado, a energia não pode ser criada nem destruída, apenas trans- formada. Um sistema fechado, por sua vez, pode perder ou ganhar energia do meio que o envolve. Assim, é razoável escrever: E E dE dtentra sai sistema� � Em que Eentra é a taxa de energia que entra no sistema, Esai é a taxa de energia que sai do sistema e dE dt sistema é a taxa de variação de energia total do sistema. No regime permanente, a variação no tempo será nula e, então: E E E E entra sai entra sai � � � 0 A energia de um sistema fechado (ou seja, de massa fixa) pode variar por meio de dois mecanismos: a transferência de calor (energia térmica, Q) e a transferência de trabalho (energia mecânica, W). Assim, escrevendo os termos na forma de taxas (grandeza por unidade de tempo), temos: Q W dE dt sistema� � Em que Q é a taxa de transferência de calor (positiva quando calor é adicionado ao sistema pelo meio que o envolve) e W é a taxa de transferência de trabalho (positi- va quando trabalho é realizado pelo meio sobre o sistema). Esta é a primeira lei da termodinâmica. A literatura diverge bastante com relação ao sinal do trabalho na equação da pri- meira lei da termodinâmica. Com o sinal negativo, você deve interpretar o parâme- tro �W como “trabalho realizado pelo sistema sobre o meio”. Isto pode ser confuso no começo, mas com um pouco de prática, você rapidamente se familiarizará com este raciocínio. 172 Equação da Energia no Regime Permanente Esta equação, apesar de carregar muito significado físico, não é exatamente convenien- te para aplicação prática direta no estudo da mecânica dos fluidos. Por outro lado, ela serve como ponto de partida teórico fundamental para desenvolver raciocínios que terão maior prontidão para a solução de problemas. Aqui, o termo de transferência de calor tratará essencialmente das perdas de energia mecânica, enquanto os efeitos de trabalho serão analisados conforme os tipos de energias mecânicas associadas a um fluido, apresentadas a seguir. Energia Potencial (EP ) Este é um conceito que você certamente aprendeu em aulas de física. A energia potencial de um sistema é a medida do seu potencial de realizar trabalho (E WP = ). Mecanicamente, ela é apresentada na sua forma gravitacional. Sabendo que, por definição: Trabalho For Deslocamento= ça x Considerando um sistema de peso P mg= , cujo centro de gravidade está localizado a uma altura z em relação ao plano horizontal de referência (PHR) considerado, temos: z P = mg PHR CG Figura 1 - Representação esquemática para avaliação da energia potencial gravitacional Fonte: adaptada de Brunetti (2008). Assim, como E WP = : W = mg . z = mgz EP mgz= Estaremos interessados principalmente nas diferenças de energias potenciais de um ponto a outro do fluido. Dessa forma, o PHR geralmente será adotado, por conve- niência, no nível de um dos pontos que estão sendo comparados. 173UNIDADE 5 Energia Cinética (EC ) Outro conceito que você também viu em física é que a energia cinética é aquela associada ao movimento (nesta disciplina, estudaremos o movimento dos fluidos). Considere um sistema de massa m e velocidade v, como o da figura a seguir: m vCG Figura 2 - Representação esquemática para avaliação da energia cinética Fonte: Brunetti (2008, p. 86). A energia cinética associada a este movimento pode ser avaliada pela equação: E mvC = 2 2 Energia de Pressão ( EPr ) De forma semelhante à energia potencial, é também possível analisar o trabalho potencial das forças de pressão presentes em um escoamento de fluido. Por exemplo, considere o elemento infinitesimal de fluido representado pela figura a seguir: ds dt dV A p F = p.A Figura 3 - Representação esquemática para avaliação da energia de pressão Fonte: Brunetti (2008, p. 86). 174 Equação da Energia no Regime Permanente Se a pressão p for uniforme na seção de área A, e considerando a definição de pressão, temos que F p A= . . Agora, se pela ação desta força F o flui- do percorre umadistância ds em um intervalo de tempo dt, surge o seguinte termo de trabalho: Trabalho For a Deslocamento= = = = ç x dW F ds p A ds p dV. . Por definição, temos que dEPr = dW, e, portanto: dE p dVPr = Integrando: E p dV VPr � � Energia Mecânica Total do Fluido (EM) Podemos entender a energia mecânica total de um sistema de fluido como a somatória das energias associadas a ele, excluindo-se as energias térmi- cas e mantendo apenas as causadas por efeitos mecânicos. Assim: E E E E E mgz mv p dV M P C M V � � � � � � � Pr 2 2 Com estes conceitos definidos, podemos partir para a famosa equação de Bernoulli. 175UNIDADE 5 A equação de Bernoulli é, essencialmente, um balanço de energia entre dois pontos de um escoamento, que faz uso de diversas hipóteses simplificadoras para facilitar a interpretação dos problemas. Naturalmente, simplificar o proble- ma tende a produzir resultados cada vez mais distantes da realidade, por isso, a importância desta equação se dá por dois aspectos: primeiro, apresenta grande significado conceitual sobre o escoamento de um fluido; e segundo, serve como etapa inicial para a elaboração de uma equação geral da energia mais rigorosa e detalhada. Equação de Bernoulli 176 Equação da Energia no Regime Permanente Seis hipóteses devem ser consideradas: a) Condição de regime permanente. b) Fluido ideal (viscosidade nula e, consequentemente, sem perdas por atrito). c) Fluido incompressível. d) Sem troca de calor. e) Sem trabalho de eixo, ou seja, sem bombas, turbinas, ventiladores ou outros dispositivos que realizem trabalho (positivo ou negativo) no sistema. f) Propriedades uniformes nas seções do escoamento. Como mencionado, a equação de Bernoulli compara dois pontos do escoamento. Assim, para facilitar a visualização, considere o esquema a seguir, em que será consi- derado um trecho infinitesimal do escoamento em duas seções distintas: z2 v1 dm2 dV2 dV1 PHR dt v2p2 p1 dm1 z1 (1) (2) Figura 4 - Representação esquemática de um elemento infinitesimal do escoamento Fonte: Brunetti (2008, p. 87). Tenha sua dose extra de conhecimento assistindo ao vídeo. Para acessar, use seu leitor de QR Code. 177UNIDADE 5 Primeiramente, vamos escrever a equação da energia mecânica, na forma infinitesi- mal, para ambas as seções: dE dm gz dm v p dV dE dm gz dm v p dV M M 1 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 � � � � � � Agora, considerando as hipóteses descritas anteriormente, note que as hipóteses (b), (d) e (e) juntas significam que não é retirada nem fornecida energia ao fluido. Assim, para que a condição de regime permanente seja válida, o sistema deve obedecer à relação: E E E E entra sai entra sai � � � 0 Observe que a entrada do sistema é a seção 1, enquanto a saída é a seção 2. Dessa forma, podemos igualar as energias mecânicas dEM1 e dEM 2 : dE dE dm gz dm v p dV dm gz dm v p dV M M1 2 1 1 1 1 2 1 1 2 2 2 2 2 2 22 2 � � � � � � Esta equação pode ser simplificada utilizando a definição de massa específica, que pode ser escrita da seguinte forma: r r � � � dm dV dV dm Assim, substituindo dV1 e dV2: dm gz dm v p dm dm gz dm v p dm1 1 1 1 2 1 1 1 2 2 2 2 2 2 2 22 2 � � � � � r r Como estamos considerando a hipótese de fluido incompressível, temos que ρ1 = ρ2. Além disso, como estamos em regime permanente, você sabe que o princípio de conservação da massa também deve ser válido. Assim, sabemos que dm1 = dm2. Simplificando: gz v p gz v p1 1 2 1 2 2 2 2 2 2 � � � � � r r 178 Equação da Energia no Regime Permanente Na prática, esta já é a tão aguardada equação de Bernoulli. Por fim, as últimas simpli- ficações desta equação podem ser feitas de duas maneiras. A primeira é multiplicando a equação por ρ: r r r rgz v p gz v p1 1 2 1 2 2 2 22 2 � � � � � A segunda simplificação consiste em dividir a equação de Bernoulli por g e utilizar a relação do peso específico γ ρ= g : z v g p z v g p 1 1 2 1 2 2 2 2 2 2 � � � � � g g Qualquer uma destas três últimas formas são usos válidos da equação de Bernoulli. A importância destas simplificações distintas reside na interpretação de cada termo. Quanto à última simplificação da Equação de Bernoulli (que será a simplificação utilizada neste livro), os termos podem ser interpretados como “cargas” (assim como estudado na Unidade 3), pois possuem dimensão de comprimento. • z é a carga de elevação; representa a energia potencial do fluido. • vg 2 2 é a carga de velocidade, que corresponde à altura necessária para que um fluido atinja a velocidade v durante uma queda livre sem atrito. • p g é a carga de pressão que, conforme estudado na Unidade 3, equivale à altura de coluna de fluido necessária para produzir a pressão estática p. Assim, pode-se afirmar que a equação de Bernoulli nesta forma calcula a carga total (H) do escoamento, a qual é constante ao longo de uma linha de corrente, conside- rando as hipóteses simplificadoras pertinentes. z v g p H� � � � 2 2 g constante (ao longo de uma linha de corrente) É importante também que você note que estes termos correspondem à energia por unidade de peso. Por exemplo: z mgz mg E P z E P LP P� � � � �[ ] [ ] [ ] Caso se interesse, faça a análise dimensional dos termos v g 2 2 e p g , seguindo o mesmo raciocínio: você deseja chegar na razão energia/peso. Naturalmente, a análise dimen- sional te confirmará que os termos possuem dimensão de comprimento. 179UNIDADE 5 Apesar de ser matematicamente simples e de estar sujeita a diversas simplificações, a Equação de Bernoulli não deve ser subestimada! Ela é uma ferramenta bastante eficiente e seus resultados podem ser úteis na prática para avaliações rápidas ou como estimativas iniciais. Contudo, fique atento: os problemas mais complexos exigem expertise do aluno em saber como abordá-los, quais pontos devem ser analisados e o que pode ser abstraído do sistema em estudo. Por isso, o próximo passo é colocar as mãos à obra! Um manômetro diferencial, cujo fluido manométrico é mercúrio (γHg = 136000 N/ m³), é acoplado a um tubo de Venturi, em que a água (γH₂O = 10000 N/m³) escoa uni- formemente em regime permanente, sob condições de fluido ideal e sem ganho ou perda de energia. Considerando a figura a seguir, se a seção (1) tem 30 cm² e a seção (2) tem 15 cm², qual a vazão de água escoando por este tubo? Adote g = 9,8 m/s². h = 18 cmH2O H2O H2O Hg (2) (1) Solução: Primeiramente, observe que as condições enunciadas permitem o uso da equação de Bernoulli. Em segundo lugar, foque no objetivo do problema: desejamos calcular a vazão do escoamento. A equação de Bernoulli por si só não trabalha com vazões diretamente; contudo, um dos parâmetros dela é a velocidade do escoamento, que pode ser usada para calcular a vazão. Assim, sendo a equação de Bernoulli entre os pontos 1 e 2: z v g p z v g p 1 1 2 1 2 2 2 2 2 2 � � � � � g g Observe que, independentemente do plano horizontal de referência que você definir, os pontos 1 e 2 estão à mesma altura z. Isto é, z1 = z2: v g p v g p v v g p p1 2 1 2 2 2 2 2 1 2 1 2 2 2 2 � � � � � � � g g g 1 EXEMPLO 180 Equação da Energia no Regime Permanente Como não conhecemos nenhuma das velocidades ou pressões, é necessário recorrer a outras equações para resolver o problema. Podemos usar a equação manométrica para avaliar a diferença de pressão p1 – p2. Partindo do ponto 1 e indo para o ponto 2 por meio da equação manométrica: p h h p p p h h p p N m H O Hg Hg H O 1 2 1 2 1 2 2 2 136000 10000 � � � � � � � � � g g g g . . . . ( ) 33 1 2 2 0 18 22680 . , m p p N m � � Isto resolve duas das quatro incógnitas da equação de Bernoulli. Assim, é necessário mais uma equação para resolver o problema. Você tem algum palpite de qual seria? Se você pensou na equação da continuidade, acertou! Para as seções 1 e 2, como o escoamento é incompressível, a equação da continuidade pode ser escrita na forma volumétrica:Q Q v A v A v v A A v v cm cm v 1 2 1 1 2 2 1 2 2 1 1 2 2 2 215 30 2 � � � � � � . . 181UNIDADE 5 Substituindo os resultados da equação manométrica e da equação da continuidade na equação de Bernoulli, podemos determinar as velocidades do escoamento em ambas as seções: v v g p p v v g p p v 2 2 1 2 1 2 2 2 2 2 1 2 2 2 2 2 2 3 4 2 9 8 � � � � �� � � � � � � �� � � � � � � g g . . , mm s N m N m v m s v m s v m s 2 2 3 2 2 2 2 2 1 22680 10000 59 27 7 70 3 85 . , , , � � � � Finalmente, basta voltar este resultado à equação da continuidade que o problema estará resolvido: Q v A m s cm m cm m s Q v A m s 1 1 1 2 2 4 2 3 2 2 2 3 85 30 1 10 0 01155 7 70 1 = = = = = . , . , . , . 55 1 10 0 01155 0 01155 11 55 2 2 4 2 3 1 2 3 cm m cm m s Q Q m s L s = = = = , , , Note que este exemplo abordou três grandes assuntos que você estudou até aqui: as equações manométricas, da continuidade e de Bernoulli. Isto é comum nos problemas de mecânica dos fluidos e por isso é importante que você tenha se apropriado dos conceitos abordados nas unidades anteriores para que não tenha dificuldades na resolução dos exercícios. Isso irá desenvolver as competências de visão macro e pensamento analítico, essenciais para o profissional de Engenharia. 182 Equação da Energia no Regime Permanente Os tubos de Pitot são essencialmente pequenos tubos com sua extremidade aberta alinhada ao escoamento, dobrados em ângulo reto e geral- mente acoplados a um piezômetro. Eles permi- tem mensurar a velocidade do escoamento e são empregados tanto industrialmente quanto para medir a velocidade do ar em carros de corrida e jatos de combate da força aérea. Esta medição é feita com base justamente nas equações que você tem estudado até aqui. Vamos verificar isto por meio de um exemplo. Medida da Velocidade com Tubo de Pitot 183UNIDADE 5 Água (γ = 10000 N/m³) escoa por um tubo de seção circular, cujo diâmetro é de 8 cm. Para avaliar a velocidade do escoamento no eixo do tubo, instala-se um tubo de Pitot, como representado na figura a seguir. Determine a vazão no tubo, considerando escoa- mento uniforme. Adote g = 10 m/s² e γm = 136000 N/m³. 4 cm γ = 104 N/m3 γ m = 1,36 x 105 N/m3 Solução: Iremos estudar o problema por meio da equação de Bernoulli e da equação mano- métrica. Considere a representação a seguir: h v (1) (2) γ m γ O fluido (água) está escoando pela tubulação, da esquerda para a direita, até que em uma determinada seção da tubulação (linha pontilhada) as partículas se deparam com a entrada de um tubo de Pitot e um piezômetro conectados entre si pelo fluido manométrico disposto em um manômetro de tubo em U. Como o piezômetro está posicionado tangente ao escoamento, ele medirá apenas a pressão estática do fluido. O tubo de Pitot, por outro lado, está posicionado diretamente no sentido do escoa- mento do fluido, de modo que as partículas, ao incidirem no ponto (2), perdem toda sua velocidade, transformando sua energia cinética em efeito de pressão. Basicamente: enquanto ambos os lados estão sujeitos à pressão estática do escoa- mento, o fluido manométrico é mais empurrado para baixo no tubo de Pitot, pois as partículas de fluido perdem sua energia cinética se chocando continuamente no ponto (2), que por isto é chamado de “ponto de estagnação” ou “ponto de parada”. 2 EXEMPLO 184 Equação da Energia no Regime Permanente Como os pontos (1) e (2) estão muito próximos, é razoável considerar que as perdas de energia entre eles sejam desprezíveis. Assim, assumindo que as demais hipóteses da equação de Bernoulli são válidas, pode-se escrever: H H z v g p z v g p 1 2 1 1 2 1 2 2 2 2 2 2 � � � � � � g g Repare que, como estamos considerando que os pontos (1) e (2) estão no mesmo plano horizontal de referência ( z z1 2= ) e que no ponto de estagnação (2) observa-se v2 0= , a equação fica: v g p p1 2 1 2 2 � � g g Lembre-se que o principal intuito de um tubo de Pitot é mensurar a velocidade do escoamento. Assim, pode-se isolar v1 nesta equação, para chegar à seguinte forma: v g p p1 2 12� �� � � � � �g Como estão conectados pelo tubo em U, é possível relacionar p1 e p2 por meio da equação manométrica que, neste caso, é dada por: p h h pm1 2� � �g g. . Rearranjando esta equação, é possível escrever: p p h p p h m m 2 1 2 1 1 � � � � � � � � � � � � ( ) . . g g g g g 185UNIDADE 5 Substituindo este resultado na equação anterior para a velocidade do escoamento (v1), temos: v g hm1 2 1� � � � � � � � g g . Estas duas equações para v1 são importantes, pois permitem determinar a velocidade do escoamento no ponto em que o tubo de Pitot está instalado de maneira simples e rápida, bastando conhecer os fluidos envolvidos e a diferença de pressão causada pela energia cinética do escoamento. Em posse disto, é fácil resolver o exemplo em estudo. Verificando v1 : v m s N m N m m v m s 1 2 3 3 1 2 10 136000 10000 1 0 04 3 17 � � � � � � �� � � � � �� � . . , , Como estamos considerando escoamento incompressível e uniforme, ou seja, em que a velocidade do escoamento é a mesma em todos os pontos da seção analisada, a vazão pode ser facilmente determinada: Q m s m Q m s � � � � � � � � 3 17 3 14 0 08 2 0 016 2 3 , . , . , , 186 Equação da Energia no Regime Permanente É importante notar que, se o escoamento não fosse considerado uniforme, o tubo de Pitot poderia ser utilizado para medir a velocidade em diferentes pontos da seção, para montar um diagrama de velocidades (como na figura a seguir), o qual poderia ser utilizado para obter uma nova vazão média mais precisa e condizente com a realidade. Figura 5 - Diagrama de velocidades de um escoamento em tubo cilíndrico Fonte: adaptada de Brunetti (2008). Além disso, é importante mencionar que o tubo de Pitot também pode ser utilizado para medir a velocidade de fluidos compressíveis, mas os métodos para tanto são mais rigorosos e não serão tratados neste material. No dia 01 de junho de 2009, o voo AF 447, que ia do Rio de Janeiro a Paris, caiu no Oceano Atlântico, matando 228 passageiros e membros da tripulação. Um dos problemas relatados foi a inconsistência nas medições de velocidade, que ocorreu devido ao congelamento e obstrução dos tubos de Pitot da aeronave por cristais de gelo. Fonte: Laranjeira (2019, on-line)1. Agora que você conhece a equação de Bernoulli e suas aplicações fundamentada em diversas hipóteses simplificadoras, é hora de remover uma destas hipóteses, para que você seja capaz de lidar com uma quantidade ainda maior de problemas cada vez mais próximos da realidade. 187UNIDADE 5 Nosso intuito agora será remover a hipótese (d): “sem trabalho de eixo, ou seja, sem bombas, tur- binas, ventiladores ou outros dispositivos que rea- lizem trabalho (positivo ou negativo) no sistema”. Isto significa que estaremos inserindo máquinas aos nossos problemas, as quais poderão fornecer ou retirar energia do escoamento. O raciocínio a seguir será muito simples: ao adicionar máquinas ao sistema, devemos acres- centar um termo na equação de Bernoulli, refe- rente ao trabalho de eixo realizado ou retirado pela máquina. Considere o esquema: M (2) (1) H1 H2 Figura 6 - Representação esquemática de um sistema de escoamento com máquina Fonte: Brunetti (2008, p. 91). Bombas e Turbinas na Equação da Energia 188 Equação da Energia no Regime Permanente Se H1 e H2 são as cargas de pressão nas seções 1 e 2, respectivamente, a equação de Bernoulli (com suas hipóteses simplificadoras, ou seja, sem a máquina M) traz que: z v g p H H � � � � 2 2 g constante (ao longo de uma linha de corrente) 11 2� H Como mencionado, a presença da máquina irá adicionar ou re- mover energia do sistema. Iremos, então, incluir esta quantidade de energia (na forma de carga de pressão) na igualdade acima, indicando-a por HM: H H HM1 2� � Caso a máquinaem questão seja uma bomba ou um ventilador, por exemplo, o termo HM será positivo, pois estas máquinas fornecem energia para o fluido. Se a máquina for uma turbina, o termo HM será negativo, pois ela retira energia do fluido. Expandindo os ter- mos anteriores com a equação de Bernoulli: z v g p H z v g p M1 1 2 1 2 2 2 2 2 2 � � � � � � g g Antes de aplicar esta nova ideia, é importante que você compreen- da o conceito destas máquinas de forma apropriada. Como você sabe, pelo princípio de conservação da energia, a energia fornecida por uma bomba não surge do nada. Da mesma forma, a energia retirada por uma turbina não simplesmente desaparece. Ambas passam por um processo de transformação de energia. Por exemplo, se estivermos considerando uma bomba que utiliza eletricidade, estamos transformando energia elétrica em energia mecânica ao fluido, assim como o processo inverso – uma turbina pode ser usada para transformar a energia mecânica do fluido em energia elétrica (como é o caso das usinas hidrelétricas). Por causa disso, é razoável a ideia de que tais máquinas possuem um input (entrada) e um output (saída) de energia. Isto nos leva ao conceito de rendimento ou eficiência total (ηmáq) da máquina. Bombas e turbinas na equação da energia 189UNIDADE 5 Eficiência (Rendimento): é a razão entre a potência fornecida e a potência recebida pela máquina. Naturalmente, deve ser um valor entre 0 e 1. Uma eficiência de 100% sugere que a conversão de energia foi perfeita, ou seja, sem efeitos de atrito ou outras irreversibilidades que convertam a energia elétrica ou mecânica em energia térmica. Fonte: adaptado de Çengel e Cimbala (2015). Dessa forma, podemos determinar o rendimento de uma máquina por meio da seguinte relação: hmáq á á = Energia fornecida pela m quina Energia recebida pela m qquina Veja que, se pensarmos em uma bomba, podemos escrever: hB ê ê = Pot ncia recebida pelo fluido Pot ncia da bomba Assim, se uma bomba com potência de 100 kW tem um rendimento de 80%, o fluido receberá 80 kW. Para uma turbina, a relação pode ser escrita como: hT ê ê = Pot ncia da turbina Pot ncia cedida pelo fluido Assim, se uma turbina com potência de 100 kW tem um rendimento de 80%, o fluido está cedendo 125 kW. Alguns livros destrincham o rendimento com relação à eficiência mecânica e à efi- ciência do motor/gerador da máquina. Apesar de importantes, na maior parte do tempo, você estará preocupado com o rendimento total da máquina e, por isso, estaremos trabalhando apenas com ele. 190 Equação da Energia no Regime Permanente Utilizaremos a letra N para representar a potência da máquina, seja ela uma bomba ou turbina. Observe que, ao usar a equação de Bernoulli com o termo HM, que foi apresentado neste tópico, o resultado estará com dimensões de carga, ou seja, com- primento. Como geralmente estamos habituados a lidar com potências em unidade de trabalho (energia) por unidade de tempo, a potência propriamente dita pode ser avaliada pela equação: N Q HM= g . . Em que γ é o peso específico do fluido e Q é a vazão volumétrica. No SI, trabalha-se com o watt (W = J/s = N.m/s). Outras unidades comuns são o cavalo-vapor (1 CV = 735 W) e o horse power (1 HP = 1,014 CV). Partiremos agora para um exemplo envolvendo máquinas. É natural que tudo pareça abstrato apenas no conceito, mas você verá que a prática faz sentido facilmente! Considere um grande reservatório de água que, ligado a uma máquina e uma tubu- lação, direciona seu conteúdo para um segundo tanque, a uma vazão de 0,03 m3/s. Se o sistema está configurado como na figura a seguir e sabendo que a área de seção da tubulação é de 15 cm², descubra se a máquina em questão é uma bomba ou uma turbina e, em seguida, determine a sua potência para um rendimento total de 80%. Adote γH2O = 10000 N/m³ e g = 10 m/s² e considere o fluido incompressível. 30 m 20 m (2) M (1) Solução: Lembre-se sempre que o primeiro passo para resolver problemas de mecânica dos fluidos é verificar quais hipóteses simplificadoras você precisará adotar para resolver o problema de forma adequada. Primeiramente, serão consideradas as hipóteses necessárias para o uso da equação de Bernoulli, com exceção da ausência de uma máquina, permitindo escrever: z v g p H z v g p M1 1 2 1 2 2 2 2 2 2 � � � � � � g g 3 EXEMPLO 191UNIDADE 5 Em segundo lugar, serão considerados os pontos (1) e (2) na superfície livre do re- servatório e na saída da tubulação, respectivamente, como identificado na figura. Evidentemente, por estar sendo descarregado, o nível do reservatório iria diminuir ao longo do tempo. Contudo, devido ao seu tamanho (grandes dimensões), é razoá- vel considerar que, dentro de certo intervalo de tempo, o nível irá variar de forma desprezível, podendo ser considerado constante. Isso é necessário para a hipótese de regime permanente. Note que o mesmo raciocínio não é necessário para o segundo tanque, pois o limite do nosso sistema é a saída da tubulação, que não o inclui. Além disso, esta consideração de “grandes dimensões” também significa que a velocidade do fluido em 1 será praticamente nula ( v1 0= ). z p H z v g p M1 1 2 2 2 2 2 � � � � � g g Veja na figura que as cotas z1 e z2 estão dadas com relação a um plano horizontal de referência localizado praticamente na base da tubulação (as dimensões do tubo são pequenas perto das cotas em questão). 