Buscar

MATEMATICA FINANCEIRA REGULAR 12

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 14 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 1 
AULA 12 – FLUXO DE CAIXA 
 Olá, amigos! 
Antes de mais nada, espero que todos tenham tido um Natal muito feliz! Com muita 
paz e alegria no coração! 
Agora sim, passemos às explicações, pois estou lhes devendo uma tonelada delas. O 
caso é que vários fatos se somaram, e acabaram por me deixar realmente impossibilitado de 
escrever as últimas aulas no prazo previsto! Certamente que vocês já estudaram (ou estão 
estudando) o Direito Tributário. Não é verdade? Então é muito provável que já tenham ouvido 
falar em decadência. Sim? Pois é. Não raro, quando chega o fim do ano, os fiscais que 
trabalham nas seções de fiscalização (o que é o meu caso) têm que se desdobrar em dois (ou 
em dez!) para concluir certas operações e evitar que transcorra o tal prazo decadencial. 
Por conta disso, nas últimas quatro semanas, tenho cumprido uma jornada aproximada 
de doze horas de trabalho por dia, só na Receita. É isso mesmo: doze horas por dia. O estresse 
de ter que concluir muitas tarefas em pouquíssimo tempo simplesmente consumiu as energias 
com as quais sempre contei para escrever as aulas à noite, em casa. 
Vejam que não estou dizendo que o pneu furou, tampouco que o despertador deixou 
de tocar. Estou sendo sincero com vocês. Estou contando somente a verdade. Minha esposa, 
Sílvia, é testemunha de o quanto estou abatido e desgostoso, por não ter conseguido entregar 
as aulas nas datas certas. 
Só me resta, pois, contar com a boa-vontade de vocês em me perdoar por este atraso, 
e relevar. 
E não percamos mais tempo! Na seqüência, apresento-lhes a resolução das questões 
que ficaram pendentes do nosso último encontro. Adiante! 
 
... Dever de Casa 
 
87. (Analista BACEN 2001) Um bônus no valor nominal de US$ 1.000,00 e contendo 
doze cupons semestrais de US$ 50.00, vencendo o primeiro seis meses após o 
lançamento, é lançado no mercado internacional. O lançamento de uma 
determinada quantidade desses bônus ensejou um deságio de zero sobre o valor 
nominal do bônus. Abstraindo custos administrativos da operação, qual a taxa 
de juros em que os compradores dos bônus aplicaram o seu capital, considerando 
que junto com o último cupom o comprador recebe o valor nominal do bônus de 
volta? 
a) 0% d) 11% ao ano 
b) 5% ao semestre e) 12% ao ano 
c) 7,5% ao semestre 
 
Sol.: Este enunciado trata da situação da qual falamos minuciosamente na aula passada! Está 
havendo um empréstimo. E se bem atentarmos, veremos que este empréstimo apresenta, 
rigorosamente, as mesmas características de um modelo, que é o do empréstimo americano! 
Concordam? Senão, vejamos o desenho: 
 1.000,00 1.000,00 
 
 50, 50, 50, 50, 50, 
 
 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 2 
 Todos enxergaram a parte do enunciado que diz que o preço de lançamento é igual ao 
valor nominal do título? É a seguinte: “O lançamento de uma determinada quantidade desses 
bônus ensejou um deságio de zero sobre o valor nominal do bônus.” 
 Ora, deságio de zero é o mesmo que ágio de zero. Ou seja, o preço de lançamento é 
exatamente igual ao valor nominal do título. Neste caso, US$1.000. 
 Aprendemos na aula passada, que se o empréstimo da questão segue as características 
do modelo americano, não há que se perder tempo algum na determinação da taxa da 
operação! Lembrados? Basta fazer uma rápida divisão, e pronto! Teremos: 
 ? i=50/1000=5/100=5%a.s. ? Resposta! 
 
88. (Analista Rec. Financeiros SERPRO 2001) Um país lançou bônus no mercado 
internacional de valor nominal, cada bônus, de US$ 1.000,00, com dez cupons 
semestrais no valor de US$ 50,00 cada, vencendo o primeiro cupom ao fim do 
primeiro semestre e assim sucessivamente até o décimo semestre, quando o país 
deve pagar o último cupom juntamente com o valor nominal do título. 
Considerando que a taxa de risco do país mais a taxa de juros dos títulos de 
referência levou o país a pagar uma taxa final de juros nominal de 12% ao ano, 
calcule o deságio sobre o valor nominal ocorrido no lançamento dos bônus, 
abstraindo custos de intermediação financeira, de registro, etc. 
a) Não houve deságio 
b) US$ 52,00 por bônus 
c) 8,43% 
d) US$ 73,60 por bônus 
e) 5,94% 
 