30 20 2 1 2 2 2m p H m v g p M� � � � �g g Como tanto o nível do tanque (1) quanto a saída da tubulação (2) estão abertos para a atmosfera, ambos os termos de carga de pressão se anulam: p p p escala efetiva m H m v g atm M 1 2 2 2 0 30 20 2 � � � � � � ( ) Tenha em mente que nosso objetivo com esta equação é determinar HM. Para isso, v2 pode ser avaliado por meio da equação da Continuidade: v Q A v m s m m s 2 2 2 3 2 0 03 0 0015 20 = = = , , 192 Equação da Energia no Regime Permanente Com isso, podemos retornar à equação anterior para calcular a carga fornecida ou removida pela máquina: H m m s m s m H m M M � � � � � � � � � � 20 20 2 10 30 10 2 2. Este resultado significa que a máquina é responsável por fornecer uma carga de pres- são equivalente a 10 m ao escoamento. Do contrário, ele não teria energia suficiente para chegar à saída (2), na velocidade de 20 m/s. Como este valor é positivo (energia foi fornecida), a máquina em questão é uma bomba. O passo final é determinar a potência desta bomba – para isso, é necessário, pri- meiro, converter este valor de carga em potência: N Q H N N m m s m W M= = = g . . . , .10000 0 03 10 30003 3 Tenha cuidado! Esta é a potência fornecida ao fluido. Para avaliar a potência da máquina, como solicitado pelo enunciado, é necessário utilizar o seu rendimento: h h B B B B ê ê N N N � � � Pot ncia recebida pelo fluido Pot ncia da bomba �� � � � N N N W N kW B B B B h h 3000 0 80 3 75 , , Isto significa que a bomba em questão consome uma potência de 3,75 kW para acrescentar uma potência de 3 kW ao escoamento. Como você pode perceber, os exercícios vão se tornando mais extensos à medida que novos conceitos são integrados, e saber quais hipóteses simplificadoras são ade- quadas para solucionar o problema é um aspecto vital para o sucesso do seu estudo e aprimoramento do conhecimento. Contudo, aguente firme, porque o passo seguinte é remover mais uma das considerações utilizadas na equação de Bernoulli! 193UNIDADE 5 Indo direto ao ponto: não iremos mais considerar o fluido como ideal. Isto significa que os efeitos da viscosidade (atrito) entram em jogo e precisam ser equacionados. Contudo, não se desespere, pois se- rão mantidas as hipóteses de regime permanente, fluido incompressível, escoamento uniforme na seção e sem troca de calor com o meio. O raciocínio é praticamente o mesmo que fize- mos ao introduzir as máquinas no sistema: iremos incorporar um único termo à nossa equação, re- ferente à dissipaçãode energia devido aos efeitos viscosos. Considere o sistema a seguir: (1) (2) H1 H2 Hp1, 2 Figura 7 - Representação da dissipação de energia em um escoamento Fonte: Brunetti (2008, p. 95). Equação da Energia para Fluidos Reais 194 Equação da Energia no Regime Permanente Como já vimos, em condições perfeitas, a equação de Bernoulli seria válida: H H1 2= Os efeitos viscosos removem energia do sistema, como indicado pela seta Hp1 2, na Figura 7. Fazendo o balanço de energia, na forma de carga de pressão: H H Hp1 2 1 2� � , Por ser essencialmente uma perda de energia do escoamento, o termo Hp1 2, é geralmente chamado de “perda de carga”. Na prática, esta expressão é utilizada para se referir a diversas perdas de energia do escoamento relacionadas à tubulação, en- globando outros fatores além do atrito, como curvas e cotovelos na tubulação ou a presença de válvulas e outros dispositivos. Dessa forma, a partir da equação de Bernoulli, com a presença de uma máquina entre (1) e (2), e considerando a dissipação de energia por efeitos viscosos, podemos escrever a equação da energia: z v g p H z v g p HM p1 1 2 1 2 2 2 2 2 2 1 2 � � � � � � � g g , A perda de carga pode ser convertida para a forma de potência dissipada, assim como fizemos com a potência das máquinas: N Q Hdiss p= g . . ,1 2 Uma bomba de 12 kW e eficiência de 78,5% é utilizada para levar a água de um lago até um tanque, como na figura a seguir. Se a vazão de operação é de 25 L/s, determine a perda de carga deste sistema. Adote γH₂O = 9800 N/m³ e g = 9,8 m/s² e considere que tanto o lago quanto o tanque apresentam grandes dimensões. (1) (2) 30 m Tanque Lago 4 EXEMPLO 195UNIDADE 5 Solução: Este problema envolve a presença de uma máquina no escoamento e perda de carga na tubulação. Considerando as hipóteses de regime permanente, fluido incompres- sível, propriedades uniformes na seção e sem troca de calor, podemos usar a equação da energia na forma: z v g p H z v g p HM p1 1 2 1 2 2 2 2 2 2 1 2 � � � � � � � g g , Adotando como ponto (1) a superfície do lago e como ponto (2) a superfície do tanque, podemos fazer mais algumas considerações. A primeira delas é com relação às pressões p1 e p2 que, por estarem abertas à atmosfera, podem ser aproximadas como a própria pressão atmosférica do ambiente: p p p z v g H z v g H atm M p 1 2 1 1 2 2 2 2 0 2 2 1 2 � � � � � � � � , Podemos também considerar que as dimensões em questão são grandes o suficiente para que as variações nos níveis do lago e do tanque sejam desprezíveis, podendo as alturas z1 e z2 ser consideradas constantes, e as velocidades v1 e v2 nulas: v v z H z HM p 1 2 1 2 0 1 2 � � � � � , Veja que a cota fornecida na figura é conveniente para adotar como plano horizontal de referência a superfície do lago, de modo que: z z m H m HM p 1 20 30 30 1 2 � � � � ; ( ) , 196 Equação da Energia no Regime Permanente Agora, é necessário determinar HM. Como conhecemos a potência e a sua eficiência da bomba, basta determinar primeiro a potência fornecida pela bomba ao fluido e, então, converter este valor para uma carga: η η γ γ B B B B M M M N N N N N kW kW W N Q H H N Q H � � � � � � � � � � . , . , . . . 0 785 12 9 42 9420 99420 9800 0 025 38 45 3 3 W N m m s m . , ,� Retornando na equação da energia, determina-se a perda de carga: ( , ) ( ) , , , 38 45 30 8 45 1 2 1 2 m m H H m p p � � � Em termos de potência dissipada: N Q H N N m m s m N W diss p diss diss � � � � g . . . , . , , ,1 2 9800 0 025 8 45 2070 25 3 3 22 07, kW Agora, faremos uma última observação com relação à equação da energia. Assim como fizemos com a equação da continuidade, também podemos escrever a equa- ção da energia para situações com mais de uma entrada ou uma saída. O raciocínio é o mesmo: deve-se fazer a somatória de todas as energias que entram e que saem e avaliar também a presença de uma (ou mais) máquinas e as perdas de carga. De forma genérica, considere o sistema a seguir, com n entradas e saídas: M N1e Ndiss N2e Nne Nns (1e) (1s) (2e) N2s N1s (2s) (n )e (n )sN Figura 8 - Representação esquemática de um sistema com múltiplas entradas e saídas Fonte Brunetti (2008, p. 101). 197UNIDADE 5 O índice “e” remete às entradas, e o índice “s” às saídas. Seguindo os princípios de conservação de energia, como fizemos até o momento, podemos escrever, na forma de potência (energia por tempo): g g. . . .Q H N Q H N e s diss� � � � � � �� � Em que: • H v g p z� � � 2 2 g em cada seção. • N Q HM= g . . pode ser positivo (se for uma bomba) ou negativo (se for uma turbina). • N Q Hdiss P��g . . com Q e HP referindo-se a cada trecho do escoamento. Note-se que, mesmo com múltiplas entradas e saídas, as hipóteses consideradas até o momento para o desenvolvimento destas equações ainda devem ser válidas. O objetivo desta unidade é fazer uma análise da energia dos escoamentos em regime permanente, baseada no princípio da conservação da energia. Em situações perfeitas, vimos que a equação de Bernoulli é aplicável – contudo, sabemos que a realidade nunca é perfeita e, por isso, removemos duas importantes simplificações da equação de Bernoulli em busca de uma equação da energia mais geral. Com o que vimos até aqui, você já pode avaliar sistemas simples de tubulações e dizer se uma bomba será necessária ou não para levar o fluido de um ponto a outro, por exemplo. Poderíamos ir adiante e remover as hipóteses de escoamento uniforme e fluido incompressível, mas como isto iria além do escopo desta disciplina, os alunos que despertarem interesse podem recorrer à literatura de referência para encontrar desenvolvimentos matemáticos mais rigorosos em busca de uma equação da energia geral. Na próxima unidade, nossos objetos de estudo serão os efeitos causados pela tubulação no escoamento. Esteja bem preparado e com o conteúdo visto até aqui bastante esclarecido, pois ele será vital para a continuação do seu aprendizado! 198 Você pode utilizar seu diário de bordo para a resolução. 1. Um grande tanque, cheio de água e aberto para atmosfera, é descarregado por uma saída próxima ao fundo do tanque. Determine a velocidade de saída da água se o nível do tanque em relação ao fundo é de 10 metros. Adote g = 9,8 m/s². 1 2 Água 10 m V2 0 z 2. Tubos convergentes-divergentes podem ser utilizados para produzir vácuo. Como na figura a seguir, basta utilizar um fluido, tal como água, em uma vazão adequada para que uma depressão seja criada na garganta. Considerando a hipótese de fluido ideal e sem perda de carga, qual deve ser o diâmetro da gar- ganta (2) para que uma vazão de 8 kg/s produza uma depressão equivalente a 250 mmHg na câmara? Dados: D1 = 12 cm; ρH2O = 1000 kg/m³; ρHg = 13600 kg/ m³; g = 10 m/s². CÂMARACÂMARA Patm (1) (2) H2O 199 3. Certa turbina de uma usina hidrelétrica é capaz de produzir 60 MW de energia elétrica, com uma eficiência total de 80%. A movimentação desta turbina é feita com a captação de água localizada em um nível superior (1) que é então direcionada para um nível inferior (2), sendo ambos grandes corpos d’água. Considerando os dados da figura a seguir, calcule a perda de carga associada ao processo. Adote ρH2O = 1000 kg/m³; g = 9,8 m/s². 100 m 1 2 Q = 120 m3/s H Turbina = 80%Turbina = ?p1,2 η 200 Animação desenvolvida pelo TED-Ed que trata de como a energia se comporta na natureza e de como ela se conserva. Conteúdo em inglês, com legendas disponíveis em português. Para acessar, use seu leitor de QR Code. WEB Vídeo desenvolvido pelo Portal Aeronáutico Trem de Pouso que explica o funcio- namento do tubo de pitot e do sistema pitot-estático em aeronaves. Conteúdo em português. Para acessar, use seu leitor de QR Code. WEB http:// http:// 201 BRUNETTI, F. Mecânica dos Fluidos. 2. ed. São Paulo: Pearson Prentice Hall, 2008. ÇENGEL, Y. A.; CIMBALA, J. M.Mecânica dos fluidos: fundamentos e aplicações. 3. ed. Brasil: AMGH Editora, 2015. WELTY, J. R.; RORRER, G. L.; FOSTER, D. G. Fundamentos de Transferência de Momento, de Calor e de Massa. 6. ed. São Paulo: Editora LTC – GEN (Grupo Editorial Nacional), 2017. REFERÊNCIA ON-LINE ¹Em: https://aeromagazine.uol.com.br/artigo/conclusoes-sobre-o-voo-af447_4304.html. Acesso em: 07 out. 2019. 202 1. Considerando que as hipóteses simplificadoras necessárias para o uso da equação de Bernoulli são válidas, e de que o tanque tem dimensões grandes o suficientes para considerar que z1 seja constante e que v1 = 0: z v g p z v g p z p z v g p 1 1 2 1 2 2 2 2 1 1 2 2 2 2 2 2 2 � � � � � � � � � g g g g Como tanto o tanque quanto o tubo de descarga estão abertos para a atmosfera, temos que p1 = p2 = patm = 0 (escala efetiva) e, portanto: z z v g1 2 2 2 2 � � Adotando o fundo do tanque como plano horizontal de referência e considerando que a distância do tubo de descarga ao fundo é desprezível, temos que z1 = 10 m e z2 = 0 m. Então, basta substituir estes valores na equação e resolver para a velocidade de descarga: 10 0 2 9 8 196 14 2 2 2 2 2 2 2 2 m m v m s m s v v m s � � � � . , 2. Considerando que o problema atende às hipóteses simplificadoras da equação de Bernoulli (regime per- manente, fluido ideal, ausência de máquina, sem troca de calor e escoamento uniforme), é possível utilizar a equação entre a saída do tubo (1) e a garganta (2): z v g p z v g p 1 1 2 1 2 2 2 2 2 2 � � � � � g g 203 Independentemente do plano horizontal de referência adotado, os centros das seções (1) e (2) estarão locali- zados à mesma altura z1 = z2. Assim: v g p v g p1 2 1 2 2 2 2 2 � � � g g Sabemos que (1) está aberta para o ambiente, enquanto em (2) deve estar em depressão de 250 mmHg. Como visto nas unidades anteriores, o conceito de “depressão” indica o quanto a pressão mensurada está abaixo da pressão atmosférica. Então, pode-se escrever: p p p p mmHg p p mmHg mHg v g p v atm atm1 2 1 2 1 2 1 2 2 250 250 0 250 2 � � � � � � � � ; , g 22 2 2 1 2 2 2 1 2 g p p p v v g � � � � � g g Para converter a diferença de pressão (p1 – p2) de mmHg para o SI, pode-se utilizar a relação: p g h p kg m m s m p p p Pa kPa � � � � � � r . . . . , ( ) 13600 10 0 250 34000 34 3 2 1 2 Lembrando-se da definição de peso específico e substituindo os valores conhecidos: γ ρ ρ � � � � � � � � . . . g p p v v Pa kg m v v v v m 2 2 34000 1000 68 1 2 2 2 1 2 3 2 2 1 2 2 2 1 2 2 ss2 204 Como é fornecida a vazão mássica de água e o diâmetro da seção (1), considerando que a seção transversal da tubulação é circular, é possível avaliar v1: Q v A A D v Q A Q D v kg s kg m m m � � � � � � � � � � � � � � � � � ρ π ρ ρ π . . ; . . . . 2 2 8 1000 2 2 1 mm m v m s 3 2 1 3 14 0 12 2 0 71 . , . , , � � � � � � � � Agora, é possível retornar e avaliar v2: v m s m s v m s 2 2 2 2 2 2 0 71 68 8 22 �� � � � � � � � , , Em posse deste resultado, basta retornar na equação utilizada para calcular v1, mas agora para a seção v2: Q v A v D D Q v kg s kg m m m H O � � � � � � � � � � ρ ρ π ρ π . . . . . . . . , 2 4 4 8 1000 8 22 2 2 2 32 mm s D cm . , , 3 14 3 52 � 3. O problema em questão pede a perda de carga do processo. Além disso, envolve uma máquina que retira trabalho do sistema – uma turbina. A equação que contempla todos estes efeitos é a equação da energia na forma: z v g p H z v g p HM p1 1 2 1 2 2 2 2 2 2 1 2 � � � � � � � g g , 205 O uso desta equação considera algumas hipóteses, tais como regime permanente, fluido incompressível, es- coamento uniforme e sem trocas de calor. Por serem dois grandes corpos d’água, pode-se considerar também que v1 = v2 = 0, com os níveis de água z1 e z2 permanecendo constantes. Além disso, ambos estão abertos para a atmosfera, de modo que p1 = p2 = patm = 0 (escala efetiva). Dessa forma, a equação simplificada fica: 100 0 1 2 m H m HM p� � � , Como o enunciado fornece a energia produzida por esta turbina e sua eficiência mecânica, é possível medir a potência removida do escoamento: hT TPotência da turbina Potência cedida pelo fluido N N � � � 0 80, 660 75MW N N MW� � Convertendo este valor na forma de carga: N Q H H N Q N g Q H W kg m m s m s H M M M M � � � � � � γ γ ρ . . . . . . . , . 75 10 1000 9 8 120 6 3 2 3 663 78, m Agora, basta retornar este valor à equação da energia para chegar à perda de carga do sistema. Observe que, por se tratar de uma turbina, a carga HM é removida do escoamento pela turbina. Dessa forma, o termo na equação deve ser negativo: 100 63 78 36 22 1 2 1 2 m m H H m p p � � � , , , , 206 207 208 PLANO DE ESTUDOS OBJETIVOS DE APRENDIZAGEM • Introduzir o estudo para determinação da perda de carga e definir os termos: condutos, raio/diâmetro hidráulico e rugosidade. • Desenvolver o conceito de camada limite, partindo da definição do número de Reynolds. • Estudar a determinação das perdas de carga distribuídas e localizadas. • Aplicar a equação da energia em sistemas envolvendo reservatórios, tubos, singularidades e máquinas. Definições Iniciais Camada Limite Instalações de Recalque Perdas de Carga Dr. Rodrigo Orgeda Esp. Henryck Cesar Massao Hungaro Yoshi Escoamento em Condutos Forçados Definições Iniciais Na unidade anterior, você estudou os balanços de energia associados ao escoamento de fluidos em regime permanente. Naquele momento, partimos de uma situação em que seis hipóteses simplifica- doras eram adotadas, resultando na Equação de Bernoulli. Em seguida, levamos esta equação da energia para uma forma mais genérica, incluindo a possibilidade de haver trabalho de eixo no sis- tema e para situações com fluidos reais (presença de efeitos viscosos). Podemos combinar estas duas condições escrevendo a equação da energia na forma de carga de pressão da seguinte forma: H H H HM p1 2 1 2� � � , 211UNIDADE 6 Nesta unidade, nosso objetivo geral será aplicar esta equação em instalações hi- dráulicas, a fim de que você adquira uma visão técnica dos seus aspectos técnicos fundamentais e desenvolva uma noção inicial do que é necessário para desenvolver um projeto de tubulação. Para isso, o primeiro passo é definir alguns dos principais termos a serem usados nesta unidade. Chamaremos de conduto qualquer estrutura sólida destinada ao transporte de fluidos (BRUNETTI, 2008). Em outras palavras, condutos são tubulações ou canais por onde fluidos escoam. Eles podem ser classificados como forçados (quando o fluido o preenche totalmente) ou livres (quando o fluido apresenta uma superfície livre). Para melhor ilustrar estas definições, veja a Figura 1, em que (a) representa um conduto no qual o fluido está em contato com toda a sua parede interna e (b) apresenta dois condutos livres. (a) (b) Superfície livre Superfície livre Figura 1 - Condutos forçados (a) e condutos livres (b) Fonte: Brunetti (2008, p. 164). Uma característica fundamental dos condutos é o chamado raio hidráulico, definido como: R AH = s Em que “ A” é a área transversal de escoamento do fluido, e “s ” é o chamado perímetro “molhado” que, em outras palavras, é o perímetro da seção em que o fluido está em contato com a parede do conduto. Além disso, define-se também o chamado “diâmetro hidráulico” (DH ), dado por: D RH H= 4 A tabela a seguir apresenta os exemplos mais comuns de condutos quanto aos seus parâmetros A , s , RH e DH . Caso esta definição tenha soado confusa, procure chegar você mesmo aos parâmetros RH e DH – é uma boa forma de exercitar o conceito e fixar o conhecimento. 212 Escoamento em Condutos Forçados Tabela 1 - Principais condutos forçados e seus diâmetros hidráulicos ab ab 3a 2 4 Dπ 4 D 4 a 2 ( ) ab a b+ 2 ab a b+ 4 2 ab a b� 2 3 4 a 3 12 a 4a Dπa2 a D 2a + b 2(a + b) 3 3 a 2 ab (a b)+ a a a b a a a a D A RH DHσ Fonte: Brunetti (2008, p. 164). Outra característica importante dos condutos que influenciam no escoamento dos fluidos é a sua rugosidade: pequenas variações de altura na superfície do conduto que contribuem para a perda de carga. É usual definirmos uma “rugosidade uniforme”, para fins de simplificação, que é representada pela letra grega ε e possui dimensões de comprimento. A Figura 2 ilustra este conceito. aspereza εε Figura 2 - Representação geométrica da rugosidade em um conduto circular Fonte: Brunetti (2008, p. 168). 213UNIDADE 6 Dessa forma, a rugosidade costuma ser dada como uma característica do material do conduto. Alguns valores considerados comuns estão apresentados na tabela a seguir para diversos materiais: Tabela 2 - Valores típicos de rugosidade uniforme para materiais comuns de condutos Material Rugosidade (ε) ft mm Vidro, plástico 0 0 Concreto 0,003 – 0,03 0,9 - 9 Madeira 0,0016 0,5 Borracha, alisada 0,000033 0,01 Cobre ou latão 0,000005 0,0015 Ferro fundido 0,00085 0,26 Ferro galvanizado 0,0005 0,15 Ferro forjado 0,00015 0,046 Aço inoxidável 0,000007 0,002 Aço comercial 0,00015 0,045 Fonte: Çengel e Cimbala (2015, p. 295). Em geral, o parâmetro de interesse é, na verdade, a chamada rugosidade relativa, dada pela razão: Rugosidade Relativa = DH e Feitas estas definições, podemos finalmente introduzir um conceito muito importante para os fenômenos de transporte em geral: a camada limite. 214 Escoamento em Condutos Forçados Um conceito importantíssimo no estudo da me- cânica dos fluidos é a chamada camada limite – essencialmente, a camada de fluido de um es- coamento que fica junto à superfície sólida. Ve- remos, a seguir, os aspectos essenciais que regem este fenômeno, sendo importante até mesmo para compreender o escoamento do ar nas asas de um avião. Camada Limite 215UNIDADE 6 Camada Limite em uma Placa Plana Mais uma vez, consideremos uma placa plana de pequena espessura, posicionada paralelamente ao escoamento uniforme de um fluido em regime permanente com velocidade v0 (Figura 3). A experiência nos mostra que o perfil de velocidade do escoamento muda ao se encontrar com a placa devido ao princípio da aderência (discutido na Unidade 2), de modo que a velocidade junto à placa é nula. bordo de fugabordo de ataque seção ao longe x (1) O V0 (2) (3) A B C Figura 3 - Desenvolvimento do escoamento sobre uma placa plana Fonte: Brunetti (2008, p. 165). Observe, pela Figura 3, que quanto mais o fluido escoa ao longo da placa (seções 1, 2 e 3), mais o princípio da aderência afeta o perfil de velocidades do escoamento (os pontos A, B e C indicam a primeira camada de fluido que ainda está na velocidade original do escoamento, v0 ). Evidentemente, estão sendo representados apenas os pontos referentes a três seções do escoamento. Na realidade, para qualquer seção que observarmos sobre a placa, haverá um primeiro ponto indicando a primeira camada de fluido que ainda está na velocidade v0 . Se traçarmos uma linha imaginária que passa por todos estes pontos, podemos dividir o escoamento em duas regiões, como na figura a seguir: 216 Escoamento em Condutos Forçados bordo de fugabordo de ataque seção ao longe x (1) O V0 (2) (3) A B C Figura 4 - Linha conectando todos os primeiros pontos em que a velocidade do escoamento é v0 Fonte: adaptada de Brunetti (2008). Tenha sua dose extra de conhecimento assistindo ao vídeo. Para acessar, use seu leitor de QR Code. A região acima da linha, chamada de “fluido livre”, é onde o escoamento tem velocida- de v0 , ou seja, onde ele não é influenciado pela presença da superfície sólida. A região abaixo da linha, por sua vez, é a chamada camada limite – região do escoamento em que os efeitos viscosos e variações na velocidade são significantes. De forma mais simplificada, podemos representar a Figura 4 da seguinte forma: �uido livre x V0 camada limite Figura 5 - Camada limite sobre uma placa plana Fonte: Brunetti (2008, p. 165). 217UNIDADE 6 Para este experimento, a observação nos mostra, ainda, que a espessura ℓ é função do número de Reynolds: Re . . . = = = For as Inerciais For as Viscosas ç ç v D v Dρ µ ν Para este caso, pode ser adaptado na forma: Re . . . x v x v x = = ρ µ ν 0 0 Na prática, o que se observa é que, para Rex < 5 10 5x , as forças viscosas na camada limite são significantes, de modo que o escoamento é laminar, enquanto acima deste valor o escoamento passa para um comportamento turbulento. Por causa disto, é comum chamar este valor de “número de Reynolds crítico”: Recr � �5 10 5 Note que os parâmetros ρ µ γ, , são característicos do fluido, enquanto v0 é carac- terístico do escoamento. Isto significa que o número de Reynolds atinge seu valor crítico para um valor de x suficientemente grande (também chamado de “crítico”): Re . . . . cr cr cr v x x v � � � � � ρ µ µ ρ 0 5 5 0 5 10 5 10 Além disso, duas observações adicionais podem ser feitas. A primeira é de que a espessura da camada limite aumenta repentinamente quando ela passa do regime laminar para o turbulento. A segunda é de que, mesmo após atingir a turbulência, uma camada de espessura (d ) muito fina junto à placa ainda se mostra em compor- tamento laminar, sendo, por vezes, chamada de “subcamada limite laminar”. Todas estas observações estão representadas na figura a seguir: 218 Escoamento em Condutos Forçados CL laminar x V0 CL turbulenta subcamada limite laminar xcr δ δ Figura 6 - Comportamento das camadas limite laminar e turbulenta Fonte: Brunetti (2008, p. 166). A camada limite tem implicações importantes em todo o estudo dos fenômenos de transporte. Aqui, iremos, inicialmente, estudá-la no contexto dos condutos forçados. Camada Limite em Condutos O mesmo comportamento observado para o escoamento sobre uma placa é também presente para o escoamento em condutos, sendo que a única diferença é que devemos analisá-lo de forma radial. Imagine que um fluido livre passa a escoar por uma tubulação. O efeito que se observa é o mesmo: o princípio da aderência faz as camadas de fluido próximas das paredes do conduto terem sua velocidade reduzida, e quanto mais o fluido entra na tubulação, maior é este efeito. Isto acontece progressivamente: atingir o comprimen- to ( Lh ) em que a camada limite preenche todo o conduto, de modo que o perfil de velocidades atinge valores constantes – então, diz-se que o escoamento está “dina- micamente estabelecido”. �uido livre Lh camada limite r R diagrama variável regime dinamicamente estabelecido Entrada da tubulação Região de escoamento irrotacional V V xmax Figura 7 - Desenvolvimento da camada limite em condutos forçados Fonte: adaptada de Brunetti (2008). 