Sol.: Façamos logo o desenho desta questão. Teremos: 
 
 
 X 1.000,00 
 
 50, 50, 50, 50, 
 
 
Percebam que o elemento desconhecido é o preço de lançamento do título! 
A respeito da taxa desta operação, o que nos foi dito? Que se trata de uma taxa nominal 
de 12% ao ano. Ora, se é uma taxa nominal, precisamos conhecer seu nome completo! 
Será o seguinte: 12% ao ano, com capitalização semestral. 
E como sabemos que a capitalização é semestral, se o enunciado não disse isso 
expressamente? Quem nos revela é o desenho da questão! Olhando para ele, vemos várias 
parcelas dispostas em intervalos de tempo iguais. Não é verdade? E esse intervalo é semestral. 
Assim, fica subentendido que a capitalização da taxa é semestral. 
Já sabemos o que fazer diante de uma taxa nominal? Claro que sim! Teremos: 
? 12%a.a., com capit. semestral = (12/2) = 6% ao semestre. 
Pois bem! Olhando para o desenho acima, vemos que este empréstimo é parecidíssimo 
com o do modelo americano! Concordam? Para que estivéssemos exatamente com o modelo 
americano, bastaria que o X fosse igual a mil. E se isso ocorresse, quanto seria a taxa desta 
operação? Ora, se X=1000, teríamos uma taxa de: 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 3 
? i = 50/1000 = 5%a.s. 
Mas a taxa não é igual a 5%. É uma taxa maior (6%). 
Assim, já há como dizermos algo a respeito do valor X? Sim! Mesmo antes de 
realizarmos as contas, já é possível afirmar que o X será menor que mil. 
Lembrados? Aumentando a taxa, diminui o X; diminuindo a taxa, aumenta o X. (Uma 
vez que o X é um resgate anterior). 
E se o X será menor que 1000, ou seja, se o preço de lançamento será menor que o 
valor nominal do título, significa então que haverá um deságio! É justamente isso o que a 
questão está perguntando: de quanto será este deságio? Precisamos descobrir o valor do X. 
Adotando como data focal a mais à direita do desenho, e aplicando a equação da 
equivalência composta de capitais, teremos: 
 ? X.(1+0,06)10 = [50.S10,6%] + 1000 
 
Uma equação e uma variável. Fazendo as devidas consultas às tabelas financeiras, 
chegaremos ao seguinte resultado: 
? X=926,40 
Como já era esperado, um valor menor que mil. 
E agora, conhecendo o valor de X, saberemos também calcular o deságio que a questão 
está pedindo. Faremos: 
 ? Deságio = 1000 – 926,40 
 ? Deságio = 73,60 ? Resposta! 
 
 
 
 Vamos falar agora a respeito de um tipo de questão constantemente presente em provas 
de matemática financeira! A que trata de Fluxo de Caixa! 
 Ninguém se assuste: este tema – Fluxo de Caixa – aqui na matemática financeira, não é 
nada parecido com o que ele representa na disciplina de Contabilidade. Aqui é infinitamente 
mais fácil. Na realidade, todos nós já estamos aptos a resolver questões de Fluxo de Caixa. 
 Só precisamos nos convencer disso! 
 Vamos lá. 
 O que é um Fluxo de Caixa? É uma linha do tempo, sobre a qual estarão dispostos 
valores positivos e valores negativos. 
 Valores positivos poderão ser chamados de receitas, de ganhos, de entradas, ou de 
qualquer outro nome que enseje o entendimento de que o dinheiro está entrando no bolso! 
 Na linha do tempo, os valorespositivos serão desenhados com seta apontando para 
cima! 
 Valores negativos serão chamados de despesas, de retiradas, de desembolsos, de 
gastos, enfim, de qualquer nome que nos faça compreender que o dinheiro está saindo do 
bolso! Ok? 
 Valores negativos serão desenhados, na linha do tempo, com seta apontando para baixo! 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 4 
 Pois bem! Uma vez desenhado o fluxo de caixa, você vai reler o enunciado, e vai 
verificar que ele escolherá uma data qualquer, e pedirá que você projete para esta data todas 
as parcelas do desenho, positivas e negativas! 
 Ou seja, a questão vai pedir o resultado do desenho numa data qualquer, especificada 
pelo próprio enunciado! 
 Outra coisa: ao falar em fluxo de caixa, ou em qualquer de seus sinônimos (fluxo de 
caixa = fluxo de valores = fluxo de pagamentos), já saberemos que estamos trabalhando 
no Regime Composto! Ok? 
 Assim, não existe mais segredo algum, uma vez que já sabemos como trabalhar com as 
parcelas neste regime. Senão, vejamos: 
 O que faremos, no Regime Composto, para movimentar: 
 1º) Uma parcela sozinha, para uma data posterior? Multiplicando-se pelo 
parêntese famoso! 
 X.(1+i)n 
 