219UNIDADE 6 Para condutos de seção circular, o escoamento será laminar para: Re � � ρ µ vD 2000 Nestes casos, o perfil de velocidades observado é parabólico, da forma: v v r R � �� � � � � � � � � � � � � � max 1 2 Para o escoamento turbulento (Re > 2400 ), o regime dinamicamente estabelecido geralmente apresenta um perfil aproximado da forma: v v r R � �� � � � � �max 1 1 7 Sendo frequentemente chamado de “perfil da lei de potência 1/7”. Agora que você sabe como o escoamento acontece dentro dos condutos forçados, é hora de dar o próximo passo no nosso estudo da equação da energia: conhecer as perdas de carga existentes em instalações hidráulicas. Escoamento dos fluidos Comprimento de Entrada (Lh): também cha- mado de comprimento crítico, é aquele que vai desde a entrada do conduto até a junção das camadas limites no centro dele. Esta região é também chamada de “região de entrada”, e a partir desde comprimento, o escoamento é dito “completamente desenvolvido” ou “dinamica- mente estabelecido”. Fonte: adaptado de Çengel e Cimbala (2015). 220 Escoamento em Condutos Forçados Como estudamos anteriormente, chamamosde “perda de carga” as perdas de energia de um escoa- mento na forma de energia por unidade de peso do fluido (ou seja, com dimensões de compri- mento). No contexto das instalações hidráulicas, é comum estudar a perda de carga separando-a em dois grupos: • Perda de Carga Distribuída ( h f ): aquela que surge devido aos efeitos de atrito ao longo do escoamento, sendo mais signifi- cante na presença de trechos relativamente longos de tubulação. • Perda de Carga Singular ( hs ): aquelas que acontecem devido à presença de “sin- gularidades”, sendo elas válvulas, obstácu- los, estreitamentos, curvas e cotovelos (mu- danças de direção) na linha, entre outros. Perdas de Carga 221UNIDADE 6 Por exemplo, veja o esquema a seguir: (0) (1) (3) (2) (4) (5) (6) Figura 8 - Representação das perdas de carga em uma instalação hidráulica arbitrária Fonte: Brunetti (2008, p. 168). As perdas distribuídas, como o nome sugere, estão distribuídas ao longo de todo o comprimento da tubulação (1 a 6). As perdas localizadas, por sua vez, estão nos estreitamentos (1) e (4), nos cotovelos (2) e (3), e na válvula (5). De forma genérica, podemos representar o termo de perda de carga da equação da energia (Hp1 2, ) matematicamente como a soma das perdas de carga distribuídas com as perdas de carga localizadas: H h hp f s1 2, � �� � Perda de Carga Distribuída Assim como feito frequentemente nas unidades anteriores, o estudo das perdas de carga distribuídas requer que algumas hipóteses sejam estabelecidas. São elas: a) Regime permanente e fluido incompressível. b) Condutos longos. c) Condutos cilíndricos (seção transversal constante). d) Escoamento dinamicamente estabelecido (completamente desenvolvido). e) Rugosidade uniforme. f) Ausência de máquinas (dispositivos que realizam trabalhos). 222 Escoamento em Condutos Forçados Matematicamente, podemos partir das equações fundamentais que estudamos até o momento para tentar expressar (e mensurar) a perda de carga distribuída. Da equação da continuidade, como pela hipótese (c), a seção transversal (área) é constante e, pela hipótese (a), o fluido é incompressível, temos: Q Q v A v A A A v v cte 1 2 1 1 2 2 1 2 1 2 � � � � � � � . Da equação da energia, com base nas hipóteses descritas, H hp1 2 1 2, ,= f , e, então, por definição: h H H Hf1 2 1 2, � � �D Sendo: H v g p z� � � 2 2 g Temos: h v v g p p z zf1 2 1 2 2 2 1 2 1 22, � � � � � � g Contudo, como as velocidades v1 e v2 são iguais: h p z p zf1 2 1 1 2 2, � � � � � � � � � � � � � � � �g g Em que a soma p z g � � � � � � � é chamada de “carga piezométrica”, pois pode ser medida com o uso de um piezômetro. Note que nosso objetivo é encontrar uma relação entre a perda de carga distribuída e o comprimento do conduto. Os próximos passos deste desenvolvimento levam a equações cujo uso não é conveniente (por exemplo, por exigirem a determinação da tensão de cisalhamento na parede do conduto, o que é de difícil determinação prá- tica). Alternativamente, o uso de técnicas de análise dimensional pode levar a uma dedução mais interessante e com fins práticos mais apropriados. 223UNIDADE 6 A título de curiosidade, esta dedução parte da consideração de que a perda de carga é função da massa específica e da viscosidade do fluido, do diâmetro hidráulico, do comprimento e da rugosidade do conduto, e da velocidade do escoamento. Então, podemos escrever a função representativa: γ ρ µ εh f D L vf H= ( , , , , , ) Ao determinar os devidos adimensionais, obtém-se a equação: h L D v gf H = f 2 2 Em que f é o chamado “coeficiente da perda de carga distribuída” (ou “fator de atrito”), o qual é função do número de Reynolds e da rugosidade relativa: f = f DHRe, e � � � � � � Nesta equação para a perda de carga distribuída hf, o único parâmetro que não é diretamente mensurável de forma experimental é justamente o coeficiente da perda de carga distribuída. Contudo, como ele é função de dois números adimensionais (note que DH e é adimensional), o coeficiente f pode ser obtido por meio da cons- trução de um diagrama universal, que pode ser aplicado a qualquer escoamento, de qualquer fluido, em qualquer conduto (afinal, estamos preocupados apenas com os números adimensionais, pois são estes que caracterizam o problema). Diversos estudiosos trabalharam no desenvolvimento deste diagrama, como Nikuradse e Colebrook, até chegar ao chamado Diagrama de Moody-Rouse (Figura 9). O uso desse diagrama pode ser classificado em três casos: • 1º Caso: determinar hf, conhecendo L D Q vH, , , ,e . • 2º Caso: determinar Q, conhecendo L D h vH, , , ,f e . • 3º Caso: determinar DH, conhecendo L Q h v, , , ,f e . Apenas trataremos do primeiro caso, pois os demais são mais complexos, podendo envolver métodos iterativos com o diagrama, além de que o primeiro caso é o mais importante conceitualmente. Faremos isso a partir de dois exemplos. 224 Escoamento em Condutos Forçados Figura 9 - Diagrama de Moody-Rouse Fonte: adaptada de Brunetti (2008) e Çengel e Cimbala (2015). 225UNIDADE 6 Água a 10 °C (ρ = 999,77 kg/m³, μ = 1,308x10-3 Pa.s) escoa por meio de um fino tubo horizontal de seção circular (D = 0,3 cm, L = 3 m) continuamente, com velocidade média de 0,8 m/s. Determine a perda de carga nesta linha. Qual é a queda de pressão correspondente? Adote g = 9,8 m/s². Solução: Estamos considerando condições de operação em regime permanente, sem troca térmica com o ambiente, fluido incompressível, escoamento completamente de- senvolvido e sem a presença de máquinas ou singularidades. Com isso em mente, o primeiro passo é lembrar-se da equação da energia, na forma da perda de carga: H H H HM p1 2 1 2� � � , Queremos determinar o termo Hp1 2, . Além disso, das nossas considerações, sabemos que para este caso podemos escrever: H h L D v gp f H1 2 2 2, = = f Observe que conhecemos todos os parâmetros desta equação, exceto pelo coeficien- te de perda de carga distribuída (f). Para determiná-lo, o passo inicial é calcular o número de Reynolds: Re . . , . , . , . , . . Re � � � � � ρ µ v D kg m m s m Pa s H 999 77 0 8 0 3 10 1 308 10 1834 3 2 3 ,,44 Para este valor de Reynolds, sabemos que o escoamento é laminar (<2000). Lembre- -se que, para usar o diagrama de Moody-Rouse, é necessário também conhecer a rugosidade relativa da tubulação. Entretanto, ao analisarmos o diagrama, é possível notar que o escoamento laminar (região à esquerda) obedece a equação: f = 64 Re Isto significa que, para escoamentos laminares, o fator de atrito é função apenas do número de Reynolds e independe da rugosidade da tubulação. Com isso, podemos calculá-lo: f = =64 1834 44 0 0349 , , 1 EXEMPLO 226 Escoamento em Condutos Forçados Em posse disto, a perda de carga é facilmente calculada: h L D v g m m m s m s h m f H f � � � � � �f 2 2 2 22 0 0349 3 0 3 10 0 8 2 9 8 1 14 , , . . , . , , Para converter este valor em queda de pressão, basta multiplicá-lo pelo peso espe- cífico do fluido: D D D p h g h p kg m m s m p N m f f� � � � � γ ρ. . . , . , . , , , 999 77 9 8 1 14 11169 43 11 3 2 2 117 kPa Atenção! Note que mais uma vez estamos relacionando os conceitos de perda de carga e queda de pressão. O sentido físico é o mesmo: as forças viscosas atuando no fluido fazem com que parte da sua energia seja dissipada. Se medíssemos a carga piezométrica no início e no final da tubulação, a diferença seria justamente a altura hf. Considere o escoamento de um óleo (μ/ρ = 6,75.10-6 m²/s) com a velocidade de 3 m/s, por um conduto de seção circular de aço comercial com D = 0,18 m. Determine a perda de carga por quilômetro de tubulação. Adote g = 10 m/s². Solução: Partindo das mesmas hipóteses do exemplo anterior, desejamos resolver a equação: h L D v gf H = f 2 2 Com base nos dados fornecidos, trata-se de um problema do 1º caso para a utilização do Diagrama de Moody-Rouse. Veja que foram fornecidosa velocidade v do escoa- mento e o diâmetro hidráulico DH da tubulação (equivalente ao próprio diâmetro 2 EXEMPLO 227UNIDADE 6 D para seções circulares, vide Tabela 1), e a aceleração da gravidade foi definida. Além disso, como desejamos conhecer a perda de carga distribuída por quilômetro de tubulação, devemos avaliar a equação com L m=1000 . Dessa forma, o único parâmetro que nos resta determinar é o fator de atrito f. Para isso, o primeiro passo é calcular o número de Reynolds: Re . . , , . Re � � � � v D m s m m s H µ ρ 3 0 18 6 75 10 80000 6 2 Em seguida, calcula-se a rugosidade relativa. Para isso, na Tabela 2, temos que a ru- gosidade nominal para o aço comercial é de 0,045 mm. Então: D m m H e � �� 0 18 0 045 10 40003 , , . Agora, basta procurar o ponto do diagrama em que (Re = 80000 , DH e = 4000 ). Para compreender como fazer isto, acompanhe pela figura a seguir. Na parte superior do diagrama, estão linhas do número de Reynolds (na forma de curvas, pois a escala do eixo não é linear). À direta, o eixo vertical corresponde aos fatores de atrito, dados por linhas horizontais. Além das curvas de Reynolds e das horizontais de fator de atrito, note que o diagrama é composto por um conjunto de curvas, cada uma correspondente a uma rugosidade relativa. O procedimento, então, é o seguinte: f f = 0,02 fRe DH/ε = 4000 Re104 8 x 104 Figura 10 - Representação esquemática do Diagrama de Moody Fonte: adaptada de Brunetti (2008). 228 Escoamento em Condutos Forçados 1. No eixo horizontal superior, encontre a curva referente ao número de Rey- nolds desejado (no caso, Re = 8 104x ). 2. Caminhe pela curva do número de Reynolds, saindo do eixo superior até encontrar a curva do diagrama referente à rugosidade relativa do conduto em questão (aqui, DH e = 4000 ). 3. A partir desta intersecção da curva do número de Reynolds com a curva da rugosidade relativa, caminhe na horizontal até o eixo da direita e faça a leitura do fator de atrito f (para os valores do exemplo, f = 0 02, ). Feito isto, basta substituir os valores na equação da perda de carga: h m m m s m s mf � � � �0 02 1000 0 18 3 2 10 50 2 2, . , . . A cada quilômetro de tubulação, a perda de carga será de 50 metros. Perda de Carga Localizada (Singular) Na prática, as perdas de carga localizadas são aquelas decorrentes de perturbações bruscas no escoamento, sendo geralmente causadas nas chamadas “singularidades” (válvulas, obstáculos, estreitamentos, curvas, cotovelos e outros). Assim como para as perdas de carga distribuídas, a expressão para o cálculo das perdas de carga singulares é obtida por meio de análise dimensional e tem forma análoga: h k v gs s = . 2 2 Em que ks é o “coeficiente da perda de carga singular”, função do número de Rey- nolds e das características geométricas da singularidade. Por praticidade, alguns livros apresentam tabelas de valores de ks para tipos distintos de singularidades, como a apresentada a seguir. 229UNIDADE 6 Quadro 1 - Singularidades comuns e seus coeficientes de perda Alagarmento Estreitamento Singularidade Representação ks A1 A2 >> A1 A1 A2 A2 A1 >> A2 d DV θ dD Vθ 0,5 1 1 _ A1 / A2 (onde v = v1) k s = 0,04 para θ = 45° k s = 0,02 para θ = 20° k s = 0,07 para θ = 60° (expansão gradual; v = v1) A1 / A2 A1 A2 k s = 0,30 para d/D = 0,2 k s = 0,25 para d/D = 0,4 k s = 0,15 para d/D = 0,6 k s = 0,10 para d/D = 0,8 (contração gradual com θ = 20°; v = v1) 230 Escoamento em Condutos Forçados haste com rosca gaveta Válvula tipo globo Válvula de gaveta Válvula de retenção Cotovelo 90° 0,5 10 (totalmente aberta) 0,2 (totalmente aberta) 0,9 Fonte: adaptado de Brunetti (2008) e Çengel e Cimbala (2015). Em geral, assume-se que estes valores são aproximações razoáveis para escoamentos com número de Reynolds elevados, mas o processo rigoroso e mais adequado é con- sultar manuais específicos das singularidades em questão ou catálogos de fabricantes. Há, ainda, um segundo método para determinar as perdas de carga singulares, chamado de “método dos comprimentos equivalentes”. Comprimento Equivalente é um comprimento fictício que, para uma tubulação de seção constante de mesmo diâmetro que a singularidade, produziria uma perda de carga distribuída equivalente à perda de carga da própria singularidade. Fonte: adaptado de Brunetti (2008). 231UNIDADE 6 Em outras palavras, este método calcula hs por meio da equação de hf. O primeiro passo é igualar ambas: f L D v g k v g L k D f eq H s eq s H 2 2 2 2 = = . . Com isso, pode-se avaliar a perda de carga total do sistema pela soma: H h h H L D v g L D v g H L L p f s p real H eq H p real e 1 2 1 2 1 2 2 2 2 2 , , , ( � � � � � � � � f f f qq HD v g ) 2 2 Este é um método conveniente de ser empregado quando o fabricante da singulari- dade fornece os comprimentos equivalentes de forma tabelada. Vejamos um exemplo em que empregamos ambos os métodos. Água (ρ = 1000 kg/m³, μ = 1,308x10-3 Pa.s) escoa por uma tubulação circular de aço inoxidável com 10 cm de diâmetro, quando passa por uma expansão gradual com Ѳ = 60° para um diâmetro de 15 cm. Antes da expansão, a velocidade média do escoa- mento era de 3 m/s, a uma pressão de 140 kPa. Determine a perda de carga devido a esta singularidade usando o valor tabelado do coeficiente de perda de carga singular. Qual é a pressão do escoamento após o alargamento? Resolva o problema novamente usando o valor nominal de comprimento equivalente fornecido pelo fabricante de Leq = 0,45 m. Admita a aceleração da gravidade g = 9,8 m/s². 1 2 10 cm 15 cm Água 3m/s 140 kPa 3 EXEMPLO 232 Escoamento em Condutos Forçados Solução: Iremos resolver o problema primeiramente usando os valores de ks tabelados. Nossas considerações iniciais são: regime permanente, escoamento incompressível e com- pletamente desenvolvido, sem trocas de calor ou presença de máquinas. No Quadro 1, temos que o coeficiente de perda de carga singular para um alar- gamento gradual com q � �60 é de ks = 0 07, . A perda de carga propriamente dita, por sua vez, é calculada pela expressão a seguir, em que v v= 1 : h k v gs s = . 2 2 Substituindo os valores conhecidos: h m s m s ms � � � �0 07 3 2 9 8 0 032 2 2 , . . , , É pedida também a pressão do escoamento na seção 2. Isto pode ser obtido por meio da equação da energia: H H H H h p g v g p g v g h p s s 1 2 2 1 1 2 2 2 2 1 2 2 2 � � � � � � � � , . .r r Multiplicando a equação por “r.g ” e isolando a pressão na seção (2), temos que: p p v v g hs2 1 1 2 2 2 2 � � � �r r ( ) . . Para resolver esta equação, é necessário calcular a velocidade v2. Da equação da con- tinuidade, para escoamento incompressível, temos: Q Q v A v A v A A v D D v m m m s v 1 2 1 1 2 2 2 1 2 1 1 2 2 2 1 2 2 2 0 1 0 15 3 1 3 � � � � � � � ( , ) ( , ) , 33 m s 233UNIDADE 6 Agora, resolvendo para p2: p Pa kg m m s m s kg m2 3 2 2 3140000 1000 3 1 33 2 1000� � � � � � �� � � � � � � � � � �. , .99 8 0 032 143301 95 143 3 2 2 , . , , , m s m p Pa kPa� � Encontramos a pressão na seção (2) utilizando o primeiro método para perda de carga singular. Agora, iremos resolver o problema utilizando o segundo método: comprimento equivalente. Para isso, temos que usar o valor fornecido de Leq pelo fabricante na equação: H h h H L D v g L D v g H L L p f s p real H eq H p real e 1 2 1 2 1 2 2 2 2 2 , , , ( � � � � � � � � f f f qq HD v g ) 2 2 Como estamos trabalhando apenas com a singularidade, podemos assumir Lreal = 0 . Para resolver esta equação, devemos calcular o número de Reynolds no escoamento: Re . . , , . . ,� � �� ρ µ vD kg m m s m Pa s 1000 3 0 1 1 308 10 229357 8 3 3 Isto é, o escoamento é turbulento (Re > 2400 ). Em seguida, avaliamos a rugosida- de relativa da tubulação. Como o material é aço inoxidável, da Tabela 2, temos quee � �2 10 6x m . Então: D m m H e � �� 0 1 2 10 500006 , . Em posse destes valores, busca-se o ponto do Diagrama de Moody-Rouse, em que Re ,≈ 2 3 105x e DH e = 50000 . Para estas condições, o ponto encontrado apresenta f ≈ 0 0155, . Com isso, é possível avaliar a perda de carga pela expressão anterior: h L D v g m m m s m s h m s eq s � � � � � � f 1 1 2 2 2 0 0155 0 45 0 1 3 2 9 8 0 032 . , . , , . . , , 234 Escoamento em Condutos Forçados Que é o mesmo valor obtido pelo método dos coeficientes de perda de carga singulares tabe- lados (na realidade, os valores divergem muito pouco, sendo estas diferenças desprezadas nas aproximações). Evidentemente, como a perda de carga é a mesma nos dois casos, o uso da equação da energia com este último resultado também trará que p kPa2 143 3≈ , . Note que, neste exemplo, a pressão do escoa- mento aumentou ao sofrer a perda de carga, o que pode parecer incoerente, pois até o momen- to sempre associamos perdas de carga a quedas na pressão. Na realidade, este fenômeno está fi- sicamente correto e acontece devido à conversão da pressão dinâmica em pressão estática – em outras palavras, ao perder velocidade na seção mais larga, a pressão estática aumenta. 235UNIDADE 6 Estamos quase no final de mais uma unidade. Res- ta apenas mais um passo: combinar os conceitos que vimos até aqui no estudo das chamadas “insta- lações de recalque”. De alguma forma, você já deve ter ouvido falar sobre elas, que nada mais são do que sistemas compostos por reservatórios, tubos, máquinas (bombas, turbinas) e singularidades, ou seja, instalações hidráulicas em que aplicaremos a equação da energia para determinar parâmetros fundamentais de projeto. Instalações de Recalque 236 Escoamento em Condutos Forçados Figura 11 - Descarga de água por tubulações em um reservatório aberto Em geral, podemos esquematizar uma instalação de recalque de forma genérica da seguinte forma: recalque válvula de retenção registro globo sucção válvula de pé (1) (2) (e) (s) B ze Figura 12 - Representação esquemática de uma instalação de recalque Fonte: Brunetti (2008, p. 187). De maneira simples, o sistema é composto por dois reservatórios (um sendo des- carregado e o outro carregado), uma bomba (responsável por levar o tubo de um tanque ao outro), a tubulação de sucção (antes da bomba) e a tubulação de recalque (depois da bomba). Estão representados também válvulas que evitam a entrada de sedimentos (não permitem que o fluxo de fluido seja invertido) e um registro para o controle da vazão. 237UNIDADE 6 Na maior parte dos casos, estaremos interessados em determinar a potência ne- cessária para o bombeamento de um tanque para o outro, utilizando a equação da energia e considerando as perdas de carga na linha. Para melhor ilustrar, iremos direto ao ponto, resolvendo um exemplo de um sistema bem detalhado. Vale a pena ressaltar que já estamos trabalhando com exemplos bastante próximos da realidade de um Engenheiro. Considere o sistema a seguir. Para uma vazão de 0,05 m³/s de água (γ = 10000 N/m³; ν = 1x10-6 m²/s), determine a potência da bomba (rendimento ηB = 0,75) e a pressão na entrada dela (seção (e)), para que a pressão p8 = 550 kPa seja mantida constante. Considere que a tubulação é de aço comercial (ε = 4,5x10-5 m), com seção circular, sendo os diâmetros da tubulação de sucção DS = 18 cm e da tubulação de recalque DR = 9 cm. São dados: ks1 = 15; ks2 = ks6 = 0,9; ks3 = ks5 = 10; ks4 = 0,5; ks7 = 1; patm = 101 kPa; g = 10 m/s², pvap,H₂O = 1,96 kPa (absoluta). (2) B (0) (1) (3) (5) (4) (s) (e) (6) (7) (8)( )88) 3 m 2 m 9 m9 m 25 m 1 m P8 (1) - válvula de pé com crivo (2) e (6) - cotovelos (3) e (5) - registros tipo globo (4) - válvula de retenção (7) - alargamento brusco 4 EXEMPLO 238 Escoamento em Condutos Forçados Solução: Nosso objetivo é resolver a equação da energia. Partiremos das considerações fun- damentais de costume: regime permanente, fluido incompressível, escoamento com- pletamente desenvolvido e sem trocas de calor. Assim, temos: H H H HB p0 8 0 8� � � , O problema pede a potência da bomba, que pode ser calculada se conhecermos HB. Os termos H0 e H8 são mais fáceis de avaliar. Considerando pressões manométricas, lembre-se que: H p v g z� � � g 2 2 Adotando como plano horizontal de referência (PHR) o nível do ponto (0) e baseado nas nossas considerações, como fizemos nas unidades anteriores (velocidade nula na superfície, pressão superfície livre, sendo a pressão atmosférica): H g H p v g z N m m s m 0 2 8 8 8 2 8 3 2 0 0 2 0 0 2 550000 10000 0 2 10 2 � � � � � � � � � � � g g . ( 99 1 678 m m H m � � ) Agora, resta determinar o termo Hp0,8, referente às perdas de carga (distribuídas e singulares) da instalação. Podemos escrever da seguinte forma: H h hp f s0 8, � �� � Como a tubulação de sucção (antes da bomba) apresenta diâmetro diferente da tu- bulação de recalque (depois da bomba), precisamos avaliá-las separadamente. H H Hp p pe s0 8 0 8, , ,� � 239UNIDADE 6 Primeiro, quanto à tubulação de sucção: H h hp f se e e0 0 0, , ,� � Temos que: h L D v g h k v gf H s s= =f 2 2 2 2 ; . Assim, o primeiro passo é determinar a velocidade do escoamento para o diâmetro de sucção, pois ela é necessária para calcular tanto hf quanto hs. Da equação da con- tinuidade, temos: Q v A v D v Q D v m s m m S � � � � � � � � � � � � . . . . . . , . ( , ) , p p p 2 4 4 0 05 0 18 1 965 2 2 3 2 ss Para avaliar a perda de carga distribuída na seção de sucção, deve-se calcular o nú- mero de Reynolds do escoamento: Re . = v D n Re , . , . S m s m m s � � � 1 965 0 18 1 10 353700 6 2 Agora, avalia-se a rugosidade relativa da tubulação de sucção: D m m H e � �� 0 18 4 5 10 40005 , , . Com o valor do número de Reynolds e da rugosidade relativa, utiliza-se o Diagrama de Moody-Rouse para encontrar o fator de atrito. Pela leitura, temos que f ≈ 0 0165, . Po- demos então calcular cada termo hf da tubulação de sucção. Para clareza, organizaremos as informações na forma de uma tabela: 240 Escoamento em Condutos Forçados Perdas de Carga Distribuídas na Sucção h L D v gf H = f 2 2 , com f = 0,0165, DH = 0,18 m, vs = 1,965 m/s, g = 10 m/s² Trecho De (1) a (2) De (2) a (e) Comprimento (L) 3 m 9 m hf 0,0531 m 0,1593 m hf e0, 0,2124 m Feito isso, o passo seguinte é determinar as perdas de carga singulares na sucção. Também organizaremos o cálculo na forma de tabela: Perdas de Carga Singulares na Sucção h k v gs s = . 2 2 , com vs = 1,965 m/s, g = 10 m/s² Singularidade (1) (2) (3) ks 15 0,9 10 hs 2,8959 m 0,1737 m 1,9306 m hs e0, 5,0002 m Exatamente os mesmos passos devem ser realizados para a tubulação de recalque. Aqui, apresentaremos os resultados resumidamente, mas é recomendado que você faça os cálculos para praticar, apropriar-se dos conceitos, garantindo, assim, que consiga determinar as perdas de cargas distribuídas e localizadas por conta própria. v m s D R R H � � � � 7 863 707670 2000 0 0175 , Re , e f 241UNIDADE 6 Perdas de Cargas Distribuídas no Recalque h L D v gf H = f 2 2 , com f = 0,0175, DH = 0,09 m, vR = 7,863 m/s, g = 10 m/s² Trecho De (s) a (6) De (6) a (7) Comprimento (L) 9 m 25 m hf 5,4098 m 15,0273 m hfs,8 20,4371 m Perdas de Carga Singulares no Recalque h k v gs s = . 2 2 , com vR = 7,863 m/s, g = 10 m/s² Singularidade (4) (5) (6) (7) ks 0,5 10 0,9 1 hs 1,5457 m 30,9134 m 2,7822 m 3,0913 m hss,8 38,3326 m Enfim, podemos avaliar a perda de carga total do sistema: H H H h h h h H m p p p f s f s p e s e e s s0 8 0 8 0 0 8 8 0 8 0 2124 5 0 , , , , , , , , , , � � � � � � � � 0002 20 4371 38 3326 63 9823 64 0 8 m m m H m mp � � � � , , , , Agora, voltando à equação da energia, basta resolver para HB: H H H m m H m B p B � � � � � 8 0 8 67 64 131 , Para determinar a potência da bomba, usamos a equação estudadana unidade an- terior, considerando a eficiência (hB = 0 75, ): N Q H N m m s m N W kW B B B � � � � γ η . . . , . , , , 10000 0 05 131 0 75 87333 33 87 33 3 3 242 Escoamento em Condutos Forçados Espere! O exercício ainda não acabou. Ainda nos é pedida a pressão na entrada da bomba, e este é um ponto importante para desenvolvermos o conceito que será apre- sentado a seguir. Utilizando a equação da energia entre os pontos (0) e (e): H H H H h he p e f se e e0 0 0 0� � � � �, , , Para as considerações que utilizamos, H0 0= , os termos de perda de carga distribuída e localizada no trecho de (0) a (e) já foram avaliados: H H h h H m m m e f s e e e � � � � � � � � 0 0 0 0 0 2124 5 0002 5 2126 , , , , , Desmembrando He e tendo em mente que a velocidade nesta seção é justamente a velocidade na tubulação de sucção vS , temos: p m m s m s m N m p e e � � � � � � � � � � � � � � � � � � 5 2126 1 965 2 10 2 10000 740 2 2 3, , . . 556 61 74 1, ,Pa kPa� � Em termos de pressão absoluta, como patm = 101 kPa: p p p kPae abs e atm, ,� � � 26 9 Ufa! Enfim resolvemos o problema. Agora, vamos analisar a importância da pressão absoluta na entrada da bomba. Talvez você tenha reparado, mas o enunciado do exercício deu uma informação que até agora não havíamos discutido: a pressão de vapor da água, pvap H O, 2 (absoluta). De uma forma científica, pressão de vapor é a pressão exercida por um vapor quando este está em equilíbrio termodinâmico com o líquido que lhe deu origem, ou seja, a quantidade de líquido que evapora é a mesma que se condensa. A importância disto é que nas condições de temperatura em questão, se a pressão absoluta do fluido caísse até pvap H O, 2 (decorrente das perdas de carga, por exemplo), o fluido começaria a evaporar. A formação de vapor em tubulações e máquinas hidráulicas leva a um fenômeno chamado de cavitação, muito preocupante para a engenharia quanto a garantir o bom funcionamento de instalações hidráulicas. 243UNIDADE 6 A cavitação ocorre quando há bolhas de vapor em tubulações ou máquinas hidráu- licas, sendo prejudicial para o seu funcionamento. As bolhas, ao alcançarem pontos de maior pressão, condensam bruscamente e implodem com grande liberação de energia. Além de causar vibrações intensas, isto acarreta na erosão das paredes devido ao choque das partículas de líquido, danificando o equipamento e reduzindo sua vida útil consideravelmente. Estes efeitos combinados fazem, ainda, com que o rendimento atingido pelas máquinas seja sempre muito baixo, aumentando o gasto energético. Fonte: adaptado de Brunetti (2008). Para evitar que a cavitação aconteça, é necessário garantir que a pressão em todos os pontos dentro da bomba esteja acima da pressão de vapor. Como forma de fazer isso, os fabricantes de bombas fornecem um parâmetro denominado NPSH (do inglês “net positive suscito head”, que pode ser traduzido como “carga de sucção positiva líquida”). Ele é calculado fazendo a diferença entre a carga de pressão de estagnação na entrada da bomba e a carga da pressão de vapor: NPSH p v g p e vap� � � � �� � � �� �g g 2 2 Os valores fornecidos pelos fabricantes são dados em função da vazão, e tratam-se dos valores mínimos de NPSH que devem ser operados para evitar a cavitação na bomba. Com isto, terminamos mais uma unidade – a última referente à mecânica dos fluidos! A partir da Unidade 7, trataremos dos fenômenos de transferência de calor, também fundamentais para todas as aplicações de engenharia. Aproveite o momento para respirar e abrir a cabeça para os novos conceitos que estão por vir! 244 Você pode utilizar seu diário de bordo para a resolução. 1. Considere o trecho de tubulação a seguir, em que (2) é uma válvula de gaveta, (3) é uma válvula tipo globo e (4) é um cotovelo. O fabricante destas peças fornece os seguintes comprimentos equivalentes: D = 10 cm Válvula de gaveta Válvula tipo globo Cotovelo Leq (m) 0,352 16,94 3,91 O conduto é de ferro galvanizado (ε = 1,5x10-4 m), de seção circular (diâmetro D = 15 cm), com um comprimento entre (1) e (5) de 20 m. Determine a perda de carga neste trecho, considerando uma vazão de 18 L/s. Adote ν = 1x10-6 m²/s e g = 9,8 m/s². (2) (1) (3) (5) (4) Fonte: Brunetti (2008). 245 2. Considere o sistema a seguir. Estreitamento Cotovelos em 90° Válvula de gaveta totalmente aberta Alargamento D = 6 cm 75 m 10 m z1 = ? z2 = 8 m2 1 Fonte: adaptada de Çengel e Cimbala (2015). O fluido escoando é água a 10 °C (ρ = 999,7 kg/m³; μ = 1,307x10-3 Pa.s), a uma vazão de 9 litros por segundo. A tubulação é de seção circular, feita em ferro galvanizado (ε = 1,5x10-4 m). Determine a altura z1. Adote g = 9,8 m/s² e consulte valores tabelados para os coeficientes de perda das singularidades. 246 3. Considere a instalação de recalque a seguir: (2) B (1) (3) (5) (4) (6) (7) (8) 3 m 2 m 1 m 2 m 10 m 40 m 5 m (0) (9)p = 0,3 MPa Fonte: adaptada de Brunetti (2008). Calcule a potência da bomba B, sabendo que seu rendimento é de 76%, para uma vazão de 20 L/s. O diâmetro da tubulação de sucção é de 6,5 cm, enquanto o da tubulação de recalque é 12 cm. As tubulações são todas de seção circular e ferro fundido (ε = 2,6x10-4 m). São dados: ν = 10-6 m²/s; γ = 104 N/m³; Leq1 = 20 m; Leq2 = 2 m; Leq6 = Leq7 = 1 m; ks5 = 10; ks8 = 1; g = 10 m/s². 247 Vídeo desenvolvido pelo canal Engenharia & Cia, em que são apresentados os conceitos de pressão de vapor, cavitação e o seu impacto na vida útil de equi- pamentos e instalações. Para acessar, use seu leitor de QR Code. WEB Vídeo desenvolvido pelo canal Engenharia & Cia, em que são apresentados os conceitos relacionados às instalações de recalque. Para acessar, use seu leitor de QR Code. WEB Vídeo desenvolvido pelo canal Smarter Every Day, que faz uma análise de bioe- ngenharia acerca das lagostas-boxeadoras – crustáceos capazes de dar socos à velocidade de um tiro calibre .22, que acabam provocando cavitação na água para quebrar carapaças, conchas e vidros. Áudio em inglês com legendas em inglês. Para acessar, use seu leitor de QR Code. WEB http:// http:// http:// 248 BRUNETTI, F. Mecânica dos Fluidos. 2. ed. São Paulo: Pearson Prentice Hall, 2008. ÇENGEL, Y. A.; CIMBALA, J. M. Mecânica dos fluidos: fundamentos e aplicações. 3. ed. Brasil: AMGH Editora, 2015. WELTY, J. R.; RORRER, G. L.; FOSTER, D. G. Fundamentos de Transferência de Momento, de Calor e de Massa. 6. ed. São Paulo: Editora LTC – GEN (Grupo Editorial Nacional), 2017. 249 1. Este é um problema típico para cálculo da perda de carga distribuída e da perda de carga localizada pelo método do comprimento equivalente. Para isto, temos a equação: H L L D v gp real eq H � � f ( ) 2 2 Avaliando a velocidade: v Q A Q D L s m m L m s � � � � 4 4 18 0 15 1 1000 1 022 2 3 . . . . ( , ) , p p Número de Reynolds: Re . , . , . � � � � v D m s m m s n 1 02 0 15 1 10 153000 6 2 Logo, o escoamento é turbulento. Avaliando a rugosidade relativa: D m m H e � �� 0 15 1 5 10 10004 , , . Pelo Diagrama de Moody-Rouse, para estes valores, temos o fator de atrito f = 0,022. Agora, como sabemos que Lreal = 20 m e que Leq = 0,352 m + 16,94 m + 3,91 m = 21,202 m, basta substituir na equação: H m m m m s m s H m p p � � � 0 022 20 21 202 0 15 1 02 2 9 8 0 32 2 2 , . ( , ) , . ( , ) . , , 2. Feitas as devidas considerações (regime permanente, fluido incompressível, escoamento completamente desenvolvido, velocidade nula na superfície), faz-se o balanço de energia na forma de cargas: H H Hp1 2� � 250 Em que, baseado nas considerações básicas para o problema: H p v g z H p g z H p g z p z p atm atm atm atm � � � � � � � � � � � g g g g g 2 1 2 1 2 2 2 1 2 0 2 0 2 ; �� � � � z H z z H p p 2 1 2 Como já é dado z2 = 8 m (adotando como PHR o fundo de ambos os reservatórios), deve-se calcular Hp: H hhp f s� � Avaliando primeiramente as perdas de carga distribuídas: h L D v gf H = f 2 2 Observe que o desenho indica um comprimento de tubulação L = 10 m + 75 m = 85 m. Para avaliar a velocidade, usa-se a equação da continuidade para o fluido incompressível: v Q A Q D L s m m L m s � � � � 4 4 9 0 06 1 1000 3 182 2 3 . . . . ( , ) , p p Resta definir f, que é função do número de Reynolds e da rugosidade relativa: Re . . , . , . , , . . ,� � �� ρ µ v D kg m m s m Pa s DH 999 7 3 18 0 06 1 307 10 145939 37 3 3 εε � �� 0 06 1 5 10 4004 , , . m m Para estes valores, pelo Diagrama de Moody-Rouse: f = 0,027. 251 Então: h m m m s m s mf � �0,027 85 0 06 3 18 2 9 8 19 73 2 2, ( , ) . , , Agora, o próximo passo é calcular as perdas de carga singulares. Utilizando os valores tabelados de ks e orga- nizando os cálculos em forma de tabela: Perdas de Cargas Singulares h k v gs s = . 2 2 , com v = 3,18 m/s, g = 9,8 m/s² Singularidade Estreitamento Cotovelo 90° (1) Cotovelo 90° (2) Válvula de gaveta Alargamento ks 0,5 0,9 0,9 0,2 1 hs 0,2580 m 0,4643 m 0,4643 m 0,1032 m 0,5159 m hs 1,8057 m Com isso, o problema é resolvido: H m m m z m m z m p � � � � � � 19 73 1 81 21 54 8 21 54 29 54 1 1 , , , , , 252 3. Partindo das considerações fundamentais de costume (regime permanente, fluido incompressível, es- coamento completamente desenvolvido, sem trocas de calor), objetivo é resolver a equação da energia: H H H H p g v g z H p g v g z H B p B p 0 9 0 0 2 0 9 9 2 9 1 8 1 82 2 � � � � � � � � � � , ,. .r r Com as devidas considerações feitas: p g H p g z Hatm B abs pr r. . , , � � � �9 9 1 8 Em termos de pressões manométricas: H p g z HB p� � �9 9 1 8r . , O termo referente às perdas de carga é a única incógnita. Como os diâmetros da tubulação de sucção e de recalque são diferentes, devemos calcular as duas seções separadamente: H H Hp p p1 8 1 3 4 8, , ,� � Para a sucção, as duas singularidades presentes estão expressas em comprimento equivalente. Logo: H L L D v gp real eq H 1 3 2 2, ( ) � � f É necessário determinar o fator de atrito f e a velocidade de sucção vR: v Q D v m s v D D S S H � � � � � � � 4 6 03 391766 250 0 028 2 . . , Re . , π ν ε f 253 Então, resolvendo a equação: H m m m m s m s H m p p 1 3 1 3 9 22 0 065 6 03 2 10 24 28 2 2 , , ( ) , , . , � � � � � 0,028 Agora, para o recalque, como os cotovelos estão dados em comprimento equivalente e as outras duas singu- laridades estão dadas pelo seu ks, é conveniente usar a forma combinada: H L L D v g k k v g H L L D p real eq H s s p real eq 4 8 5 8 4 8 2 2 2 2, , ( ) ( ) . ( ) � � � � � � f f HH s sk k v g � � � � � � � �5 8 2 2 . Para isso, é necessário calcular o fator de atrito para o recalque. Partindo da equação da continuidade e pelo Diagrama de Moody-Rouse: v m s v D D R R H � � � � � 1 77 212314 23 461 54 0 025 , Re . , , , ν ε f 254 Então: H m m m m s m s H p p 4 8 4 8 52 2 0 12 10 1 1 77 2 10 3 2 , , ( ) , . , . � � � � � � � � � � � � � 0,025 ,,49 m Feito isso, podemos somar os dois termos para ter a perda de carga total do sistema: H H H mp p p1 8 1 3 4 8 27 77, , , ,� � � Com isso, pode-se voltar à equação da energia para determinar HB: H PaN m m m H m B B � � � � 0 3 10 10 15 27 77 72 77 6 4 3 , . , , Enfim, pode-se então calcular a potência da bomba, considerando o seu rendimento: N Q H N m m s m N W kW B B B = = = = γ η . . . , . , , , 10000 0 02 72 77 0 76 19150 19 15 3 3 255 256 PLANO DE ESTUDOS OBJETIVOS DE APRENDIZAGEM • Definir o que é a transferência de calor e seus principais processos: condução, convecção e radiação. • Estudar a transferência de calor por difusão por meio da Lei de Fourier da Condução, das definições de condutivida- de e difusividade térmicas, e dos conceitos de resistência e circuitos térmicos. • Desenvolver o conceito de camada limite térmica por meio do estudo da convecção por meio da definição da Lei de Newton do Resfriamento. • Conhecer o mecanismo de radiação térmica com base na Lei de Stefan-Boltzmann da Radiação Térmica. Conceitos Fundamentais Condução Radiação Convecção Dr. Rodrigo Orgeda Esp. Henryck Cesar Massao Hungaro Yoshi Introdução à Transferência de Calor Conceitos Fundamentais Prezado(a) aluno(a)! Esperamos que você esteja preparado para mudar o assunto principal dos nos- sos estudos, pois a partir deste capítulo, iremos sair da perspectiva da mecânica dos fluidos e adentrar os conceitos de transferência de calor; mas não se engane, ambas são partes fundamentais no estudo dos fenômenos de transporte e muitos de seus efei- tos são análogos e intrinsecamente relacionados. O primeiro passo neste estudo é diferenciar os conceitos de “termodinâmica” e de “transferência de calor”, duas disciplinas básicas para diversas engenharias. Esta diferença pode não ser óbvia para quem está iniciando os estudos nestas áreas, mas pode ser definida de forma bastante simples e objetiva. 259UNIDADE 7 A termodinâmica está preocupada com a quantidade de calor que um sistema perde ou recebe ao passar por um processo que o leva de uma condição de equilí- brio a outra. Assim, em geral, a forma como essa troca de calor acontece não é uma preocupação. Enquanto isso, a transferência de calor está preocupada especificamente com a taxa de transferência de calor de um processo, ou seja, qual o tempo que esse calor leva para ser trocado e quais são os parâmetros que influenciam nesta troca (por exemplo: aspectos geométricos e propriedades do material). Observando o mundo desde uma forma casual e até uma perspectiva de engenha- ria, poderíamos fazer, por exemplo, as seguintes perguntas: quanto tempo levará até que a água gelada dentro de uma garrafa térmica esfrie à temperatura ambiente? Como peças de computador podem ser construídas buscando evitar superaquecimento? Qual a potência necessária para que um aquecedor mantenha uma sala quente num dia de frio intenso? Como pode ser feito o isolamento térmico desta mesma sala? Todas estas são perguntas que a transferência de calor está interessada em responder. Todo fenômeno de transporte acontece devido à existência de uma força motriz e é mitigado pela presença de uma resistência ao fenômeno. Na mecânica dos fluidos, vimos que esta força motriz era uma diferença (ou gradiente) de velocidades, muitas vezes causada por uma diferença de pressão, e a resistência eram os efeitos viscosos do escoamento. Para a transferência de calor, a força motriz será uma diferença de temperatura, e a resistência será dada por aspectos geométricos e propriedades do material (veremos em mais detalhes a seguir). Observe a Figura 1. Nela, as temperaturas de uma casa são avaliadas usando um leitor de temperaturas por infravermelho. Isto é útil, por exemplo, para identificar quais cômodos da casa ficarão mais quentes ou frios em dias comuns. Figura 1 - Visão térmica em infravermelho de uma casa 260 Introdução à Transferência de Calor Numa perspectiva industrial, uma possível preocupação seria a perda de energia em sistemas de tubulações para o ambiente, por não estarem com isolamento térmico adequado (veja a Figura 2). Dependendo do processo em questão, isto pode significar prejuízo à eficiência energética do processo, que por sua vez é traduzido em maior custo e, portanto, menor lucro. Figura 2 - Visão térmica de uma tubulação sem o isolamento térmico O isolamento de tubulações é só um dos muitos problemas de engenharia relacio- nados à transferência de calor. Por exemplo, diversos equipamentos industriais estão pautados na troca de energia entre dois meios, como trocadores de calor, aquece- dores, resfriadores, caldeiras, condensadores, evaporadores e muitos outros. Com isso, geralmente estaremos preocupados com dois aspectos: qual a troca de calorde um sistema operando a uma dada diferença de temperatura e quais as dimensões do sistema para que uma troca de calor especificada os mantenha nas condições de temperatura desejadas. Para darmos sequência aos nossos estudos, é preciso primeiro definir uma pro- priedade da matéria muito importante para a transferência de calor. 261UNIDADE 7 Calor Específico: energia necessária para aumentar a temperatura em um grau de uma unidade de massa de uma dada substância. Fonte: Çengel e Ghajar (2012, p. 7). Para facilitar o entendimento deste conceito, imagine o sistema a seguir, em que há a entrada de 5 kJ de energia. Este sistema é formado por 1 kg de uma substância, a qual apresenta um calor específico c � �� �5 kJ/ kg. C . Isto pode ser lido da seguinte maneira: “para aumentar 1 °C na temperatura de 1 kg de substância, é necessário fornecer 5 kJ de energia a ela”. 5 kJ m = 1 kg ∆T = 1 °C Calor especí�co = 5 kJ/kg.°C Figura 3 - Efeito do calor específico na variação de temperatura de uma substância Fonte: adaptada de Çengel e Ghajar (2012). É importante mencionar que o calor específico é uma propriedade da matéria que pode variar de acordo com o seu estado físico e suas condições de temperatura e pressão. Ainda, é comum nos referirmos a dois tipos de calor específico: ao volume constante ( cv ) ou à pressão constante ( cp ), sendo o segundo sempre maior que o primeiro. Para gases ideais, o calor específico depende apenas da temperatura, e a seguinte equação é válida, em que R é a constante dos gases ideais, 8 31, J mol.K� � : c c Rp V� � Para substâncias incompressíveis (sólidos e líquidos), pode-se assumir que ambos os calores específicos são iguais e, por simplicidade, serão representados pela letra “c”. Além disso, os calores específicos de substâncias incompressíveis dependem apenas da temperatura. Assim, quando desejarmos avaliar a energia que deve ser fornecida para variar a temperatura de sólidos e líquidos, sem que haja mudança de fase, po- demos utilizar a seguinte equação: Q m c T m c T T� � � �� �. . . . 2 1 262 Introdução à Transferência de Calor Em que c é o calor específico médio entre as temperaturas T2 e T1 (por isso, frequen- temente também pode ser chamado de cméd ), m é a massa da substância e Q é a quantidade de calor. Em geral, trabalharemos com a unidade do calor específico no SI: kJ/(kg.K). Contudo, repare que esta unidade é idêntica a kJ/(kg.°C), uma vez que ΔT(°C) = ΔT(K), ou seja, uma variação de 1 °C equivale a uma variação de 1 K. Outras unidades comuns são cal/(g.°C) e Btu/(lbm.°F). Na equação anterior, note que o termo Q tem dimensão de energia (uma possível unidade seria o J, por exemplo). No estudo dos fenômenos de transporte, frequente- mente são usados os termos taxa e fluxo. A “taxa de transferência de calor” é frequen- temente denotada por Q e tem dimensões de energia por tempo (uma unidade é o W, por exemplo). O “fluxo de calor”, por sua vez, tem uma definição um pouco menos intuitiva: é a taxa de transferência de calor por unidade de área, sendo denotada por q . Este conceito será mais bem explorado e ilustrado nos próximos tópicos. Q Q t q Q A � � �| Além disso, é importante definir também o chamado calor latente que, de forma simplificada, é a energia necessária para que ocorra uma mudança de fase. Para substâncias puras, a mudança de fase ocorre a temperaturas constantes e pode-se usar a equação: Q m L= . Em que L é o calor latente referente à mudança de fase em questão, dado em dimen- sões de energia por unidade de massa. Definidos estes conceitos, lembre-se de que a lei de conservação da energia deve perma- necer válida, ou seja, podemos fazer balanços de energia seguindo uma lógica semelhante ao que fizemos nas Unidades 1 e 5, analisando as entradas, saídas, acúmulos e gerações de energia que acontecem no sistema. Dito isso, nossa abordagem será mais focada nos mecanismos de transferência de calor: condução, convecção e radiação. 263UNIDADE 7 Considere as seguintes situações: ao colocar a ponta de uma faca de metal no fogo, a extremida- de oposta também ficará quente após certo tempo; ao ligar o aquecedor em uma casa durante um dia frio, o lado interno da parede fica mais quente do que o lado externo, apesar de a parede toda esquentar. Ambos os casos são exemplos de con- dução de calor, em que as partículas com maior temperatura (maior energia) de uma substância transferem energia para as partículas vizinhas com menor temperatura (menos energia). Condução 264 Introdução à Transferência de Calor Condução Unidimensional em Regime Permanente Os exemplos anteriores ilustram a transferência de calor por condução em situa- ções comuns do cotidiano. Em uma perspectiva de engenharia, elas podem tomar escalas consideráveis, como a perda de calor pelas paredes de um forno industrial ou o perfil de temperaturas nas paredes de um equipamento. É importante observar que a condução acontece em todos os estados da matéria – em sólidos, por meio das vibrações das moléculas e dos elétrons livres entre elas; em líquidos e gases, por meio das colisões e difusões dos movimentos aleatórios das moléculas. Experimentalmente, observa-se que a condução de calor depende de quatro as- pectos: a diferença de temperatura, a substância, a geometria e a espessura do sistema. A relação entre estas grandezas foi estudada e estabelecida pela primeira vez por J. Fourier (1768-1830), matemático e físico francês que desenvolveu a equação que ficou denominada como Lei de Fourier da Condução Térmica: Q k A dT dxcond � � . . Em que “k” é a chamada condutividade térmica, característica do material, que re- presenta a capacidade do material de conduzir calor. Por exemplo, em tempera- tura ambiente, a água apresenta k W m Kágua = 0 607, ( . ) , enquanto o ferro tem k W m Kferro = 80 2, ( . ) . Estes números condizem o que somos capazes de observar experimentalmente: o ferro é um condutor de calor muito melhor do que a água. Mais valores de condutividade térmica estão apresentados na tabela a seguir: Tabela 1 – Condutividade térmica de alguns materiais em temperatura ambiente Material k W mK. Material k W mK. Material k W mK. Diamante 2300 Ferro 80,2 Pele humana 0,37 Prata 429 Mercúrio 8,54 Madeira 0,17 Cobre 401 Vidro 0,78 Fibra de vidro 0,043 Ouro 317 Tijolo 0,72 Ar 0,026 Alumínio 237 Água 0,607 Uretano 0,026 Fonte: Çengel e Ghajar (2012, p. 20). 265UNIDADE 7 A equação anterior expressa a condução de calor na forma de taxa, em que a área A é sempre normal à direção da transferência de calor. Para o fluxo, como definimos anteriormente, ela pode ser escrita como: q k dT dxcond � � . Volte à Tabela 2 da Unidade 1 e observe a semelhança entre os fenômenos da trans- ferência de momento e a transferência de calor. O gradiente de temperaturas é a força motriz que causa o fenômeno, e a condutividade térmica é onde o fenômeno é resistido pelas características do material. Para melhor ilustrar a Lei de Fourier, vamos para um exemplo! Considere a parede de um forno industrial feita em tijolo, com 0,20 m de espessura. O lado interno está a 1150 °C e o lado externo a 900 °C. Sabendo que as dimensões da parede são 1,5 m (comprimento) por 1,0 m (altura), determine a taxa de calor perdida através desta parede. Solução: Considerando que o sistema em questão opera em regime permanente, que a pa- rede é perfeitamente plana e de condutividade térmica constante, e que a temperatura varia só ao longo da sua espessura (ou seja, a transferência de calor é unidimensional; as temperaturas não variam ao longo da largura e da altura), podemos usar a Lei de Fourier da condução: Q k A dT dxcond � � . . Quando trabalhamos com a Lei de Newton da Viscosidade, para simplificar a solução do problema, assumimos que o diagrama de velocidades era linear com a espessura do escoamento. Aqui, as condições de estado estacionário nos permitem fazer uma simplificação análoga, admitindoo diagrama de temperatura linear com a espessura da parede (como esquematizado na Figura 4): 1 EXEMPLO 266 Introdução à Transferência de Calor cond,xQ� T T(x) T2 x ∆x T1 Figura 4 - Representação esquemática da condução de calor unidimensional em regime permanente Fonte: adaptada de Incropera e Dewitt (2008). Com isso, podemos escrever a Lei de Fourier na forma: Q k A T xcond � � � � . . Da Tabela 1, temos que k W m Ktijolo = 0 72, ( . ). Como a parede é perfeitamente plana, podemos calcular a área simplesmente como a área de um retângulo: A m m m� � � � � �1 5 1 0 1 5 2, . , , O problema pode ser esquematizado da seguinte forma: cond,xQ� x L cond,xQ� Área da parede, A H = 1,0 m W = 1,5 m k = 0,72 W /(m.K) x L = 0,20 m T1 = 1150 K T2 = 900 K Figura 5 - Representação esquemática do problema de condução de calor unidimensional em parede plana Fonte: adaptada de Incropera e Dewitt (2008). 267UNIDADE 7 Então, basta substituir os valores para determinar a taxa de transferência de calor pela parede: Q W m K m C C m Q cond con � � � � � � � � � � � �� � � � � �0 72 1 5 1150 900 0 20 2 , . . , . , dd W�1350 Se quiséssemos conhecer o fluxo de calor, bastaria fazer: q k T x Q A W m W mcond cond� � � � � � �. , 1350 1 5 9002 2 Em alguns livros, o uso do sinal negativo na equação às vezes é ocultado, uma vez que a função dele é meramente indicar o sentido da transferência de calor (sai do ponto de temperatura mais alta para o ponto de temperatura mais baixa). Aqui, se a taxa de transferência de calor for positiva significa que a direção da seta representada no esquema da Figura 5 aponta corretamente a direção do fenômeno (o calor vai da face interna da parede para a face externa). Esta observação também é válida para as demais equações dos fenômenos de transporte, como a Lei de Newton da Viscosidade que você estudou anteriormente. Além da condutividade térmica, existe outra característica dos materiais que apa- rece frequentemente no estudo da transferência de calor. É a chamada difusividade térmica (a ), definida pela equação: α ρ = = Condu o de Calor Armazenamento de Calor çã k cp. No SI, a difusividade térmica é expressa em m²/s. O produto r.cp representa a capa- cidade de armazenamento de calor por unidade de volume do material. Dessa forma, a difusividade térmica pode ser entendida como a razão entre o calor conduzido e o calor armazenado por um material – quanto maior, mais o calor se propaga no meio; quanto menor, mais o calor é absorvido e armazenado pelo material. Resistência Térmica As analogias entre os fenômenos de transporte vão além das questões de momento, calor e massa. Em algum momento de suas aulas de física, você provavelmente estudou sobre sistemas de resistências elétricas, em que uma diferença de potencial (V V2 1− ) promovia o surgimento de uma corrente elétrica (i) através de uma resistência (Re), como no esquema a seguir: 268 Introdução à Transferência de Calor i Re V1 V2 A relação entre as grandezas é dada por: i V V Re � �1 2 Agora, veja a Lei de Fourier da Condução como utilizamos no exemplo do tópico anterior: Q k A T x k A T T xcond � � � � � � � . . . . 