 X 
 
 
 
 
 2º) Uma parcela sozinha, para uma data anterior? Dividindo-se pelo parêntese 
famoso! 
 X/(1+i)n 
 
 X 
 
 
 
 
3º) Várias parcelas iguais e periódicas, para uma data posterior? Por meio de 
uma operação de Rendas Certas, e resgate na data da última parcela! 
 
 T=P.Sn,i 
 
 
 
 P P P P P P 
 
 
 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 5 
 
 
4º) Várias parcelas iguais e periódicas, para uma data anterior? Por meio de 
uma operação de Amortização, e resgate um período antes da primeira parcela! 
 
 T 
 
 
 
 P P P P P P 
 
 
 
 
 Pronto! É esse o trabalho que teremos que realizar, a fim de projetar todas as parcelas 
do desenho para a data determinada pelo enunciado! 
 É oportuno ressaltar que não existe uma maneira única de resolver uma questão de 
fluxo de caixa. Em geral, há várias e várias soluções possíveis! Obviamente, será nosso trabalho 
escolher aquela que nos pareça mais conveniente. Leia-se: a solução mais rápida! 
 Ok? 
 Façamos um exemplo: 
 
91. Um fluxo de caixa é composto por um desembolso de R$4.000,00 na data zero, uma 
despesa de R$3.000,00 na data um mês, uma retirada de R$2.000,00 na data dois meses, 
e mais doze receitas de R$1.000,00, mensais e sucessivas, a primeira delas a partir do 
início do sexto mês. Considerando uma taxa de juros compostos de 2% ao mês, calcule o 
valor atual deste fluxo de caixa no início do primeiro período: 
 
Sol.: O assunto da questão foi reconhecido logo de imediato, no início da leitura do 
enunciado! Fluxo de Caixa! Já sabemos, pois, que estamos no Regime Composto! 
E se a questão é de fluxo de caixa, a primeira coisa a ser feita é o seu desenho! Assim, 
lembrando-se da convenção valor positivo, seta para cima e valor negativo, seta para baixo, 
teremos o seguinte: 
 
 1000, 1000, 1000, 1000, 1000, 
 
 
 2000 
 3000 
 4000 
 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 6 
Uma vez desenhado o fluxo de caixa, precisamos agora verificar para onde a questão 
quer que nós transportemos todas as parcelas! Essa informação está na última frase do 
enunciado: ...no início do primeiro período! Ou seja, esta questão quer o resultado do fluxo de 
caixa na data zero! 
Comecemos com as parcelas positivas. Faça de conta, agora, que só existem as setas 
azuis no desenho acima. Ok? Teremos: 
 
 X 
 
 1000, 1000, 1000, 1000, 1000, 
 
 
Onde este X é o resultado positivo! 
O que vemos? Parcelas iguais, em intervalos iguais e taxa composta! As três 
características do pacote completo, que serve tanto para rendas certas quanto para 
amortização! Neste caso, o que lhes parece mais conveniente? Ora, se o resultado que 
pretendemos encontrar é na data zero, parece-nos mais lógico trabalhar com amortização. 
Concordam? 
Todavia, vemos que a primeira parcela não está ao final do primeiro período, de sorte 
que precisaremos usar o artifício das parcelas fictícias! Todos lembrados? Teremos: 
 X 
 
 1000, 1000, 1000, 1000, 1000, 
 
 
 Assim, com o acréscimo destas duas parcelas fictícias, o cálculo do X será feito da 
seguinte forma: 
 ? X = 1000.{A14,2% – A2,2%} 
 Consultando a tabela financeira da amortização e fazendo as contas, teremos que: 
 ? X=1000.{12,106249 - 1,941561} ? X=10.164,68 
 
 Este X que encontramos representa todo o resultado positivo do fluxo de caixa. Nosso 
desenho da questão agora é apenas o seguinte: 
 
 10.164,68 
 
 
 
 
 