1 2 Podemos combinar a condutividade térmica do material e as suas características geométricas na forma de uma chamada resistência térmica (R): R x k Acond � � . Com isso, a Lei de Fourier fica exatamente semelhante à equação para cálculo da corrente elétrica: Q T T Rcond cond � �1 2 Dessa forma, podemos representar o fenômeno da transferência de calor por con- dução com o seguinte esquema: T1 T2 condQ� condR Não somente a representação pode ser feita de forma análoga, mas também os proble- mas envolvendo sistemas de resistências. Por exemplo, um problema de transferência de calor envolvendo múltiplas camadas de materiais diferentes pode ser esquemati- zado como um sistema de resistências em série: 269UNIDADE 7 T1 T2 T3 T4 ∆xA ∆xB ∆xC kA kB kC A B C T1 T2 T3 T4qx ∆x A ∆xB ∆xC x k k kA B C.A .A .A Figura 6 - Circuito térmico para uma parede multicamadas Fonte: adaptada de Incropera e Dewitt (2008). A taxa de transferência de calor da parede composta pode ser determinada avaliando a taxa em cada parede. Assim, os circuitos térmicos podem ser calculados da mesma forma como os circuitos elétricos. Para a condução em três paredes em série, como a Figura 6, temos: Q T T R T T R T T Rcond cond cond � � � � � �1 2 1 2 3 2 3 4 3, , , Além disso, bem como é feito com circuitos elétricos, é conveniente trabalhar com um coeficiente global de transferência de calor (U), análogo ao uso de uma resistência equivalente para os circuitos elétricos: U A R Q U A T T Rtotal total . | . .� � � � �1 Em que U tem unidades como W m K2. (no SI). Nesta unidade, nosso foco estará mais centrado na resistência total (Rtotal ), mas o coeficiente global de transferência de calor será importante na unidade a seguir. Tenha sua dose extra de conhecimento assistindo ao vídeo. Para acessar, use seu leitor de QR Code. 270 Introdução à Transferência de Calor Definido o conceito de resistência térmica, é fácil compreender o conceito de isolante térmico: materiais que apresentam elevada resistência térmica, ou seja, são péssimos condutores (sua condutividade térmica é extremamente baixa). O isolamento térmico de uma tubulação, por exemplo, é feito revestindo o conduto com um material de baixa condutividade. Uma janela de painel duplo é composta de duas placas de vidro separadas por um espaço de ar estagnado. Este tipo de janelas é popular em climas mais frios, porque a camada de ar entre os vidros garante uma resistência térmica maior, de modo a evitar a perda de calor do interior do ambiente para o exterior. Considere o esquema a seguir, sendo um painel de 1,0 de altura por 1,5 m de largura. Se T1 = 20 °C e T4 = -10 °C, qual a taxa de transferência de calor por meio desta janela de painel duplo? Determine também as temperaturas T2 e T3. R2R1 R3 T3 T2T1 T4 Ar VidroVidro 10 °C 20 °C 10 mm 5 mm5 mm Solução: Estamos considerando que o sistema está em regime permanente, de modo que as temperaturas permaneçam constantes nos valores especificados. Além disso, assu- me-se que a transferência de calor é unidimensional e que condutividades térmicas do ar e do vidro são constantes. 2 EXEMPLO 271UNIDADE 7 Da Tabela 1, temos: k W m Kvidro = 0 78, ( . ) e k W m Kar = 0 026, ( . ) . A área do painel é facilmente calculada: A m m m= =( , ) . ( , ) ,1 5 1 0 1 5 2 As resistências R1, R2 e R3 podem ser calculadas individualmente: R x k A m W m K m K Wvidro 1 1 3 2 35 10 0 78 1 5 4 27 10 4 27 10� � � � � � � � � . . , . . , , . , . �� � � � � � � � � � � 3 2 2 3 2 310 10 0 026 1 5 256 41 10 C W R x k A m W m K m K War . . , . . , , . 2256 41 10 5 10 0 78 1 5 4 27 3 3 3 3 2 , . . . , . . , , � � � � � � � � � C W R x k A m W m K mvidro .. , .10 4 27 103 3� �� �K W C W O sistema pode ser entendido como uma parede multicamadas com resistências em série. Dessa forma, a resistência total pode ser calculada como a soma das resistências: R R R R C Wtotal � � � � �� 1 2 3 3264 95 10, . Com isso, a taxa de transferência de calor pode ser determinada: Q T R C C C W W total � � � � � � � � �� 20 10 264 95 10 113 233 ( ) , . , Para determinar as temperaturas T2 e T3, basta utilizar a taxa de transferência de calor individualmente em cada resistência. Assim, para a primeira placa de vidro: Q T T R T T Q R T C W C W � � � � � � � � �� � � � � � � 1 2 1 2 1 1 2 320 113 23 4 27 10 . ( , ) . , . �� �19 52, C Para a camada de ar estagnado: Q T T R T T Q R T C W C W � � � � � � � � �� � 2 3 2 3 2 2 3 319 52 113 23 256 41 10 . , ( , ) . , . �� � � � � � � �9 51, C 272 Introdução à Transferência de Calor Por meio dos cálculos, foi possível observar que a camada de ar atua como isolante, poisapresenta uma resistência térmica relativamente elevada. Se ela não estivesse presente, a taxa de transferência de calor seria consideravelmente maior (pois a resistência seria menor). Caso uma resistência ainda maior fosse necessária, seria possível até mesmo utilizar janelas de painel triplo. Note que tanto a perda de calor no inverno quanto o ganho de calor no verão são reduzidos, ou seja, por meio do isolamento das janelas, os gastos com aquecedores e aparelhos de ar condicionado podem ser reduzidos, garantindo uma melhor eficiência energética do ambiente. Conhecidos os problemas de paredes multicamadas em série, é natural imaginar que uma ideia parecida também seja aplicável a multicamadas em paralelo, como representado na figura a seguir: A C D B kC DB C T2T1 x kA kD kB ∆x ∆x ∆x ∆xA = Figura 7 - Parede composta série-paralela Fonte: adaptada de Incropera e Dewitt (2008). De fato, tal abordagem existe, mas passa a se tratar de um sistema com escoamento de calor multidimensional (o que foge do escopo deste material). Dito isso, a hipótese de condições unidimensionais é frequentemente razoável; conduto, dois diferentes circuitos térmicos podem ser usados. No primeiro, considera-se que os perfis de temperatura em B e C sejam iguais, ou seja, as superfícies normais à direção x são isotérmicas. Assim, o seguinte circuito térmico pode ser representado: 273UNIDADE 7 T2T1 ∆xA kA .A ∆xD kD .A ∆xB kB . A 2 ∆xC k.C . A 2 Qx . Figura 8 - Primeiro circuito térmico de uma parede composta série-paralela Fonte: adaptada de Incropera e Dewitt (2008). No segundo, divide-se a parede horizontalmente de modo a formar duas (ou mais) séries de resistências em paralelo. Desta forma, faz-se a suposição de que as superfícies paralelas à direção x sejam adiabáticas (ou seja, não trocam calor na direção vertical, mantendo o escoamento unidimensional). A representação deste circuito é a seguinte: T2T1 ∆xB kB . A 2 Qx . ∆xA kA . A 2 ∆xD kD . A 2 ∆xC kC . A 2 ∆xA kA . A 2 ∆xD kD . A 2 Figura 9 - Segundo circuito térmico de uma parede composta série-paralela Fonte: adaptada de Incropera e Dewitt (2008). Os valores obtidos das resistências totais Rtotal dos circuitos das Figuras 8 e 9 são distintos, sendo que ambos são aproximações. O valor exato está, na verdade, entre os valores previstos pelos dois casos. Quanto maior for o efeito multidimensional (ou seja, quanto maior a diferença entre kC e kB ), maior será a diferença entre os “Rtotal ” estimados. 274 Introdução à Transferência de Calor O segundo dos três mecanismos de transferência de calor que iremos estudar é a chamada con- vecção, que aborda o fenômeno de troca térmica por meio do movimento de fluidos com uma su- perfície sólida. Evidentemente, o escoamento de fluidos foi o tema central da maioria das unidades anteriores e por isso estará intrinsecamente pre- sente neste tópico. A primeira observação que se faz com relação ao movimento de fluido é que o seu movimen- to pode ser natural (o fluido mais quente sobe e o mais frio desce por diferença de densidades) ou forçado (mediante o uso de uma bomba ou ventilador, por exemplo). Assim, classifica-se a convecção como natural (ou livre) ou forçada. Além disso, ela também é classificada como exter- na (escoamento sobre uma superfície) ou interna (escoamento dentro de um conduto). Ambas as classificações são justamente semelhantes às que foram usadas para descrever o escoamento de fluidos anteriormente. Convecção 275UNIDADE 7 Lei de Newton do Resfriamento Em termos matemáticos, a descrição do fenômeno de convecção apresenta certo grau de complexidade, pois envolve o movimento do fluido e a própria condução de calor entre as moléculas. Apesar disso, verifica-se experimentalmente que a taxa de transferência de calor por convecção pode ser muito bem representada pela sua equação mais fundamental, a chamada Lei de Newton do Resfriamento: Q h A T T q h T Tconv s conv s� �� � � �� �� �. . | . Em que h é denominado “coeficiente de transferência de calor por convecção” (no SI: W m K2. ), A é a área de transferência de calor, Ts é a temperatura da superfície sólida e T∞ é a temperatura do fluido longe da superfície (em outras palavras, é a tempera- tura do fluido sem a interferência da troca térmica com a superfície). Vejamos um exemplo para ilustrar o uso desta equação. Um fio elétrico com 1,5 m de comprimento e 3 mm de diâmetro está em uma sala que é mantida a 15 °C. A passagem de corrente elétrica por esse fio faz com que ele esquente até uma temperatura de 135 °C na superfície, o que equivale a uma potência de 75 W. Determine o coeficiente de transferência de calor por convecção entre a superfície do fio e o ar na sala. Solução: Considerando condições de regime permanente e propriedades constantes, po- demos fazer uma esquematização simples do problema: T∞ = 15°C i 135 °C 3 mm 1,5 m Repare que a potência de 75 W pode ser entendida como uma geração de energia neste sistema. Nas condições de regime permanente, esta deve ser a taxa de transferência de energia por convecção que sai do fio para a sala (do contrário, as temperaturas não estariam constantes/estacionárias). 3 EXEMPLO 276 Introdução à Transferência de Calor A área superficial do fio é facilmente calculada como a área de um cilindro da seguinte forma: A r L A m m m � � � � � � � � � � 2 2 0 003 2 1 5 1 414 10 2 2 . . . . . , . , , . p p Para determinar o coeficiente, basta utilizar a Lei de Newton do Resfriamento: Q h A T T h Q A T T h W m conv s conv s � �� � � � �� � � � � � � . . . , . . 75 1 414 10 1352 2 CC C h W m C � �� � � � 15 44 20 2, . Camada Limite Térmica Evidentemente, a Lei de Newton do Resfriamento é matematicamente bastante simples. Contudo, a verdadeira complexidade dos problemas de convecção está em determinar o coeficiente h, que depende de características do escoamento, das propriedades do fluido, da geometria e da rugosidade da superfície sólida. Por ser dependente de tantas variáveis, diversos números adimensionais surgem para ten- tar descrever o fenômeno da convecção – o primeiro deles que mencionaremos é o número de Nusselt (Nu): Nu h L k C= . Em que k é a condutividade térmica do fluido e LC é o comprimento característico. O significado físico do número de Nusselt pode ser mais bem entendido conside- rando o esquema a seguir, em que uma camada de fluido troca calor por convecção se estiver em movimento ou por condução se estiver imóvel. 277UNIDADE 7 T2 T1 Q . ∆T = T2 - T1 Camada de �uido L Figura 10 - Transferência de calor através de uma camada de fluido Fonte: Çengel e Ghajar (2012, p. 377). Da Lei de Fourier da Condução e da Lei de Resfriamento de Newton, temos as equações: Q k A T L Q h A Tcond conv� � � �. . | . . Dividindo o calor por convecção pelo calor por condução: Q Q h A T k A T L h L k Nuconv cond � � � � � . . . . . Isto é, o número de Nusselt indica o aumento da transferência de calor como re- sultado da convecção frente à transferência de calor obtida por condução. Quanto maior for o número de Nusselt, maior o calor que o fluido trocará com o ambiente por convecção. É por isso que utilizamos a convecção forçada em nosso cotidiano: usamos ventiladores para maior resfriamento do ambiente ou mexemos e sopramos caldos, sopas e bebidas para resfriá-las, por exemplo. A convecção natural também atua com o mesmo sentido: a sensação térmica em um dia frio com ventos fortes faz parecer muito mais frio do que realmente está. O segundo número adimensional que estaremos interessados é o chamado número de Prandtl, definido como: Pr = difusividade molecular de momento difusividade molecular t rmicaé k c c k p p= = = ν α µ ρ ρ µ . . Como sua definição sugere, o número de Prandtl compara a difusão de momento com a difusão térmica. Isto fica mais claro quando nos lembramos de um conceito estudado na unidade anterior: a camadalimite hidrodinâmica, em que vimos que quando um escoa- 278 Introdução à Transferência de Calor mento livre passa a escoar sobre uma superfície sólida, começa-se a desenvolver um perfil de velocidades devido aos efeitos viscosos decorrentes do princípio do não deslizamento. De maneira análoga, quando um fluido a uma dada temperatura passa a escoar sobre uma superfície com temperatura diferente, observa-se a formação de um perfil de temperaturas e, com isto, a chamada camada limite térmica. Observe o esquema a seguir, que mostra a formação da camada limite térmica em um escoamento inicialmente uniforme a T∞ , que passa a escoar sobre uma superfí- cie à temperatura Ts . A espessura da camada limite térmica (dt ) é definida como a distância da superfície em que a diferença de temperatura T T T Ts s� � ��0 99, ( ) . Em outras palavras, a camada limite térmica é formada pelos pontos em que a tem- peratura do escoamento é afetada pela temperatura da placa. T∞T∞ T∞ Tsx δ1 Escoamento livre Camada limite térmica Ts + 0,99(T∞ Ts ) Figura 11 - Camada limite térmica sobre uma placa plana (T Ts� � ) Fonte: Çengel e Ghajar (2012, p. 383). Como você pode imaginar, a velocidade do fluido tem forte influência em como esta camada limite térmica irá se desenvolver e, por consequência, na transferência de calor por convecção. Convecção em Circuitos Térmicos Anteriormente, fizemos o desenvolvimento do conceito de circuitos e resistências térmicas para a condução do calor. De forma bastante simples, isso pode ser feito para a convecção, baseando-se na Lei de Newton do Resfriamento: Q h A T h A T T R h A Q T T R conv s conv conv s conv � � � �� � � � � � � � . . . . . 1 Com isso, problemas envolvendo paredes planas multicamadas com convecção nas superfícies podem ser resolvidos como circuitos térmicos com relativa facilidade (desde que sejam conhecidos os coeficientes de transferência de calor por convecção). 279UNIDADE 7 Quando tratamos apenas da condução, resolvemos o problema da perda de calor através de uma janela de painel duplo, em que, na verdade, aproximamos a tempe- ratura das superfícies para as temperaturas dos ambientes (20 °C e -10 °C, interna e externa). Vejamos o problema agora para a janela de painel único, onde vamos poder determinar corretamente as temperaturas das superfícies. Uma janela de painel único tem 1,0 m de altura por 1,5 m de largura e 10 mm de es- pessura. Em um dia frio, o ambiente interno desta janela é mantido à temperatura de 20 °C, enquanto o ambiente externo está a uma temperatura de -10 °C. Sabendo que os coeficientes de convecção interno e externo são hi = 12 W/(m².K) e he = 36 W/(m².K), determine a taxa de transferência de calor e a temperatura das superfícies interna e externa da janela. Solução: Novamente, estamos considerando que o sistema está em regime permanente, de modo que as temperaturas permaneçam constantes nos valores especificados. Além disso, assume-se que a transferência de calor é unidimensional e que a condutividade térmica do vidro é constante. O problema pode ser esquematizado da seguinte forma: Vidro 10 °C 20 °C Te Ti Ti Te T∞1 T∞2 RvidroRi Re ∆x = 10 mm hi = 12 m2 . K W he = 36 m2 . K W 4 EXEMPLO 280 Introdução à Transferência de Calor O primeiro passo é avaliar a área da janela: A m m m= =1 0 1 5 1 5 2, . , , Sabendo que k W m Kvidro = 0 78, ( . ) (veja na Tabela 1), as resistências térmicas são: R R h A W m K m C W R i conv i i vidro � � � � � � � � � � � � � � , . . . , , . 1 1 12 1 5 5 56 10 2 2 2 xx k A m W m K m C W R R vidro e conv e . . , . . , , . , � � � � � � � �10 10 0 78 1 5 8 55 10 3 2 3 �� � � � � � � � � ��1 1 36 1 5 1 85 10 2 2 2 h A W m K m C We . . . , , . Como estão em série, a resistência total é dada pela soma das resistências, logo: R R R R C Wtotal i vidro e � � � � ��8 265 10 2, . Agora, basta substituir na equação para a taxa de transferência de calor para a resis- tência total do circuito: Q T R T T R C C Wtotal total � � � � � � � � � �� � � 1 2 2 20 10 8 265 10 362 98[ ( )] , . , WW Em posse disto, é fácil determinar as temperaturas nas superfícies interna e externa. Para a primeira resistência: Q T T R T T Q R T C W C W i i i i i � � � � � � � � � � � � � � 1 1 220 362 98 5 56 10 0 18 . , . , . , ��C Para a segunda resistência: Q T T R T T Q R T C W i e vidro e i vidro e � � � � � � � � � � . , , . , .0 18 362 98 8 55 10 3 �� � � �C W C3 29, 281UNIDADE 7 Veja como estes resultados diferem dos observados no exemplo para o painel duplo. Evidentemente, no primeiro exemplo, os devidos efeitos de convecção não foram considerados, contudo, a diferença observada é decorrente principalmente da ausência da camada de ar estagnado, que atua como isolante. Para a janela de painel único, apesar de a temperatura da sala ser de 20 °C, a superfície interna está a -0,18 °C, de modo que, se a umidade do ambiente for suficiente, poderá haver a condensação sobre a superfície interna do vidro, deixando-o embaçado. Uma última observação deve ser feita quanto às resistências térmicas e uso de isolantes térmicos. Imagine que você está fazendo o isolamento de uma tubulação cilíndrica. Repare que, quanto mais espessa for a camada de isolante em torno da tubulação, maior será a área superficial exposta aos efeitos de convecção. Isto sugere a existência do chamado raio crítico de isolamento, definido para um cilindro como: r k hcr cilindro isolamento , = Considere o esquema e o diagrama a seguir: Q . Q . Q . Q . max 0 r1 r2rcr = k/h r2 r1 h k sem isolamento Figura 12 - Efeito do isolamento em tubos cilíndricos Fonte: Çengel e Ghajar (2012, p. 161). Efeito do isolamento em tubos cilíndricos 282 Introdução à Transferência de Calor Como mostra o gráfico, se r r rcr1 2< < , a taxa de transferência de calor aumenta com a adição de isolamento, atingindo um máximo em r rcr2 = , e passa a diminuir para r rcr2 > . Isto é, até uma dada espessura, usar isolamento estará aumentando a perda de calor em vez de mitigá-la, pois a convecção será o efeito dominante. Dito isso, a experiência demonstra, em geral, que o raio crítico será de, no máximo, 1 cm. Portanto, podemos isolar a maioria das tubulações sem grandes preocupações com a possibilidade de estarmos, na verdade, aumentando a transferência de calor. A título de curiosidade, o raio crítico de isolamento para esferas é dado por: r k hcr esfera isolamento , . = 2 Talvez você já tenha reparado que alguns equipamentos apresentam superfícies estendidas feitas de materiais altamente condutores (como o alumínio), tais como radiadores de carro e componentes de computadores. Estas superfícies são cha- madas aletas e tem como objetivo aumentar a transferência de calor por meio do aumento da superfície exposta à troca térmica (principalmente por convecção). Esta estratégia é observada até mesmo na natureza – por exemplo, as placas ósseas presentes nas costas dos estegossauros serviam como radiadores para resfriamento do sangue que fluía através delas. Fonte: adaptado de Çengel e Ghajar (2012). 283UNIDADE 7 Finalmente, falta apenas tratarmos sobre o terceiro mecanismo de transferência de calor: a radiação. Este mecanismo é particularmente interessante, pois a energia é transferida na forma de ondas eletromagnéticas resultantes das mudanças nos elétrons de átomos ou moléculas. Portanto, ela não depende de um meio para se propagar – ela é, afinal, a forma como a energia do Sol chega até a Terra, após percorrer distâncias planetárias em condições de vácuo. Repare que a radiação térmica (ou seja, emiti- da pela temperatura dos corpos) é diferente das outras formas de radiação eletromagnética (como raios X, micro-ondas e ondas de rádio). Todo só- lido, líquido ou gás que esteja a uma temperatura superior ao zero absoluto (0 K) emite, absorve ou Radiação 284 Introduçãoà Transferência de Calor transmite radiação. A equação que determina a taxa máxima de radiação que pode ser emitida por uma superfície à temperatura Ts é a chamada Lei de Stefan-Boltzmann da radiação térmica: Q A Trad s,max . .= s 4 Em que s � � �5 670 10 8 2 4, ( . )W m K é a constante de Stefan-Boltzmann e Ts é a temperatura termodinâmica (ou seja, em Kelvin ou Rankine) da superfície. Na prática, esta radiação máxima é emitida somente por uma superfície idealiza- da chamada de corpo negro. Para superfícies reais, utiliza-se um parâmetro e e( )0 1≤ ≤ que é chamado de emissividade da superfície. Assim: Q A Trad s= ε σ. . . 4 Quando estivermos tratando de uma pequena superfície à temperatura Ts comple- tamente envolvida por uma vizinhança de superfície isotérmica à temperatura Tviz , e separadas por um gás que não influencia na radiação (como o ar), a taxa líquida de transferência de calor por radiação entre essas duas superfícies pode ser determinada por: Q A T Trad s viz� �ε σ. . . ( ) 4 4 Na Tabela 2, são apresentadas as emissividades típicas para algumas superfícies. Tabela 2 - Emissividade de alguns materiais a 300 K Material ε Material ε Material ε Alumínio em folhas 0,07 Pintura preta 0,98 Pele humana 0,95 Alumínio anodizado 0,82 Pintura branca 0,90 Madeira 0,82-0,92 Cobre polido 0,03 Papel branco 0,92-0,97 Terra 0,93-0,96 Ouro polido 0,03 Pavimento asfáltico 0,85-0,93 Água 0,96 Prata polida 0,02 Tijolo vermelho 0,93-0,96 Vegetação 0,92-0,96 Aço inoxidável polido 0,17 Fonte: Çengel e Ghajar (2012, p. 28). 285UNIDADE 7 Imagine que em um dia frio de inverno as superfícies interiores das paredes, do piso e do teto do seu quarto estejam a uma temperatura de 12 °C. De forma semelhante, em um dia quente de verão, elas estão à temperatura de 28 °C. Apesar destas temperaturas, em ambos os casos, o interior da sala é mantida na temperatura de 20 °C. Considerando que a superfície exposta do seu corpo seja de 1,5 m², com uma temperatura de 32 °C, determine a taxa de transferência de calor por radiação entre você e as superfícies do seu quarto para ambas as situações. Solução: Considerando apenas a troca térmica por radiação, que todas as temperaturas estão uniformes como descritas e que o corpo se encontra totalmente cercado pelas superfícies interiores do quarto, basta utilizar a equação da taxa líquida de transfe- rência de calor por radiação, sendo que o corpo, por estar a uma temperatura maior (32 °C = 305,15 K), transfere energia para as paredes. Assim, adotando uma emissividade para a pele humana de 0,95 (conforme Tabela 2), para o dia frio: Q A T Trad s viz� �ε σ. . . ( ) 4 4 Q W m K mrad frio, , . , . . , . ( , )� �� � � � � � � � ��0 95 5 670 10 1 5 32 273 158 2 4 2 44 4 412 273 15 166 39 � ��� � � � ( , ) ,, K Q Wrad frio 5 EXEMPLO 286 Introdução à Transferência de Calor Para o dia quente: Q A T Trad s viz� �ε σ. . . ( ) 4 4 Q W m K mrad quente, , . , . . , . ( ,� �� � � � � � � � ��0 95 5 670 10 1 5 32 273 18 2 4 2 55 28 273 15 36 02 4 4 4 ) ( , ) ,, � ��� � � � K Q Wrad quente A diferença entre estas taxas de transferência demonstra justamente o motivo de sentirmos frio no inverno mesmo com a temperatura do ambiente controlada como a de um dia quente no verão: os efeitos de radiação fazem com que a superfície do nosso corpo perca mais calor para o ambiente em função da temperatura das super- fícies internas do quarto. Uma última observação importante deve ser feita quanto à radiação. Por conve- niência, frequentemente se faz uso de um coeficiente combinado de transferência de calor (h), mesmo que de maneira implícita, que inclui tanto os efeitos da radiação quanto o da convecção – ou seja, ao utilizar este coeficiente combinado no cálculo da taxa de transferência de calor por convecção, os efeitos da radiação já estão con- tabilizados. É relativamente razoável ignorar a radiação em problemas de convecção forçada (especialmente se a emissividade da superfície for baixa), mas em problemas de condução ou convecção natural, a radiação tem participação significativa. Enfim, terminamos esta unidade sobre os fenômenos da transferência de calor! As analogias entre os fenômenos começaram a aparecer e ficarão ainda mais nítidas quando chegarmos em nossa nona e última unidade, em que estudaremos sobre o fenômeno da transferência de massa. Antes disso, iremos continuar na perspectiva da transferência de calor, estudando um pouco mais sobre equipamentos de extrema importância industrial: os trocadores de calor. 287 Você pode utilizar seu diário de bordo para a resolução. 1. O telhado de uma casa apresenta dimensões 7,5 m x 10,0 m, com 0,30 m de espes- sura, e consiste basicamente em uma placa plana de concreto (k = 0,8 W/m.K). Este telhado conta com um sistema de aquecimento elétrico que, ao longo de uma noite (período de 10 horas), é capaz de manter a temperatura da sua superfície interior em 18 °C, enquanto a superfície exterior é mantida em 6 °C. Determine a taxa de perda de calor através do telhado e o custo dessa perda (considere R$ 0,42/kWh). Telhado de concreto 8 m 6 m 0,25 m 15 °C 4 °C Telhado de concreto 10,0 m 7,5 m 0,30 m 18 °C 6 °C Fonte: adaptada de Çengel e Ghajar (2012). 2. Refaça o problema da janela de painel duplo, agora considerando devidamente os efeitos convectivos no interior e exterior. Considere que os painéis têm 1,0 m de altura por 1,5 m de largura e estão dispostos como esquematizado a seguir. Adote k W m Kvidro = 0 78, ( . ) e k W m Kar = 0 026, ( . ) . 10 °C 20 °C TeTi hi = 36 m2 . K W T2T1 Ar VidroVidro 10 mm 5 mm5 mm T3 T 4 R2R1 R3 hi = 12 m2 . K W ReRi Fonte: adaptada de Çengel e Ghajar (2012). 288 3. Considere a seguinte parede plana composta: T2T1 T0 isolante A B q’’ LA LB = 60 mm = 20 mm kB qB = 120 W/(m.K) = 0 W/m3 Água T∞ = 25°C h = 1000 W/(m2.K) qA = 1,5 x 106W/m3 kA = 75 W/(m.K) No material A, ocorre geração de calor uniforme ( q x=1 5 106 3, W m ) e sua superfície interna está perfeitamente isolada. A superfície B, que não apresenta geração de calor, é resfriada por uma corrente de água a 25 °C. Determine as temperaturas T0, T1 e T2. Considere uma área superficial unitária ( A m=1 2 ). 289 Transferência de Calor e Massa – Uma Abordagem Prática (4ª Edição) Autor: Yunus A. Çengel e Afshin J. Ghajar Editora: McGraw Hill Sinopse: é uma das obras mais consagradas, tanto como livro-texto básico para estudantes de graduação em engenharia quanto como referência para enge- nheiros que já atuam no mercado profissional. Faz uma abordagem extensa dos fenômenos de transferência de calor e massa, com riqueza de exemplos e contextualização histórica. Comentário: é uma das principais referências globais sobre transferência de calor e massa, que você pode utilizar para se aprofundar no estudo da condução e convecção, bem como na analogia entre os fenômenos de transporte. Também conta com diversas tabelas e gráficos de propriedades para uma grande varie- dade de componentes, com unidades no SI (na versão Brasileira). LIVRO 290 ÇENGEL, Y. A.; GHAJAR, A. J. Transferência de Calor e Massa: uma abordagem prática. 4. ed. Porto Alegre: AMGH Editora, 2012. INCROPERA, F. P.; DEWITT, D. P. Fundamentos de Transferência de Calor e de Massa. 6. ed. Rio de Janeiro: Editora LTC – GEN (Grupo Editorial Nacional), 2008. WELTY, J. R.; RORRER, G. L.; FOSTER, D. G. Fundamentos de Transferência de Momento, de Calor e de Massa. 6. ed. São Paulo: Editora LTC – GEN (Grupo Editorial Nacional), 2017. 291 1. Estamos considerando que o sistema permanece em regime permanente durante o período de 10 horas descrito, ao longo do qual suas propriedades são constantes e o escoamento de calor é unidimensional. Trata-se, portanto, de um problema de condução em que há geração de energia (no caso, devido ao sistema de aquecimento por eletricidade). Para solucionar o problema, o primeiro passo é avaliar a área de trocado telhado: A m m m= =7 5 10 0 75 0 2, . , , Com isso, como conhecemos também a condutividade térmica do telhado (k = 0,8 W/m.K), sua espessura (0,30 m) e a diferença de temperatura entre as superfícies interna e externa, pode-se calcular o calor perdido através do telhado pela Lei de Fourier da Condução Térmica: Q k A T T x W m K m C m Q i e� � � � � � � � � � � � � �� � � . . , . . , . ( ) , 0 8 75 0 18 6 0 30 24 2 000 2 4W kW� , Para calcular o custo, precisamos calcular a quantidade de energia em um período de 10 horas. Assim, temos: Q Q t kW h Q kWh � � � � � � � � . , .2 4 10 24 Logo, o custo correspondente a essa perda é de: Custo = Quantidade de Energia . Custo Unit rio da Energia� � � � � �á Custoo kWh kWh Custo � � � � � � 24 0 42 10 08 . , / , R$ R$ 292 2. Como o próprio esquema apresentado sugere, o problema pode ser resolvido por meio da determinação das resistências térmicas do sistema. Para isso, primeiro, determina-se a área de troca térmica de cada superfície do painel, dada por: A m m m= =( , ) . ( , ) ,1 5 1 0 1 5 2 Em seguida, determinam-se as resistências, sendo Ri e Re resistências de convecção, enquanto R1, R2 e R3 são resistências de condução. Logo: R x k A R h A R R h A W m K m cond conv i conv i i � � � � � � � � � � � � . | . . . . , , 1 1 1 12 1 52 22 2 1 1 3 2 5 56 10 5 10 0 78 1 5 4 27 � � � � � � � � � � , . . . , . . , , C W R x k A m W m K mvidro .. , . . . , . . , 10 4 27 10 10 10 0 026 1 5 3 3 2 2 3 2 � � � � � � � � � � K W C W R x k A m W m K mar �� � � � � � � � � 256 41 10 256 41 10 5 10 0 78 3 3 3 3 3 , . , . . . , K W C W R x k A m W mvidro .. . , , . , . . , K m K W C W R R h A W m e conv e e � � � � � � � � � � 1 5 4 27 10 4 27 10 1 1 36 2 3 3 22 2 2 1 5 1 85 10 . . , , . K m C W� � � � � � � �� Como todas estas resistências estão em série, a resistência total é: R R R R R R C Wtotal i e � � � � � � �� 1 2 3 3339 05 10, . 293 Logo, a taxa de transferência de calor pode ser determinada: Q h A T T Q q V q A L Q conv s gerado A A A A gerado � �� � � � � �. . . . . , .1 5 106 WW m m m W Q Q qgerado conv gerado 3 2 31 6 10 9000� � � � � � � � � � . ( ) . ( . ) | qq Q h A T T q h T T Q h A T T conv conv s conv s conv � �� � � �� � � �� � � � . . | . . . 2 �� � � � � � � � � � � � � � � �T Q h A T T W W m K m C T conv 2 2 2 2 2 90000 1000 1 25 1 . . . ( ) 115 �C Conhecendo a taxa, pode-se calcular as temperaturas T1, T2, T3 e T4 fazendo a equação de cada uma das resis- tências térmicas: Q T T R T T Q R T C W C W i i i i� � � � � � � � �� � � � � � � � 1 1 1 220 88 48 5 56 10 . ( , ) . , . 115 08 15 08 88 48 4 27 10 1 2 1 2 1 1 2 , . , ( , ) . , . � � � � � � � � � � C Q T T R T T Q R T C W 33 2 3 2 3 2 2 3 14 70 14 70 88 48 �� � � � � � � � � � � � � � � � C W C Q T T R T T Q R T C , . , ( , WW C W C Q T T R T T Q R T ) . , . , . 256 41 10 7 993 3 4 3 4 3 3 4 � �� � � � � � � � � � � � � � � � 77 99 88 48 4 27 10 8 373, ( , ) . , . ,� � �� � � � � � � � � �C W C W C Estes resultados são muito mais condizentes com o que se espera observar na prática do que com as aproxi- mações feitas no exemplo original. 294 3. Considere condições de regime estacionário, com propriedades constantes, em que o escoamento de calor ocorre unidimensionalmente na direção x. Podemos avaliar o calor total gerado: Q q V q A L Q W m m gerado A A A A gerado � � � � � � � � � . . . , . . ( ) . (1 5 10 1 66 3 2 00 10 900003. )� �m W Em regime estacionário, as temperaturas devem estar constantes, e o calor gerado no material A deve ser justa- mente igual ao calor removido pela convecção no material B, uma vez que o outro lado do material A está isolado. Q Q q qgerado conv gerado conv= =| Assim, podemos utilizar a Lei de Newton do Resfriamento para avaliar a temperatura da superfície externa (T2): Q h A T T q h T T Q h A T T T conv s conv s conv � �� � � �� � � �� � � � � � � . . | . . . 2 2 QQ h A T T W W m K m C T C conv . . . ( ) � � � � � � � � � � � � � � 2 2 2 2 90000 1000 1 25 115 Conhecendo T2, pode-se determinar T1 por meio da Lei de Fourier da Condução, uma vez que, no regime per- manente, o calor gerado também deve ser equivalente ao calor conduzido através da camada B: Q k A T T L T Q L k A T T W cond B B cond B B � � � � � � � . . ( ) . . . . 1 2 1 2 1 390000 20 10 mm W m K m C T C 120 1 115 130 2 1 . . ( ) � � � � � � � � � � � O mesmo pode ser feito com a camada A para determinar T0: Q k A T T L T Q L k A T T W cond A A cond A A � � � � � � � . . ( ) . . . . 0 1 0 1 0 390000 60 10 mm W m K m C T C 75 1 130 202 2 0 . . ( ) � � � � � � � � � � � 295 296 PLANO DE ESTUDOS OBJETIVOS DE APRENDIZAGEM • Apresentar os diversos tipos de dispositivos e configura- ções de equipamentos de transferência de calor. • Estudar o conceito de média logarítmica das temperaturas junto do coeficiente global de transferência de calor. • Abordar os principais aspectos a serem considerados ao analisar um trocador de calor. Tipos de Trocadores de Calor Transferência de Calor em Trocadores Análise de Trocadores de Calor Dr. Rodrigo Orgeda Esp. Henryck Cesar Massao Hungaro Yoshi Trocadores de Calor Tipos de Trocadores de Calor Prezado(a) aluno(a), agora que você já aprendeu os fundamentos sobre os fenômenos da transfe- rência de calor, dedicaremos esta unidade ao es- tudo dos chamados trocadores de calor – equipa- mentos utilizados para promover a troca térmica entre dois fluidos bastante utilizados na indústria. Perceba que, baseado nesta definição, equipamen- tos que aquecem uma corrente através de fogo direto, resistências elétricas e demais processos são chamados apenas de aquecedores, pois não envolvem duas correntes de fluidos. Evidentemente, para que haja troca térmica, é necessário ter diferença de temperatura entre os dois fluidos. Assim, um trocador de calor envolve um fluido quente (aquele que fornece calor) e um fluido frio (aquele que recebe calor). Apesar de parecer óbvio, isto tem implicações significantes no desempenho energético de um processo, pois o calor pode ser recuperado. 299UNIDADE 8 Para deixar este conceito mais claro, imagine a seguinte situação: você possui duas correntes, A e B. A corrente A está a uma temperatura de 100 °C e precisa ser resfriada. Paralelamente, a corrente B está a uma temperatura de 30 °C e precisa ser aquecida. Então, sendo a corrente A o fluido quente e a corrente B o fluido frio, um trocador de calor pode ser utilizado para recuperar parte da energia da corrente A, transferindo-a para a corrente B. Esta manobra leva a uma economia de energia no processo, reduzindo a demanda de correntes de utilidades (água de resfriamento e vapor de aquecimento, por exemplo). Note que diversos equipamentos, apesar de serem frequentemente chamados por outros nomes, são essencialmente trocadores de calor, como os condensadores e re- fervedores de colunas de destilação, que promovem troca de calor latente, geralmente utilizando água (fluido frio do condensador) e vapor (fluido quente do refervedor). Dito isso, nosso foco estará mais direcionado em estudar os trocadores de calor que promovem troca térmica apenas entre correntes de processo (ou seja: sem o uso de correntes de utilidades e outros mecanismos, não englobando os equipamentos mencionados anteriormente), os quais são comercialmente chamados de “trocadores de calor”, de fato. Figura 1 - Trocadores de calor em uma refinaria 300 Trocadores de Calor Geralmente, a transferência de calor em trocadores acontece por meio de dois meca- nismos: pela convecção em cada fluido e pela condução na parede queos separa. Como estudamos, a área de troca térmica é um aspecto chave neste fenômeno (lembre-se das equações da Lei de Fourier da Condução e da Lei de Newton do Resfriamento), de modo que conhecer a configuração estrutural dos trocadores de calor é fundamental para uma análise do seu funcionamento e desempenho. Antes de classificarmos os principais tipos de trocadores existentes, vamos tomar um momento para ponderar o contexto em que nos encontramos. A indústria, no ge- ral, trabalha com diversos fluidos, cada um com suas propriedades (como viscosidade, densidade e calor específico). Ainda, cada processo apresenta uma dada finalidade (por exemplo, para produção alimentícia, química ou farmacêutica), e o engenheiro não deve estar somente preocupado com o desempenho e lucratividade do processo, mas também com relação a aspectos, como segurança, viabilidade técnica, necessidade de manutenção dos equipamentos e muitos outros detalhes intrínsecos a cada indústria. Com isso em mente, é razoável concluir que diferentes configurações de processos e equipamentos são criadas para melhor atender necessidades específicas. Natural- mente, isto também é válido para os trocadores de calor, sendo que sua principal diferenciação é dada em termos de sua geometria, destacando-se os trocadores dos tipos: tubo duplo (“double pipe”), casco e tubo (“shell and tube”) e de placas (“plate”). O modelo mais simples de trocador de calor é o chamado trocador de tubo duplo, que consiste essencialmente em dois tubos concêntricos (veja a Figura 2), em que um dos fluidos escoa pelo tubo de diâmetro menor e o outro escoa pelo espaço anular entre os dois tubos. Geralmente, este tipo de trocador apresenta dois trechos retos com conexões nas extremidades dos tubos. Bucha BuchaBuchaCurva de retorno Cabeçote de retorno Tê Figura 2 - Trocador de calor tubo duplo Fonte: Araújo (2002, p. 7). Orientando-se pela figura, repare que não há mistura entre os dois fluidos, de modo que a transferência de calor ocorre através da parede do tubo interno. Esta formação estrutural em “U” é, às vezes, chamada de “grampo” (em inglês hairpin), e conectando vários destes em sequência, pode-se alcançar uma área de troca térmica considerável. 301UNIDADE 8 Além disso, repare que duas formas de escoamento são possíveis: o escoamento paralelo, em que ambos os fluidos entram no trocador pela mesma extremidade ou o escoamento contracorrente, em que os fluidos entram no trocador por extremidades opostas entre si. Talvez não seja imediatamente intuitivo, mas é crucial perceber que o desempenho e o funcionamento do trocador serão diferentes para os dois tipos de escoamento. Para o escoamento paralelo, as temperaturas dos dois fluidos tendem a se aproxi- mar e a diferença de temperatura ao longo do trocador diminui significativamente. Por outro lado, para o escoamento contracorrente, o fluido frio pode sair do equipamento mais quente do que o próprio fluido quente sai, e as diferenças de temperatura entre os dois fluidos ao longo do trocador apresentam menor variação. A Figura 3 representa de forma simplificada estas duas situações. Nos diagramas de temperatura, repare que a seta nas curvas serve para indicar a direção dos escoamentos. T Fluído quente Fluíd o frio T Fluído quente Fluído frio Quente entra Quente sai Frio entra Frio sai Quente entra Quente sai Frio sai Frio entra (a) Escoamente paralelo (b) Escoamente contracorrente Figura 3 - Arranjos de escoamento em trocadores de tubo duplo e seus perfis de temperatura associados Fonte: Çengel e Cimbala (2015, p. 630). 302 Trocadores de Calor Os trocadores de tubo duplo se destacam pela sua facilidade de construção, manuten- ção e ampliação da área de troca térmica, sendo geralmente construídos em dimensões padronizadas, chegando a ter de 1,5 a 7,5 metros de comprimento, geralmente. Há, entretanto, outros modelos de trocadores que ocupam menos espaço físico e fornecem maior área de troca térmica, de modo que os trocadores de tubo duplo costumam ser economicamente viáveis quando os demais não são interessantes e para áreas de troca térmica de até 30 m². Um segundo tipo de trocador de calor, um dos mais comumente encontrado em indústrias, é o trocador casco e tubo. Como o nome sugere, este tipo de equipamento de troca térmica possui diversos tubos (até mesmo centenas) colocados paralelamen- te ao eixo longitudinal de um casco cilíndrico (veja a figura a seguir para facilitar a visualização). A transferência de calor ocorre através da parede destes tubos, em que um fluido escoa por dentro deles e o outro percorre o exterior dos tubos ao longo da casca. É comum classificá-los com relação ao número de “passes” que acontecem no casco e nos tubos, como na Figura 4: Saída Fluído do lado dos tubos Saída Entrada Entrada Saída Entrada do �uído do lado do casco Entrada do �uído do lado do casco Fluído do lado dos tubos Saída (b) Dois passes no casco e quatro passes nos tubos(a) Um passe no casco e dois passes nos tubos Figura 4 - Diferentes configurações de trocadores de calor casco e tubo Fonte: Çengel e Cimbala (2015, p. 632). Evidentemente, as representações anteriores são bastante simplistas do ponto de vista estrutural do equipamento. As extremidades dos tubos são ainda presas aos chama- dos espelhos (placas perfuradas), em que cada furo corresponde a um tubo do feixe. Dentro do casco, podem também ser colocadas as chamadas chicanas – placas que são atravessadas pelos tubos e que servem tanto para direcionar o escoamento do fluido no casco quanto para dar suporte estrutural aos tubos. Além disso, as chicanas têm a função de melhorar a transferência de calor entre os fluidos. Veja a figura a seguir: 303UNIDADE 8 1 9 3 5 6 8 2 4 7 3 8 5 6 9 1 - Casco ou carcaça 2 - Tubos 3 - Espelho 4 - Chicanas 5 - Carretel 6 - Tampa do carretel 7 - Espaçadores de chicanas 8 - Bocal (lado tubo) 9 - Bocal (lado casco) Figura 5 – Representação das partes constituintes de um trocador casco e tubos Fonte: Araújo (2002, p. 16). O ponto forte deste modelo é que ele pode ser projetado para extensas faixas de pres- são, temperatura e vazão, podendo alcançar grandes áreas de troca térmica (até acima de 5000 m²). Em geral, é o modelo de trocador mais versátil e, por isso, a sua popula- ridade na indústria. Algumas exceções ao seu uso são, por exemplo, em automóveis e aeronaves, principalmente devido ao tamanho e ao peso destes tipos de trocador. Figura 6 - Trocador de calor tipo casco e tubo 304 Trocadores de Calor O terceiro e último tipo de trocador que iremos tratar é o chamado trocador de calor de placas, utilizados especialmente na indústria de alimentos pela facilidade de manutenção e limpeza. Estes tro- cadores consistem, essencialmente, em uma sequência de placas, com os fluidos escoando intercaladamente entre elas, de modo que uma camada de fluido frio está trocando calor com duas camadas de fluido quente, o que leva a uma troca térmica bastante eficiente. São geralmente utilizados quando os dois fluidos são líquidos em pressões próximas, destacando-se pela facilidade em aumentar ou diminuir a área de troca térmica, se necessário (pela adição ou re- moção de placas). Entretanto, são equipamentos que não suportam pressões muito altas, quando comparados aos trocadores tubulares. Figura 7 - Trocador de calor de placas típico de indústrias de alimentos Trocadores de calor de tubo e casco 305UNIDADE 8 Conhecidos os principais tipos de trocadores de calor industriais, iremos, agora, abordar os fun- damentos dos cálculos de projeto e análise de trocadores de calor. Note que estaremos particu- larmente interessados na perspectiva da transfe- rência de calor, que é nosso objeto de estudo – os métodos de projeto completo de trocadores de calor são muito extensos e complexos para serem abordados aqui, cabendo apenas as disciplinas mais específicas. Transferência de Calor em Trocadores 306 Trocadores de CalorMédia Logarítmica das Temperaturas Na unidade anterior, utilizamos a Lei de Fourier da Condução Térmica e a Lei de Newton do Resfriamento para descrever os fenômenos de condução e convecção, respectivamente. Lembre-se que as equações que descrevem essas leis são (na forma integral para a Lei de Fourier): Q k A T xcond � � . . D D e Q h A T Tconv s� �� ��. . Como já abordado na unidade anterior, ambos os mecanismos estão baseados em diferenças de temperatura. Nos trocadores de calor, é importante perceber que esta diferença de temperatura pode mudar ao longo do equipamento (como foi demons- trado ao discutir o escoamento em paralelo ou contracorrente – ver Figura 3). Por- tanto, é evidente que para avaliar a transferência de calor no trocador, é necessário descrever as diferenças de temperaturas entre os fluidos quente e frio no interior do trocador de alguma maneira. Para isso, recorremos ao conceito de média logarítmica. Considera-se, por exemplo, um trocador de calor puramente contracorrente, como o representado de forma simplificada pela Figura 8. Tqen Tfen Tqsai Tfsai Figura 8 - Trocador de calor com escoamento puramente contracorrente Fonte: os autores. O terminal no qual entra a corrente quente e sai a corrente fria aquecida é chamado terminal quente. Denominando-se q1 a diferença de temperatura entre estas duas correntes, então, a diferença de temperaturas no terminal quente é dada por: q1 � �T Tq fen sai No outro extremo do trocador está o terminal frio, no qual entra a corrente fria e sai a corrente quente resfriada. A diferença de temperaturas entre estas duas correntes, no terminal frio, será dita q2 , e é dada por: q2 � �T Tq fsai en 307UNIDADE 8 A integração entre as equações de projeto se faz de forma que a transferência de calor esteja relacionada com a média logarítmica das diferenças de temperaturas (MLDT), a qual é calculada utilizando as diferenças de temperatura nos extremos do trocador (q1 e q2 ), dada por: MLDT � �q q q q 1 2 1 2 ln Tenha sua dose extra de conhecimento assistindo ao vídeo. Para acessar, use seu leitor de QR Code. Aqui, definimos MLDT com base no escoamento contracorrente. Exatamente o mesmo raciocínio poderia ser desenvolvido para o escoamento em paralelo, sendo diferente somente no cálculo dos termos θ1 e θ2, em que o primeiro será a dife- rença entre as temperaturas de entrada e o segundo será na saída, para ambos os fluidos (quente e frio). Coeficiente Global de Transferência de Calor Como já foi mencionado, a transferência de calor em trocadores acontece por meio de dois mecanismos: pela convecção em cada fluido e pela condução na parede que os separa. Na unidade anterior, você aprendeu a analisar sistemas de troca térmica por meio da estratégia dos circuitos térmicos. Naquele momento, mencionamos que é conveniente trabalhar com um coeficiente global de transferência de calor (repre- sentado pela letra “U”), que junto da área de troca térmica pode ser descrito como a resistência total do sistema: U A R Q U A T T Rtotal total . | . .� � � � �1 308 Trocadores de Calor Esta será exatamente a abordagem que utilizaremos com os trocadores de calor. Veja que a área de troca térmica (A) é um parâmetro característico da estrutura do equipamento (conforme vimos para os diferentes tipos de trocadores no início desta unidade). Vamos avaliar, então, o circuito térmico associado a um trocador de tubo duplo, em que um fluido percorre o interior do tubo e o outro percorre a região ao redor do tubo. Considere, por exemplo, que no interior do tubo esteja o fluido quente (por consequência, o fluido frio está percorrendo por fora do tubo). Podemos representar este circuito como duas resistências de convecção e uma resistência de condução entre elas (veja a figura e o circuito a seguir): Fluído frio Fluído quente Fluído frio Fluído quente Transferência de calor Ti To hi Ai hO A Rparede1 1 Ri Ti To Ro= = hO AO. hi Ai. Parede Figura 9 - Circuito térmico associado a um trocador de calor de tubo duplo Fonte: Çengel e Cimbala (2015, p. 633). Conhecendo também a condutividade térmica do material do tubo (k), o seu com- primento (L) e os seus diâmetros interno e externo (Di e Do ), a resistência da parede será: R D D k Lparede o i� � � � � � �ln . . .2 p 309UNIDADE 8 Então, a resistência térmica total é: R R R R h A D D k L h Atotal i parede o i i o i o o � � � � � � � � � � � � 1 2 1 . ln . . . .p Agora, utilizando o conceito de coeficiente global de transferência de calor, teremos: U A R R U A h A R h Atotal total i i parede o o . . . . � � � � � � 1 1 1 1 Note que, na equação anterior, temos três áreas sendo representadas. É evidente que a área interna do tubo ( Ai ) é diferente da área externa ( Ao ). Ao mesmo tempo, vimos que a área “A” é justamente a área de troca térmica característica da estrutura do equipamento; mas afinal, quem é esta área de troca térmica, Ai ou Ao ? A resposta não é tão intuitiva: na verdade, o mais sensato é abordar este problema considerando que o trocador de calor apresenta dois coeficientes globais de troca térmica, Ui e Uo , numericamente diferentes entre si, de modo que: 1 1 1 U A U A U A R i i o o total. . . = = = Dessa forma, se você conhece o coeficiente global de transferência de calor para um determinado trocador, é fundamental você saber também qual é a área a que ele diz respeito. Dito isto, poderemos desconsiderar esta diferença em um caso específico: quando a espessura do tubo for muito pequena (de modo que as áreas Ai e Ao serão quase as mesmas) e o material do tubo for um excelente condutor de calor. Nestas condições, a resistência térmica da parede (Rparede) tenderá a zero, podendo ser despre- zada. Isto simplifica a equação da resistência total do sistema para a seguinte forma: R U A h A h A A A A U h h total i i o o i o i o � � � � � � � � 1 1 1 1 1 1 . . . Repare que, portanto, neste caso também podemos dizer que: U U Ui o≈ ≈ Esta é uma aproximação razoável para muitos trocadores de calor. Na tabela a seguir, são apresentados alguns valores representativos para os coeficientes globais de troca térmica de trocadores típicos envolvendo diferentes pares de fluidos. 