 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 7 
 2000 
 3000 
 4000 
Vamos trabalhar agora as parcelas negativas. 
A de 4.000 já está no lugar certo. Concordam? Não precisaremos transportá-la para 
lugar nenhum! 
E as parcelas de 2000 e de 3000? Como as projetaremos para a data zero? Ora, 
dividindo-as pelo parêntese famoso. Teremos: 
? 2000/(1+0,02)2 = 2000/1,04040 = 1.922,33 
E: 
? 3000/(1+0,02)3 = 3000/1,061208 = 2.826,96 
Assim, somando-se os resultados negativos na data zero, teremos: 
? Valores Negativos = 4000 + 1922,33 + 2826,96 = 8.749,29 
O desenho da questão agora é o seguinte: 
 
 10.164,68 
 
 
 
 
 
 
 
 
 8.749,29 
 
Um último ensinamento: sempre que houver, em uma mesma data de um fluxo de 
caixa, um valor positivo e um valor negativo, faremos uma subtração! 
Isso é intuitivo, concordam? 
Se a seta de maior valor apontar para cima, o resultado da subtração permanecerá com 
seta para cima; se a seta de maior valor apontar para baixo, o resultado da subtração 
permanecerá com seta para baixo! Só isso! 
Assim, finalmente, teremos que: 
? 10.164,68 – 8.749,29 = 1.415,39 
Ou seja: 
1.415,39 ? Resposta! 
 
 
 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 8 
Viram como é fácil uma questão de fluxo de caixa? Facílimo! 
Vejamos se foram atingidos os objetivos desta resolução, tentando responder as 
perguntas do quadro abaixo: 
 
 
 
 
 
 
 
 
E aí? Tudo certo? 
Pois bem! Agora você já está preparado para resolver as duas questões seguintes. São 
as questões do nosso Dever de Casa de hoje. 
 
Dever de Casa 
92. Calcular a soma dos valores atuais, no momento zero, das quantias que compõem 
o seguinte fluxo de valores: um desembolso de R$ 2.000,00 em zero, uma despesa no 
momento um de R$ 3.000,00 e nove receitas iguais de R$ 1.000,00 do momento dois 
aodez, considerando que o intervalo de tempo decorrido entre momentos 
consecutivos é o mês e que a taxa de juros compostos é de 3% ao mês. Usar ainda a 
convenção de despesa negativa e receita positiva, e desprezar os centavos. 
a) R$ 2.511,00 d) R$ 2.646,00 
b) R$ 0,00 e) R$ 2.873,00 
c) R$ 3.617,00 
 
93. Considerando a série abaixo de pagamentos no fim de cada ano, obtenha o 
número que mais se aproxima do valor atual total destes pagamentos no início do 
ano 1, a uma taxa de desconto racional de 10% ao ano, juros compostos. 
Ano 1 2 3 4 5 6 7 8 9 10 
Valor 400 400 400 400 200 200 200 200 200 1.200 
a) 2.208,87 
b) 2.227,91 
c) 2.248,43 
d) 2.273,33 
e) 2.300,25 
 
 
 E quem pensa que a aula já acabou está redondamente enganado! 
 Na seqüência, apresento-lhes as resoluções do Exercício Final do nosso Curso, ou seja, 
das questões da prova de Matemática Financeira do AFRF 2005, ocorrido há exatamente um 
ano! 
 Esclarecendo: esta não é a nossa última aula. Haverá uma próxima. Nela, farei um pente 
fino em nosso material, e resolverei questões que foram eventualmente saltadas. Além disso, 
explicarei ainda mais alguma teoria, que aproveitará aos que forem prestar concurso elaborado 
pela FCC (e que não costuma ser cobrada pela Esaf). 
 Ok? 
 Seguem as resoluções do AFRF 2005. Adiante! 
Nesta questão aprendi: 
1. O que é um fluxo de caixa; 
1. Quais são outros sinônimos para fluxo de caixa; 
2. A nomenclatura de valores positivos e valores negativos; 
3. Como calcular o resultado de um fluxo de caixa. 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 9 
 Quero aproveitar o ensejo, e desejar a todos um Ano Novo cheio só de alegrias! E de 
muitas e muitas realizações! E que uma delas seja justamente a sua aprovação no concurso dos 
seus sonhos! 
 Sonhar é preciso, meus amigos! Batalhar pelos sonhos também é preciso! 
 Vamos em frente. 
 