310 Trocadores de Calor Tabela 1 - Valores representativos do coeficiente global de transferência de calor em trocadores de calor Fluidos de processo U (W/m².K) Água-água 850 – 1700 Água-óleo 100 – 350 Água-gasolina ou querosene 300 – 1000 Aquecedores de água de alimentação 1000 – 8500 Vapor-óleo combustível leve 200 – 400 Vapor-óleo combustível pesado 50 – 200 Condensador de vapor 1000 – 6000 Condensador de freon (resfriado à água) 300 – 1000 Condensador de amônia (resfriado à água) 800 – 1400 Condensadores de álcool (resfriados à água) 250 – 700 Gás-gás 10 – 40 Água-ar em tubos aletados (água nos tubos) 30 – 60 (p/ superfície do lado do ar) 400 – 850 (p/ superfície do lado da água) Vapor-ar em tubos aletados (vapor nos tubos) 30 – 300 (p/ superfície do lado do ar) 400 – 4000 (p/ superfície do lado do vapor) Fonte: Çengel e Cimbala (2015, p. 634). Conhecendo o cálculo de MLDT e o conceito de coeficiente global de transferência de calor, você já tem recursos suficientes para começar a lidar com problemas envolven- do trocadores de calor. Antes disso, discutiremos ainda mais um aspecto importante acerca destes equipamentos: a incrustação – depósitos de materiais indesejáveis nas superfícies de troca térmica, que acarretam no aumento da resistência à transferência de calor no equipamento. Para ilustrar esse efeito, imagine que você tenha um bule que utiliza com fre- quência para esquentar água. Se não for feita a devida limpeza, é possível identificar que alguns minerais (como o cálcio) se acumulam sobre as superfícies. O mesmo ocorre com os trocadores – seja por sedimentação, corrosão, cristalização ou outros mecanismos – estas camadas de sólidos aumentam a resistência térmica daparede dos tubos, prejudicando o desempenho do equipamento. 311UNIDADE 8 Figura 10 - Incrustação no feixe de um trocador casco e tubo Em termos matemáticos, podemos entender as camadas de incrustação como termos adicionais de resistência térmica. Geralmente, utilizamos a letra “f ” para indicar estas resistências (devido ao termo em inglês para incrustação, “fouling”). Dessa forma, sendo R f,i e R f,o os chamados fatores de incrustação das superfícies interna e externa, respectivamente, podemos ajustar a expressão para o cálculo da resistência total da seguinte forma: R h A R A D D k L R A h Atotal i i f i i o i f o o o o � � � � � � � � � � � 1 2 1 . ln . . . . , , p Na tabela a seguir, alguns valores representativos de fatores de incrustação por unidade de área são apresentados. Evidentemente, estes valores servem apenas como estimativa para prever os possíveis efeitos na transferência de calor. Tabelas mais completas e detalhadas podem ser encontradas em manuais mais específicos. Tabela 2 - Fatores de incrustação representativos por unidade de área Fluido Rf (m².K/W) Água (destilada, marinha, fluvial) 0,0001 (abaixo de 50 °C) 0,0002 (acima de 50 °C) Óleo combustível 0,0009 Vapor 0,0001 Refrigerantes líquidos 0,0002 Refrigerantes gasosos 0,0004 Vapores de álcool 0,0001 Ar 0,0004 Fonte: Çengel e Cimbala (2015, p. 636). 312 Trocadores de Calor Agora que temos nossos conceitos básicos definidos, vamos resolver um exemplo para ilustrar estes cálculos. Ao longo desta unidade, estaremos sempre considerando condições de regime permanente, propriedades constantes, com escoamento com- pletamente desenvolvido e sem perda de carga. Considere um trocador de calor tubo duplo feito de aço inoxidável (k = 15,1 W/m.K), cujos tubos possuem um diâmetro interno Di = 1,7 cm e diâmetro externo Do = 2,0 cm. Sabe-se que os coeficientes de transferência de calor são hi = 750 W/m².K na superfície interna e ho = 1250 W/m2.K na externa. O fluido quente entra a 110 °C e sai a 70 °C, enquanto o fluido frio entra a 30 °C e sai a 60 °C, operando em contracorrente. Admi- tindo os fatores de incrustação Rf,i = 0,0003 m².K/W e Rf,o = 0,0001 m².K/W, determine: (a) a resistência térmica total do trocador de calor por unidade de comprimento (L = 1 m); (b) os coeficientes globais de transferência de calor Ui e Uo; (c) a média logarítmica das diferenças de temperatura ao longo do equipamento (MLDT). Solução: O primeiro passo é fazer uma representação do sistema: Fluido frio Rf ,o hO DO hi Di Fluido frio Fluido quente Fluido quente Camada externa de incrustação Parede do tubo Camada interna de incrustação Rf ,i = 2,0 cm = 1,7 cm = 750 m2 .K W = 0,0003 m 2.K W = 0,0001 m 2.K W = 1250 m2 .K W 1 EXEMPLO 313UNIDADE 8 Para responder o item (a), basta resolver a equação: R h A R A D D k L R A h Atotal i i f i i o i f o o o o � � � � � � � � � � � 1 2 1 . ln . . . . , , p Os únicos parâmetros não conhecidos são as áreas Ai e Ao , que podem ser facilmente calculadas como a superfície de um cilindro: A R L D L m m A m A i i i i o � � � � � � � �2 1 7 10 1 5 34 10 2 2 2 2 . . . . . . ( , . ) . ( ) , . . p p p p .. . . . . ( , . ) . ( ) , .R L D L m m A mo o o� � � � � �p p 2 0 10 1 6 28 102 2 2 Então, resolvendo a equação: R W m K m m K W mtotal � � � � � � � � � � � � 1 750 5 34 10 0 0003 5 34 10 2 2 2 2 2 . . , . , . , . 22 2 2 2 2 0 1 7 2 15 1 1 0 0001 6 28 10 1 125 � � � � � � �� ln , , . . , . . , . , . p W mK m m K W m 00 6 28 10 0 0466 2 2 2W m K m R K Wtotal . . , . , � � � � � � � � � � � Em posse deste valor, basta recorrer à definição do coeficiente global de transferência de calor para circuitos térmicos para responder ao item (b): U A R U R A U R A K W total total i total i . . . , . , . � � � � � � � � 1 1 1 1 0 0466 5 34 10 2 mm W m K U R A K W m o total o 2 2 2 2 401 86 1 1 0 0466 6 28 10 3 � � � � � � � � � � � , . . , . , . 441 71 2, . W m K 314 Trocadores de Calor Enfim, para o item (c), precisamos somente das temperaturas de entrada e saída dos fluidos quente e frio, seguindo a definição de MLDT (note que o trocador está operando em contracorrente): q q q q q q q 1 2 1 2 1 2 1 110 60 � � � � � � � � � � T T T T MLDT C q f q fen sai sai en| | ln ( ) qq q q 1 2 2 50 70 30 40 50 40 50 40 44 8 � � � � � � � � � � � � � � C C C MLDT C C MLDT ( ) ln , 11 �C Pronto! Acabamos de calcular alguns dos principais parâmetros acerca de trocadores de calor. É um bom ponto de partida para aprimorar os seus conhecimentos acerca desse conceito na engenharia. Como sugestão, procure levar o seu estudo um passo adiante: refaça este exemplo sem considerar os fatores de incrustação (ou seja, como se o trocador fosse novo, com R Rf,i f,o= = 0 ) e observe a diferença obtida nos coefi- cientes globais de transferência de calor. Você notará que o impacto das incrustações é considerável e não pode ser menosprezado. A essa altura, considerando trocadores de tubo duplo ou de casco e tubo, cabe o questionamento: se temos um fluido quente e um fluido frio, qual deles deve escoar pelo interior do tubo? Não existe uma resposta definitiva para esta pergunta, pois vários aspectos devem ser considerados. Costuma-se, por exemplo, alocar fluidos corrosivos nos tubos, os quais deverão ser feitos de materiais resistentes à corro- são (geralmente mais caros). Se fosse colocado no casco, tanto os tubos quanto o casco estariam sujeitos à corrosão. Outros aspectos, como incrustação, pressão e turbulência também são chaves para esta decisão. Fonte: adaptado de Araújo (2002). 315UNIDADE 8 Vamos, agora, à etapa final do nosso estudo sobre trocadores de calor. Até então, discutimos o funcio- namento dos trocadores em seu nível mais funda- mental, no contexto dos fenômenos de transporte. Na prática, o engenheiro estará, geralmente, preo- cupado com duas questões: projetar/selecionar um trocador capaz de atender a uma determinada de- manda do processo ou, então, prever as temperaturas de saída das correntes quente e fria em um trocador já definido. Este segundo caso é muito comum de acontecer quando as indústrias já possuírem troca- dores de calor antigos que podem ser aproveitados em outra etapa do processo. Saber identificar o tro- cador de calor que melhor atende a necessidade da planta é uma tarefa clássica de um engenheiro que trabalha com processos industriais. Análise de de Trocadores de Calor 316 Trocadores de Calor Como já foi mencionado, o projeto completo de trocadores de calor é uma ativida- de bastante complexa. Aqui, iremos discutir o método MLDT de análise de trocadores, que permite determinar um trocador de forma simples com os conceitos que vimos até aqui. Acompanhe o desenvolvimento do exemplo a seguir. Em determinada indústria, um reservatório contém água a 25 °C. Para ser utilizada no processo, é necessário que ela seja aquecida até 75 °C, com uma vazão de 1,5 kg/s. O engenheiro opta pelo uso de um aquecedor, que consiste em um trocador de calor de tubo duplo em contracorrente, em que o fluido quente será vapor superaquecido a 150 °C, disponível a uma vazão de 2 kg/s. O tubo interno possui parede de espessura muito pequena, de modo que o seu diâmetro (interno e externo) pode ser considera- do como 2,0 cm. Determine o comprimento necessário para este trocador de calor, admitindo que para esta aplicação o coeficiente global de transferência de calor é de 1000 W/(m².K). Adote: cágua = 4,18 kJ/(kg.K); cvapor = 2,00 kJ/(kg.K). Solução: Primeiramente, note que não conhecemos a temperatura de saída do fluido quente, informação que é necessária para o cálculo de MLDT. Em seguida, perceba que agora estamos trabalhando com vazões mássicas, de modo que os calores específicos podem ser utilizados para calcular a quantidade de calor trocado entre os fluidos. Vimos esta definição na unidadeanterior, dada pela equação (na forma de vazão): Q m c T m c T T� � � �� �. . . . 2 1 Com isso, podemos avaliar o calor que deve ser fornecido ao fluido frio: Q m c T kg s kJ kg K C C Q água água água� � � � � � � � � �. . , . , . . ( )1 5 4 18 75 25 �� �313 5 313 5, ,kJ s kW Respeitando a conservação de energia, esta deve ser a taxa de calor cedido pelo fluido quente. Então, podemos calcular a temperatura de saída do fluido quente conside- rando que não há mudança de fase: Q m c T T T Q m c T T kW q vapor vapor q q � �� � � � � � �� � . . . , , , , 2 1 2 1 2 313 5 2,, . , . ,, 0 2 00 150 71 62kg s kJ kg K C T Cq� � � � � � � � � 2 EXEMPLO 317UNIDADE 8 Observe que o sinal negativo indica que o calor saiu do fluido quente (a temperatura de saída tem que ser menor que a de entrada). Agora, o MLDT é facilmente calculado pela definição. Em contracorrente: q q q 1 1 2 150 75 75 71 6 25 � � � � � � � � � � � � � � � � T T C C C T T C C q f q f en sai sai en , qq q q q q 2 1 2 1 2 46 6 75 46 6 75 46 6 59 7 � � � � � � � � � � � , ln , ln , , C MLDT C C MLDT C Então, pode-se calcular a área de troca térmica necessária para o trocador com base no conceito de coeficiente global de transferência de calor: Q U A T U A MLDT A Q U MLDT A W W m K � � � � � � � � � � � � . . . . . . . , 313500 1000 59 72 �� � � C A m5 25 2, Por fim, sabemos que se trata de um trocador de calor de tubo duplo. Logo, esta área A pode ser calculada como a área superficial de um cilindro. Utilizando esta ideia, podemos chegar ao comprimento do tubo, que é o nosso parâmetro procurado: A D L L A D L m m L m � � � � � � p p p . . . , . , , 5 25 0 02 83 56 2 Agora, analise este resultado por um momento: para cumprir a troca térmica desejada, é necessário que o trocador tenha mais de 80 metros de comprimento, o que é impra- ticável. Neste caso, trocadores de placas ou de casco e tubo seriam mais adequados. Como visto, é relativamente fácil fazer estimativas simples acerca dos parâmetros de um trocador de calor de tubo duplo, devido, principalmente, à sua simplicidade geométrica, que facilita a descrição da transferência de calor. Até agora, nossa atenção esteve voltada para os trocadores de escoamento em contracorrente em trocadores de tubo duplo, mas ideias semelhantes podem ser trabalhadas para os trocadores de casco e tubo. Volte à Figura 4, em que mencionamos que os trocadores de casco e tubo são classificados quanto aos seus “passes”. Vamos, então, definir isto mais claramente: um passe é o percurso do fluido de um lado a outro do trocador de calor. Se o fluido que escoa pelo tubo entra através de um bocal, percorre o trocador de ponta a ponta uma 318 Trocadores de Calor única vez e sai pelo outro bocal. Este trocador terá uma passagem ou um passe no lado do tubo. O mesmo raciocínio vale para o casco, mesmo que o percurso cruze o feixe várias vezes. Por convenção, um trocador de calor casco e tubo n-m implica n passagens no casco e m passagens no tubo. Embora o escoamento puramente contracorrente seja o tipo de escoamento que apresenta maior eficiência para efeitos de troca térmica, pode ocorrer, no entanto, que seja interessante utilizar configurações de trocadores de calor nas quais o fluido que escoa nos tubos possa passar, antes de sair do equipamento, duas vezes no interior do trocador. Neste caso, o equipamento é chamado trocador 1-2. Ao analisarmos os perfis de temperatura, podemos compará-lo com um trocador 1-1 pelo diagrama da figura a seguir: T Comprimento Tfsai Tqen Tqsai Tfen Trocador 1-1 T Comprimento Tfsai Tqen Tqsai Tfen Trocador 1-2 Figura 11 - Perfis de temperatura para um trocador 1-1 e um trocador 1-2 Fonte: os autores. No primeiro caso, temos o trocador 1-1 em contracorrente. A curva superior repre- senta a queda de temperatura da corrente quente ao longo do trocador. O inverso ocorre com a corrente fria, representada na curva inferior. No segundo caso, temos o trocador 1-2 e duas passagens do fluido frio nos tubos do trocador. Nestas condições, a corrente fria tem um comportamento diferenciado, sendo acrescida até um valor intermediário e, posteriormente, a um outro valor mais elevado. A corrente quente tem um comportamento semelhante ao primeiro caso. Se houver duas passagens no lado tubo, uma delas estará em paralelo com o fluido do casco, enquanto a outra estará em contracorrente. Portanto, para o trocador de calor 1-2, a velocidade do fluido será o dobro da obtida no trocador 1-1. O aumento da velocidade acarreta aumento do coeficiente de transferência por convecção (h) e do coeficiente global (U), resultando em menor área de troca e promovendo a redução de incrustação. Contudo, a perda de carga será maior, o que pode dificultar a configuração da instalação. 319UNIDADE 8 Nas situações em que os trocadores de calor apresentam mais de uma passagem nos tubos, a verdadeira diferença de temperaturas já não é mais calculada razoavel- mente apenas pelo método MLDT, sendo necessário utilizar um fator de correção (F) para encontrá-la: DT F MLDTreal = . A interpretação física deste fator F é a seguinte: havendo mais de uma passagem nos tubos, o escoamento é parcialmente contracorrente e parcialmente paralelo. Com isso, se MLDT é a diferença média de temperatura no escoamento contracorrente (o mais eficiente em termos de troca térmica), então a diferença média real de tempe- ratura deve ser menor do que MLDT. Por isso, o valor de F varia de 0 a 1, adotando um valor mínimo de 0,8 – caso o trocador em estudo apresente valor de F inferior, seu uso é inviabilizado e busca-se uma configuração melhor, pois utilizar trocadores com valores de F abaixo de 0,75 pode implicar problemas operacionais no caso de pequenas variações de temperatura. O fator de correção F depende da geometria do trocador de calor e das tempe- raturas de entrada e saída dos fluidos quente e frio. Aqui, não iremos nos preocupar em mostrar e utilizar estes diagramas, mas eles são relativamente simples e podem ser encontrados no livro escrito por Kern (1980, p. 649 a 654) ou em conteúdos dis- ponibilizados pela TEMA (Tubular Exchangers Manufacturer Association). Dito isso, podemos calcular a taxa de transferência de calor pela seguinte relação: Q U A T U A F MLDTreal� � �. . . . . Ilustraremos o uso desta equação com nosso último exemplo desta unidade! Um trocador de casco tubo 2-4 (leia-se: duas passagens no casco e quatro passagens nos tubos) é utilizado para resfriar um óleo na temperatura de 90 °C para 50 °C, uti- lizando água como fluido de resfriamento, a qual entra no equipamento a 30 °C e sai a 60 °C. A espessura da parede do tubo é muito fina, de modo que um único diâmetro pode ser considerado (D = 1,5 cm). Além disso, o comprimento total do tubo é de 75 m. Para as vazões empregadas, estas condições de temperatura fornecem coeficientes convectivos de hc = 30 W/m².K para o fluido no casco e ht = 150 W/m².K para o fluido no interior dos tubos. Determine a taxa de transferência de calor no trocador. Após um certo tempo de uso, uma incrustação externa com Rf,o = 0,0006 m².K/W é formada. Qual a nova taxa de transferência de calor? Em ambos os casos, adote F = 0,91. 3 EXEMPLO 320 Trocadores de Calor Solução: Óleo quente Água de resfriamento 60°C 90°C 50°C 30°C Primeiramente, tenha em mente que nosso objetivo é resolver a equação: Q U A F MLDT= . . . Como já nos foi dado F, restam três termos a serem determinados. Começando pela área, é razoável calculá-la como a superfície de um tubo cilíndrico: A D L m m A m� � � � � �p p. . . , . ( ) ,0 015 75 3 53 2 Em seguida, como conhecemos todas as temperaturas de operação, podemos calcular o MLDT: q q q q 1 1 2 2 90 60 30 50 30 � � � � � � � � � � � � � � � � � T T C C C T T C C q f q f en sai sai en 220 30 20 30 20 24 661 2 1 2 � � � � � � � � � � C MLDT C C MLDT Cqq q q ln ln , Então, resta calcular o coeficiente global de troca térmica do trocador. Como a parede do tubo é muito fina, podemos desprezar a resistência térmica da parede, de modo que a seguinte equação é válida: 1 1 1 U h h U h h h ht c t c t c � � � � � . Resolvendo, temos: U W m K W m K W m K W m K � � � � � � � � � � � � � � � � � � � � � � � � � � 150 30 150 30 2 2 2 2 . . . . . �� �U W m K 25 2. 321UNIDADE 8 Agora, basta substituir na equação para calcular a taxa de transferência de calor: Q W m K m C Q W� � � � � � � � � �� � � �25 3 53 0 91 24 66 1980 382 2 . . , . , . , , Feito isso, devemos avaliar o caso com incrustação. Consideraremos que a área e o MLDT são os mesmos, de modo que a única diferença será no cálculo do coeficiente global de transferência de calor, em que devemos acrescentar o termo de resistência da incrustação: 1 1 1 1 1 1 150 0 0006 1 2 U h R h U h R h U W m K t f c t f c � � � � � � � � � � � � � � � � � � � � � � . , mm K W W m K U W m K 2 2 1 2 1 30 24 63. . , . � � � � � � � � � � � �� � � � � �� � � � E então: Q W m K m C Q W� � � � � � � � � �� � � �24 63 3 53 0 91 24 66 19512 2, . . , . , . , Como esperado, a taxa de transferência de calor diminui devido à presença da in- crustação. Contudo, esta queda foi relativamente pequena – fato este que ocorre principalmente devido aos coeficientes de convecção serem relativamente baixos. Mais uma unidade chega ao fim! Aqui, utilizamos os conhecimentos obtidos na unidade anterior para conhecer mais sobre os trocadores de calor, equipamentos importantíssimos para a indústria e para a rotina do engenheiro. Obviamente, um projeto completo de um trocador de calor iria além da abordagem da transferência de calor: é importante também avaliar aspectos, tais como as perdas de cargas do processo, limitações de espaço físico, facilidade de manutenção e limpeza, a natureza dos fluidos que serão utilizados (quanto à corrosão e incrustação, por exemplo) e, até mesmo, a distância entre os tubos de um feixe influencia nos coeficientes convectivos alcançados. Para finalizar nosso estudo dos fenômenos de transporte, iremos dedicar a última unidade deste material para o estudo da transferência de massa! 322 Você pode utilizar seu diário de bordo para a resolução. 1. Um experimento em laboratório emprega um trocador de calor duplo tubo que trabalha com água no tubo interno (temperatura média de 30 °C) e óleo na região anular (temperatura média de 75 °C). O tubo interno é feito em cobre, com uma espessura de parede muito fina, de modo que o seu diâmetro pode ser aproximado para 1,5 cm. Com os dados do experimento, verifica-se que o número de Nusselt no tubo interno é de, aproximadamente, Nui = 250, e na região anular é de Nuo = 10. Determine o coeficiente global de troca térmica deste trocador, sabendo que: kágua = 0,65 W/(m.K) e kóleo = 0,15 W/(m.K). 2. Os condensadores – equipamentos destinados à remoção de calor latente de um vapor – são, essencialmente, trocadores de calor. Condensadores são utilizados, por exemplo, em colunas de destilação para a produção de etanol combustível. Considere o condensador representado na figura a seguir, em que o vapor é condensado utilizando uma corrente de água como fluido frio. Sabendo que a área de troca térmica dos tubos é de A = 30 m2 e que o coeficiente global de transferência de calor para este equipamento é de U = 3500 W/(m2.K), nesse contexto, determine a vazão mássica necessária de água de refrigeração. São dados: calor específico da água c = 4,18 kJ/kg.K; calor latente de vaporização da água L = 2256 kJ/kg. 40°C 40°C 15°C 25°C Vapor Água de resfriamento Fonte: adaptada de Çengel e Cimbala (2015). 323 3. Um radiador automotivo funciona como um trocador de calor em escoamento cruzado (ou seja, nem contracorrente nem em paralelo, como no esquema a seguir), em que os fluidos são água e ar. Esta peça possui 35 tubos cujo diâmetro interno é de 0,5 cm, cada um com comprimento de 70 cm e distribuídos ao longo de uma matriz de placas aletadas. Considerando que a vazão mássica de água (fluido quente) é de 0,5 kg/s, determine o coeficiente global de transferência de calor deste radiador com relação à superfície interna dos tubos (Ui). Adote o calor específico da água como 4,18 kJ/kg.K e um fator de correção F = 0,95. 60°C 85°C 45°C 25°C Água Ar Fonte: adaptada de Çengel e Cimbala (2015). 324 Trocadores de Calor Autor: Everaldo Cesar da Costa Araujo Editora: Editora da Universidade Federal de São Carlos (EdUFSCar) Sinopse: essa obra apresenta os fundamentos sobre os tipos e o projeto de trocadores de calor, focando principalmente nos modelos “casco e tubo”. Serve como texto de apoio didático sobre o assunto para alunos em nível de graduação e pós-graduação. Comentário: escrito com base na experiência de anos ministrando o tópico “Tro- cadores de Calor” para o curso de Engenharia Química da UFSCar, este material é utilizado como referência em diversos cursos de engenharia do Brasil, sendo um excelente recurso escrito originalmente em português para conhecer mais sobre estes equipamentos fundamentais para a indústria. LIVRO 325 ARAÚJO, E. C. da C. Trocador de Calor. 1. ed. São Carlos: Editora da Universidade Federal de São Carlos (EdUFSCar), 2002. ÇENGEL, Y. A.; CIMBALA, J. M. Mecânica dos fluidos: fundamentos e aplicações. 3. ed. Brasil: AMGH Editora, 2015. KERN, D. Q. Processo de transmissão de calor. Tradução de Horácio Macedo. Rio de Janeiro: Guanabara Dois, 1980. 326 1. Como a espessura da parede do tubo pode ser desprezada, a seguinte relação é válida: 1 1 1 U h hi o � � Para determinar os coeficientes convectivos hi e ho, devemos lembrar da definição do número de Nusselt, apresentado na unidade anterior: Nu h L k C= . No caso de tubos cilíndricos, o comprimento característico LC é o próprio diâmetro do tubo. Então, podemos rearranjar a equação para calcular cada coeficiente convectivo, uma vez que conhecemos as condutividades térmicas dos dois fluidos (kágua e kóleo): h Nu k D h Nu k D W m K m h W m K h i i água i � � � � � � � . . . , . , , . 250 0 65 0 015 10833 3 2 oo o óleo o Nu k D W m K m h W m K � � � � � � . . , . , . 10 0 15 0 015 100 2 Agora, basta retornar na primeira equação para determinar o coeficiente global de transferência de calor U: U W m K W m K U W m K � � � � � �� � � � �� � � � 1 10833 3 1 100 99 1 2 2 1 2 , . . , . Observa-se que U ≈ ho porque hi >> ho. Isto indica que a troca térmica é limitada pela convecção no casco. 327 2. A resolução deste exercício está pautada na conservação de energia: o calor latente que sai do vapor deve ser equivalente ao calor sensível adicionado à água de refrigeração. Para quantificar este calor, recorremos à expressão típica dos trocadores de calor: Q U A MLDT= . . O coeficiente global U e a área de troca térmica A foram fornecidos. MLDT pode ser facilmente avaliada pela sua definição, uma vez que as temperaturas de entrada e saída estão identificadas no desenho: q q q q 1 1 2 2 40 25 15 40 15 � � � � � � � � � � � � � � � � � T T C C C T T C C q f q f en sai sai en 225 15 25 15 25 19 581 2 1 2 � � � � � � � � � � C MLDT C C MLDT Cq q q q ln ln , Com isso, podemos avaliar a taxa de calor trocado: Q W m K m C Q kW� � � � � � � � � �� � � �3500 30 19 58 20562 2 . . . , Pela definição do calor sensível, chega-se à vazão mássica necessária de água de refrigeração: Q m c T T m Q c T T m kW kJ água f f água sai en � �� � � � �� � � . . . , 2 1 2056 4 18 kkg K C C m kg ságua . . , � � � � �� � � � 25 15 49 19 Encontramos a vazão solicitada pelo exercício (aproximadamente 50 kg/s). Caso necessário, poderíamos calcular também a vazão de vapor utilizando a definição da conservação de energia: o calor latente que sai do vapordeve ser equivalente ao calor sensível adicionado à água de refrigeração. Assim, temos que: Q m L m Q L m kWkJ kg m kg s vapor vapor vapor � � � � � � . , 2056 2256 0 911 328 3. O parâmetro solicitado pelo exercício é o coeficiente global de transferência de calor do radiador com base na superfície interna dos tubos (Ui). Além disso, como o escoamento não é perfeitamente em contracor- rente, utiliza-se um fator de correção já fornecido. Com isso, para calcular Ui, devemos usar a equação: Q U A F MLDTi i= . . . Em que a área de troca térmica Ai é calculada com base no diâmetro interno dos tubos. Como são 35 tubos cilíndricos, esta área pode ser calculada como: A n D L m m A m i i i � � � . . . . . ( , ) . ( , ) , p p35 0 005 0 70 0 385 2 Como conhecemos as temperaturas de entrada e saída de ambos os fluidos, o cálculo de MLDT é imediato: q q q q 1 1 2 2 85 45 40 60 25 � � � � � � � � � � � � � � � � � T T C C C T T C C q f q f en sai sai en 335 40 35 40 35 37 441 2 1 2 � � � � � � � � � � C MLDT C C MLDT Cq q q q ln ln , Resta apenas determinar a taxa de transferência de calor. Para fazer isso, como conhecemos a vazão mássica de água e o seu calor específico, é razoável afirmar que o calor trocado deve ser igual ao calor removido da água, fazendo: Q m c T T kg s kJ kg C C C Q q qent sai� �� � � � � �� � � � �� �. . , . , . .0 5 4 18 85 60 �� �52 25 52250, kW W Enfim, basta retornar à primeira equação para verificar Ui: U Q A F MLDT W m C U W m K i i i � � � � � � . . , . , . , , . 52250 0 385 0 95 37 44 3816 72 2 2 329 330 PLANO DE ESTUDOS OBJETIVOS DE APRENDIZAGEM Dr. Rodrigo Orgeda Esp. Henryck Cesar Massao Hungaro Yoshi • Definir os conceitos básicos nos quais o fenômeno da transferência de massa está pautado. • Empregar a Lei de Fick da Difusão e as condições de con- torno envolvidas na análise da transferência de massa unidimensional em regime permanente. • Estudar a transferência de massa entre uma superfície e um fluido em movimento, definindo os devidos números adimensionais. • Conhecer como os três fenômenos de transporte estuda- dos ao longo da disciplina se relacionam. Conceitos Fundamentais Difusão Mássica Analogia entre os Fenômenos de Transporte Convecção de Massa Introdução à Transferência de Massa Conceitos Fundamentais Caro(a) aluno(a), enfim chegamos à nossa últi- ma unidade, em que estudaremos o fenômeno da transferência de massa! Lembre-se que lá no início, na Unidade 1, mencionamos os três fe- nômenos que você estudaria: a transferência de momento (na forma da mecânica dos fluidos), a transferência de calor e a transferência de massa. Ainda, afirmamos que a natureza destes fenôme- nos é muito parecida, sendo possível empregar modelos matemáticos análogos para descrevê-los. Talvez isto ainda não esteja tão evidente para você, em função de dois fatores: primeiro, por termos abordado a transferência de momento por uma perspectiva macroscópica, avaliando os efeitos das forças associadas ao escoamento de fluidos; segundo, porque guardamos o estudo das chamadas analogias entre os fenômenos para o final deste material, quando você já terá todos os conceitos essenciais de cada fenômeno delineados em seu conhecimento, facilitando a visualização de como estão relacionados. 333UNIDADE 9 Para iniciarmos o estudo da transferência de massa, vamos começar com algumas situações comuns da vida real que ilustram esse fenômeno. Primeiramente, imagine que você derruba um pouco de água em cima de uma superfície sólida (como na Figura 1). Sabemos, por questões de vivência e experiência, que eventualmente esta pequena poça vai secar. Contudo, um observador (que não conhece bem o fenôme- no da transferência de massa) poderia perguntar: se em condições normais a água evapora a aproximadamente 100 °C, a água não deveria permanecer líquida sobre a superfície? De fato, em uma primeira análise, esta pergunta parece fazer completo sentido, afinal, se a substância não está em seu ponto de ebulição, é de se esperar que ela não evapore. Então, por que isso acontece? Figura 1 - Água derramada sobre uma superfície sólida Para explicar este fenômeno, vamos imaginar mais uma situação. Você pega um copo e coloca duas colheres de sal dentro dele. Em seguida, você o preenche com água. Com isso, sabemos que a quantidade de sal no copo vai parecer diminuir, pois parte dele se dissolverá na água. Se deixarmos o copo em repouso por bastante tempo, ou se utilizarmos uma colher para mexer e misturar o conteúdo, veremos que ainda mais do sal “desaparecerá”, ou seja, ficará dissolvido na água (veja a Figura 2). Água a) Antes b) Depois Água com sal Sal Figura 2 - Dissolução de sal em água Fonte: adaptada de Çengel e Ghajar (2012). 334 Introdução à Transferência de Massa Isto acontece porque a natureza tende a equilibrar este sistema: como há uma diferença de concentração, surge um fluxo de sal (fase sólida) para a água (fase líquida), até que esta fique completamente saturada. Em outras palavras: a diferença de concentração é a força motriz do fenômeno da transferência de massa. Fazendo um paralelo com a transferência de calor, deixar o copo em repouso (de modo que o sal vai gradual- mente se dissolvendo até a água ficar saturada) seria a chamada difusão mássica, semelhante à condução de calor (o transporte acontece molécula a molécula). Por outro lado, mexer o conteúdo do copo com o objetivo de misturá-lo é justamente o transporte convectivo de massa (devido ao movimento do fluido), sendo mais rápido de atingir o equilíbrio. Com isso em mente, voltemos ao exemplo da pequena poça de água sobre uma superfície sólida. Se a temperatura está em condições ambiente, por que a água even- tualmente evapora? A resposta é semelhante ao que discutimos para o copo de água com sal: por causa da concentração de água no ar. Se o ar não está saturado de água, ou seja, úmido como em dias de chuva, a natureza busca o equilíbrio do sistema, criando um fluxo de água da poça (fase líquida) para o ar (fase gasosa). Caso não haja movimento do ar em torno da poça, podemos dizer que o processo é difusivo. Se quisermos acelerar essa evaporação, podemos ligar um ventilador direcionado à poça – o processo passa a ser então convectivo e, caracteristicamente, mais rápido. Nestes dois exemplos ilustrativos, é fundamental que você perceba como o fenô- meno da transferência de massa é análogo à transferência de calor. O exemplo do copo de água com sal em repouso é equivalente a colocar dois corpos com diferentes temperaturas em contato – são situações de difusão mássica e condução térmica. Ligar o ventilador para que a poça evapore mais rápido é equivalente a direcionar um ventilador a um corpo quente para que ele esfrie mais rápido – são exemplos de convecção mássica e convecção térmica. De fato, muitos problemas que envolvem a transferência de calor, no fundo, tam- bém envolvem questões de transferência de massa. Vamos considerar um terceiro exemplo ilustrativo: a transpiração em corpos humanos. Dentre suas diversas funções, é de conhecimento geral que o suor serve para promover a perda de calor (ou seja, resfriamento do corpo); mas como isso acontece? De maneira relativamente simplista, podemos entender este problema como uma mistura dos dois exemplos anteriores: são gotículas de água sobre uma superfície que evaporam para o ar atmosférico devido à diferença de concentração. 335UNIDADE 9 Figura 3 - Suor do corpo humano Com isso em mente, baseado no que discutimos até aqui, a transferência de massa parece evidente: se o ar não está saturado (úmido, chovendo), a água do suor que está sobre a pele irá evaporar. E quanto à transferência de calor? Na realidade, ela acontece por meio de uma forma discreta, mas importantíssima: através do calor latente de vaporização. “Discreta”, porque este é um mecanismo de transferência de calor que não está pautado,essencialmente, em diferenças de temperatura (lembre-se que, para substâncias puras em geral, a mudança de fase acontece a temperaturas constantes). “Importantíssima”, porque é capaz de remover calor do corpo mesmo quando a temperatura ambiente é maior que a da pele. Por causa destes aspectos, a transpiração humana não é somente um mecanismo incrível de regulação de temperatura dos nossos corpos, mas também um excelente exemplo de como os fenômenos de transporte atuam em conjunto na natureza. Se quiséssemos, poderíamos ir mais adiante: ficar na frente de um ventilador quando estamos suados promove um resfriamento intenso do corpo, devido à convecção. Ainda, quanto maior for a velocidade do ventilador, maior será a vazão mássica de ar passando sobre o corpo e mais turbulento será o escoamento (lembre-se do número de Reynolds), amplificando ainda mais os fenômenos de transferência de momento, calor e massa. 336 Introdução à Transferência de Massa O corpo humano perde calor por três mecanismos: condução, irradiação e evapo- ração do suor. Se o ar ambiente estiver a uma temperatura maior que a da pele (regulada metabolicamente em torno de 33 °C), a condução e a irradiação irão es- quentar o corpo em vez de resfriá-lo, de modo que a evaporação do suor passa a ser a única forma de dissipar o calor gerado pelo metabolismo corporal, regulando a temperatura corporal interna em torno de 37 °C. A própria pele pode apresentar diferenças de temperatura consideráveis – em um dia de neve, um homem registrou as temperaturas de sua pele enquanto subia uma montanha, indicando cerca de 15 °C em seus pés enquanto seu peito estava a 32 °C. Fonte: adaptado de Farzana (2001, on-line)1. Estes exemplos devem ser suficientes para você começar a enxergar a transferência de massa em situações do cotidiano. Como toda área da engenharia, agora que con- seguimos observar o fenômeno, o passo seguinte é encontrar formas de equacioná-lo. O objetivo deste material é fazer isso de forma bastante pragmática e introdutória – se você consultar livros-texto mais tradicionais e específicos de fenômenos de transpor- te, é comum encontrar uma abordagem muito mais extensa, rígida e minuciosa do assunto, fazendo balanços de massa em diferentes geometrias, com reações químicas heterogêneas e homogêneas e, até mesmo, trabalhando sistemas em regime transiente; mas não se preocupe! Para cumprir com o escopo deste material, o fundamental é apenas que você esteja bem situado com cálculos de concentração e frações mássicas e molares, semelhante ao que foi abordado na Unidade 1. Sem mais delongas, vamos dar sequência ao nosso trabalho! 337UNIDADE 9 Assim como tínhamos a Lei de Newton da Vis- cosidade para a transferência de momento e a Lei de Fourier da Condução para a transferência de calor, na transferência de massa, teremos a Lei de Fick da Difusão. Para uma mistura binária, ou seja, que envolve duas espécies distintas A e B (como água no ar, por exemplo), a Lei de Fick pode ser expressa pelas equações: j m A D dw dx j n A C D dy dx AB A AB A dif,A dif,A dif,A dif,A � � � � � � r . . . . Difusão Mássica 338 Introdução à Transferência de Massa Em que a primeira está expressa em termos de massa e a segunda em termos do número de mols. Os parâmetros presentes são: • jdif,A : fluxo mássico do componente A por difusão – dimensão de massa por unidade de tempo por unidade de área, por exemplo: kg m s2. � � � � � � . • jdif,A : fluxo molar do componente A por difusão – dimensão de mols por unidade de tempo por unidade de área, por exemplo: mol m s2. � � � � � � . • mdif,A e ndif,A : vazões mássica e molar do componente A por difusão – dimen- são de massa por unidade de tempo, por exemplo: kg s� � , mol s� � . • A : área normal à direção da transferência de massa (conceito análogo ao desenvolvido na transferência de calor) – dimensões de área: m2� � . • r : densidade da mistura binária r r r� �A B , com dimensões de massa por unidade de volume, como por exemplo: kg m3 � � � � � � . • C : concentração molar da mistura binária C C CA B� � , com dimensões de mols por unidade de volume, como por exemplo: mol m3 � � � � � � . • DAB : difusividade mássica (também chamada de coeficiente de difusão) da espécie A na mistura binária A+B, com dimensões de comprimento ao qua- drado por unidade de tempo, como por exemplo: m s 2� � � � � � . • dw dx A e dy dx A : gradientes de fração mássica e molar na direção x, respectivamente, cujas unidades podem ser, por exemplo: 1m� � . Caso estes termos não tenham ficado tão claros para você, procure fazer a análise dimensional de cada equação utilizando as unidades fornecidas. Essencialmente, o significado físico da Lei de Fick da Difusão é em uma mistura de dois componentes A e B. Havendo um gradiente de concentração, haverá um movimento das moléculas dos componentes, da região de maior concentração para a de menor concentração – a intensidade deste fluxo de massa será proporcional ao próprio gradiente e a constante de proporcionalidade da equação é a difusividade mássica DAB . Repare que as dimensões da difusividade mássica (comprimento ao quadrado por unidade de tempo) são idênticas às dimensões da difusividade térmica (α) e da difu- sividade de momento (ν), que chamamos anteriormente de viscosidade cinemática. A unidade do SI para as três grandezas é justamente (m2/s). 339UNIDADE 9 Para as situações em que a densidade (r ) e a concentração molar (C) da mistura forem constantes, podemos também escrever as equações da Lei de Fick da Difusão nas formas: j D d dx j D dC dx AB A AB A dif,A dif,A � � � � . . r Esta simplificação costuma ser razoável para soluções sólidas ou soluções líquidas bem diluídas. Além disso, é importante deixar claro que estamos tratando apenas da difusão mássica unidirecional, assim como fizemos anteriormente para a transferência de calor. Sistemas bidimensionais ou tridimensionais também podem ser estudados pela Lei de Fick, mas fogem ao escopo desta unidade. Antes de utilizarmos a Lei de Fick da Difusão em um exemplo, é importante mencionar que os coeficientes de difusão DAB são geralmente determinados experimentalmente, para condições bem definidas de temperatura, pressão e composição das misturas. Çengel e Ghajar (2012) reuniram dados de diferentes trabalhos e obras, que estão sumarizados nas quatro tabelas a seguir. Em geral, pode-se afirmar que a difusividade aumenta com a temperatura e que é maior em gases e menor em sólidos. Além disso, em misturas binárias de gases ideais, a difusividade DAB é igual à difusividade DBA . Tabela 1 - Coeficientes de difusão binária de alguns gases em ar a 1 atm de pressão Coeficientes de difusão binária (m2/s × 105) T (K) O2 CO2 H2 NO 200 0,95 0,74 3,75 0,88 300 1,88 1,57 7,77 1,80 400 5,25 2,63 12,5 3,03 500 4,75 3,85 17,1 4,43 600 6,46 5,37 24,4 6,03 700 8,38 6,84 31,7 7,82 800 10,5 8,57 39,3 9,78 900 12,6 10,5 47,7 11,8 1000 15,2 12,4 56,9 14,1 1200 20,6 16,9 77,7 19,2 1400 26,6 21,7 99,0 24,5 1600 33,2 27,5 125 30,4 1800 40,3 32,8 152 37,0 2000 48,0 39,4 180 44,8 Fonte: Çengel e Ghajar (2015, p. 802). 340 Introdução à Transferência de Massa Tabela 2 - Coeficientes de difusão binária de misturas de gases diluídos a 1 atm Substâncias T DAB Substâncias T DAB A B (K) (×10-5 m2/s) A B (K) (×10-5 m2/s) Ar Acetona 273 1,1 Argônio Nitrogênio 293 1,9 Ar Amônia 298 2,6 Dióxido de Carbono Benzeno 318 0,72 Ar Benzeno 298 0,88 Dióxido de Carbono Hidrogênio 273 5,5 Ar Dióxido de Carbono 298 1,6 Dióxido de Carbono Nitrogênio 293 1,6 Ar Cloro 273 1,2 Dióxido de Carbono Oxigênio 273 1,4 Ar Etanol 298 1,2 Dióxido de Carbono Vapor de Água 298 1,6 Ar Éter etílico 298 0,93 Hidrogênio Nitrogênio 273 6,8 Ar Hélio 298 7,2 Hidrogênio Oxigênio 273 7,0 Ar Hidrogênio 298 7,2 Oxigênio Amônia 293 2,5 Ar Iodo 298 0,83 Oxigênio Benzeno 296 0,39 Ar Metanol 298 1,6 Oxigênio Nitrogênio 273 1,8Ar Mercúrio 614 4,7 Oxigênio Vapor de Água 298 2,5 Ar Naftalina 300 0,62 Vapor de Água Argônio 298 2,4 Ar Oxigênio 298 2,1 Vapor de Água Hélio 298 9,2 Ar Vapor de Água 298 2,5 Vapor de Água Nitrogênio 298 2,5 Fonte: Çengel e Ghajar (2015, p. 803). 341UNIDADE 9 Tabela 3 - Coeficientes de difusão binária de soluções de líquidos diluídos e soluções sólidas a 1 atm Substâncias T DAB Substâncias T DAB A (soluto) B (solven- te) (K) (m2/s) A (soluto) B (solvente) (K) (×10-5 m2/s) Amônia Água 285 1,6 × 10-9 Dióxido de Carbono Borracha Natural 298 1,1 × 10-10 Benzeno Água 293 1,0 × 10-9 Nitrogênio Borracha Natural 298 1,5 × 10-10 Dióxido de Carbono Água 298 2,0 × 10 -9 Oxigênio Borracha Natural 298 2,1 × 10-10 Cloro Água 295 1,4 × 10-9 Hélio Pyrex® 773 2,0 × 10-12 Etanol Água 283 0,84 × 10-9 Hélio Pyrex® 293 4,5 × 10-15 Etanol Água 288 1,0 × 10-9 Hélio Dióxido de Silício 298 4,0 × 10-14 Etanol Água 298 1,2 × 10-9 Hidrogênio Ferro 298 2,6 × 10-13 Glicose Água 298 0,69 × 10-9 Hidrogênio Níquel 358 1,2 × 10-12 Hidrogênio Água 298 6,3 × 10-9 Hidrogênio Níquel 438 1,0 × 10-11 Metano Água 275 0,85 × 10-9 Cádmio Cobre 293 2,7 × 10-19 Metano Água 293 1,5 × 10-9 Zinco Cobre 773 4,0 × 10-18 Metano Água 333 3,6 × 10-9 Zinco Cobre 1273 5,0 × 10-13 Metanol Água 288 1,3 × 10-9 Antimônio Prata 293 3,5 × 10-25 Nitrogênio Água 298 2,6 × 10-9 Bismuto Chumbo 293 1,1 × 10-20 Oxigênio Água 298 2,4 × 10-9 Mercúrio Chumbo 293 2,5 × 10-19 Água Etanol 298 1,2 × 10-9 Cobre Alumínio 773 4,0 × 10-14 Água Etileno glicol 298 0,18 × 10 -9 Cobre Alumínio 1273 1,0 × 10-10 Água Meta-nol 298 1,8 × 10 -9 Carbono Ferro 773 5,0 × 10-15 Clorofór- mio Meta- nol 288 2,1 × 10 -9 Carbono Ferro 1273 3,0 × 10-11 Fonte: Çengel e Ghajar (2015, p. 804). 342 Introdução à Transferência de Massa Tabela 4 - Coeficientes de difusividade binária da água em ar a 1 atm T (°C) DH2O-Ar (m2/s) 0 2,09 × 10-5 5 2,17 × 10-5 10 2,25 × 10-5 15 2,33 × 10-5 20 2,42 × 10-5 25 2,50 × 10-5 30 2,59 × 10-5 35 2,68 × 10-5 40 2,77 × 10-5 50 2,96 × 10-5 100 3,99 × 10-5 150 5,18 × 10-5 Fonte: Çengel e Ghajar (2015, p. 804). Desejamos comparar a difusão de dióxido de carbono (espécie A) em três meios dis- tintos: ar, água e borracha natural (espécies B), a uma temperatura de 298 K e pressão de 1 atm. Para tanto, calcule os fluxos mássicos da espécie A no ponto em que dCA/dx = -1 kmol/(m3.m). Considere que a mistura esteja suficientemente diluída para que a concentração molar total (C) possa ser admitida como constante. A massa molar do CO2 é MMCO2 = 44 kg/kmol. Solução: Das Tabelas 1 e 3, podemos obter as difusividades para os três casos (aproximando para o valor de T = 300 K na Tabela 1): D m s D m s D Água CO -Ar CO - CO -Borracha 2 2 2 � � � � � 1 57 10 2 00 10 1 5 2 9 2 , . , . ,110 10 10 2 . � m s Como C é uma constante, podemos usar a Lei de Fick da Difusão como: j D dC dxAB A dif,A � � . 1 EXEMPLO 343UNIDADE 9 Conhecidos os coeficientes DAB, resta apenas conhecer também a taxa de variação da concentração molar da espécie A ao longo da direção x. O enunciado nos fornece o valor dC dx kmol (m .m)A 3� �1 , mas é importante ter claro o que este valor significa. Considere o esquema a seguir: C Espécie BEspécie A A dC dx AX Note que a concentração de CO2 (indicada no esquema por CA ) decresce ao longo da direção x, afinal, estamos cada vez mais distantes da fonte da espécie A. Dessa forma, o valor da variação dC dxA deve ser negativo. Além disso, a unidade kmol/ (m3.m), apesar de não parecer intuitiva, é simplesmente o resultado da divisão dos valores infinitesimais: dC dx kmol m m kmol m m A� �� � �� � � � � � � � � � � � � � � � � � � 3 3. Com isso, podemos calcular os valores desejados. Por exemplo, para a difusão do CO2 em ar, teremos o fluxo molar: j m s kmol m m j dif, CO -Ar dif, CO 2 2 � �� � � � � � � � � � � � � �1 57 10 15 2 3, . . . --Ar � �1 57 10 5 2, . . kmol m s 344 Introdução à Transferência de Massa Podemos entender este resultado fisicamente como: uma vazão de 1 57 10 5, x − kmol de CO2 por segundo atravessa cada metro quadrado de interface CO2 – ar. Agora, podemos utilizar a massa molar do CO2 para determinar o fluxo mássico, por meio da relação: j MM jAdif,A dif,A= . Então, para o CO2 em ar: j MM j kg kmol kmol m sCOdif, CO -Ar dif, CO -Ar2 2 � � � 2 44 1 57 10 5 2. . , . . jj kg m sdif, CO -Ar2 � �6 91 10 4 2, . . De forma semelhante, fazendo para a água e a borracha natural como espécies B, teremos os fluxos mássicos: j kg m s j Águadif, CO - dif, CO -Borracha 2 2 � � � � 8 80 10 4 84 10 8 2 9 , . . , . kkg m s2. Como se pode observar, para um mesmo gradiente de concentração, o fluxo mássico é bastante superior no meio gasoso em relação a meios líquidos e sólidos. No contexto da transferência de massa, vários outros conceitos de física e química podem nos ajudar a compreender e solucionar os problemas. No estudo de misturas de gases a baixas pressões, por exemplo, podemos considerar a condição de gases ideais e, com isso, podemos empregar a Lei de Dalton das Pressões Parciais com facilidade. Caso não se lembre, esta lei diz que a pressão total (p) de uma mistura de gases é igual à soma das pressões parciais (pi) dos gases individuais da mistura: p pi�� Para gases ideais, é fundamental que você se lembre da relação: p V n R T. . .= 345UNIDADE 9 Em que p é a pressão, V é o volume, n é o número de mols, T é a temperatura e R é a constante dos gases ideais ( 8,314 J mol K( . ) ). Isolando p nesta equação, podemos avaliar a “fração de pressão” do componente i ( y p pi i= ) na mistura: p p n R T V n R T V n n yi i i i= = = . . . . Em outras palavras, esta relação demonstra que a fração de pressão do componente i em uma mistura de gases ideais é equivalente à fração molar desta espécie na mistura. Dessa forma, pressões são parâmetros importantíssimos quando estudamos a transferência de massa envolvendo gases. Isto é verdade não somente para misturas de gases, mas também para interfaces gás-líquido em soluções diluídas, em que as frações molares de uma espécie i nas fases líquida e gasosa são proporcionais entre si: y yá íi,g s i,l quidoa Como acabamos de ver, para uma mistura de gases ideais à pressão total p, podemos expressar a fração molar da espécie i na fase gasosa como: y p pá i gás i,g s = , Combinando estas duas equações, podemos escrever: p p yi gás í, .a i,l quido Com isso, podemos utilizar uma constante de proporcionalidade (c) para transformar esta relação em uma igualdade: p c p yi gás í, . .= i,l quido Enfim, define-se a constante H c p= . , a qual é chamada de constante de Henry, característica da espécie em questão e função apenas da temperatura para baixas pressões (abaixo de 5 atm). Observe que este parâmetro tem dimensões de pres- são. Alguns valores da constante de Henry para diferentes soluções aquosas estão apresentados na Tabela 5. Então, podemos rearranjar a equação anterior na forma conhecida como Lei de Henry: y p Hí i gás i,l quido = , 346 Introdução à Transferência de Massa Tabela 5 - Constantes de Henry (em bar) para alguns gases em água a baixas e médias pressões Soluto 290 K 300 K 310 K 320 K 330 K 340 K H2S 440 560 700 830 980 1140 CO2 1280 1710 2170 2720 3220 - O2 38000 45000 52000 57000 61000 65000 H2 67000 72000 75000 76000 77000 76000 CO 51000 60000 67000 74000 80000 84000 Ar 62000 74000 84000 92000 99000 104000 N2 76000 89000 101000 110000 118000 124000 Fonte: Çengel e Ghajar (2015, p. 807). Algumas observações podem ser feitas sobre a Lei de Henry e os valores da Tabela 5. A primeira delas é a de que quanto maior a constante de Henry, menor a concentração de gás no líquido (são inversamente proporcionais). Por outro lado, quanto maior a pressão parcial do gás, maior é a fração molar yi,líquido, de modo que pressurizar o gás aumenta a quantidade de gás dissolvido no líquido.