 
EXERCÍCIO FINAL 
 
PROVA DE MATEMÁTICA FINANCEIRA DO AFRF/2005 
 
 
01- Ana quer vender um apartamento por R$400.000,00 a vista ou financiado pelo sistema 
de juros compostos a taxa de 5% ao semestre. Paulo está interessado em comprar esse 
apartamento e propõe à Ana pagar os R$400.000,00 em duas parcelas iguais, com 
vencimentos a contar a partir da compra. A primeira parcela com vencimento em 6 meses 
e a segunda com vencimento em 18 meses. Se Ana aceitar a proposta de Paulo, então, sem 
considerar os centavos, o valor de cada uma das parcelas será igual a: 
a) R$ 220.237,00 
b) R$ 230.237,00 
c) R$ 242.720,00 
d) R$ 275.412,00 
e) R$ 298.654,00 
 
Sol.: Questão clássica de Equivalência de Capitais, no regime composto. (Logo, Equivalência 
Composta). E quando a equivalência é composta, tudo fica bem mais fácil. Basta adotarmos como 
data focal aquela mais à direita do desenho, e aplicarmos diretamente a equação de equivalências de 
capitais. 
Atentemos apenas para o fato que a taxa composta fornecida é semestral. Daí, trataremos os 
prazos 6 meses e 18 meses como sendo, respectivamente, 1 semestre e 3 semestres. Passemos ao 
desenho da questão. Teremos: 
 
 
 400.000, 
 
 
 X X 
 
 
 
 
 0 1s 3s 
 
Aplicando a equação de equivalência, com data focal em 3 semestres, teremos: 
 
? 400.000.(1+0,05)3 = X.(1+0,05)2 + X 
 
? 2,1025.X=463.050 ? X=220.237,00 ? Resposta! 
 
 
02- Uma casa pode ser financiada em dois pagamentos. Uma entrada de R$150.000,00 e 
uma parcela de R$200.000,00 seis meses após a entrada. Um comprador propõe mudar o 
esquema de pagamentos para seis parcelas iguais, sendo a primeira paga no ato da 
compra e as demais vencíveis a cada trimestre. Sabendo-se que a taxa contratada é de 6% 
ao trimestre, então, sem considerar os centavos, o valor de cada uma das parcelas será 
igual a: 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 10 
a) R$ 66.131,00 
b) R$ 64.708,00 
c) R$ 62.927,00 
d) R$ 70.240,00 
e) R$ 70.140,00 
 
Sol.: Nova questão de Equivalência Composta. O diferencial aqui é que usaremos também a teoria 
das Rendas Certas! Vejamos o desenho da questão. 
 
 200.000, 
 
 150.000, 
 
 
 X X X X X X 
 
 
 
 
 0 1t 2t 3t 4t 5t 
 
Daí, aplicaremos a equação de equivalência de capitais, adotando como data focal aquela 
mais à direita do desenho, qual seja, a data 5 trimestres. Evidentemente que, na hora de levar as 
parcelas da segunda forma de pagamento (em vermelho) para a data focal, faremos isso de uma vez 
só, por meio das Rendas Certas. Teremos: 
 
? 150.000.(1+0,06)5 + 200.000.(1+0,06)3 = P. S6¬6% 
 
? 200.733,84 + 238.203,20 = 6,975318 . P ? P=62.927,00 ? Resposta! 
 
 
03- Uma empresa adquiriu de seu fornecedor mercadorias no valor de R$100.000,00 
pagando 30% a vista. No contrato de financiamento realizado no regime de juros 
compostos, ficou estabelecido que para qualquer pagamento que for efetuado até seis 
meses a taxa de juros compostos será de 9,2727% ao trimestre. Para qualquer pagamento 
que for efetuado após seis meses, a taxa de juros compostos será de 4% ao mês. A 
empresa resolveu pagar a dívida em duas parcelas. Uma parcela de R$30.000,00 no final 
do quinto mês e a segunda parcela dois meses após o pagamento da primeira. Desse 
modo, o valor da segunda parcela, sem considerar os centavos, deverá ser igual a: 
a) R$ 62.065,00 d) R$ 60.120,00 
b) R$ 59.065,00 e) R$ 58.065,00 
c) R$ 61.410,00 
 
Sol.: Mais uma de equivalência composta! De novidade, uma taxa composta trimestral de 9,2727%, 
que será transformada numa taxa efetiva de 3% ao mês. Fora isso, teremos que levar os dois 
pagamentos para a data zero, usando taxas compostas diferenciadas: 3% ao mês para a parcela na 
data cinco meses, e 4% ao mês para a parcela na data sete meses. Nosso desenho é o seguinte: 
 
 70.000, 
 
 X 
 30.000, 
 
 
 
 
 0 5m 7m 
 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 11 
 
Percebam que no desenho acima já fizemos o abatimento da entrada! Viram? Pois bem! Daí, 
adotando a data focal zero, e aplicando a equação de equivalência, teremos: 
 
? 70.000 = 30.000/(1+0,03)5 + X/(1+0,04)7 
? 0,759918.X = 44.121,74 ? X=58.061,00 ? Resposta! 
 
 
04- O valor nominal de uma dívida é igual a 5 vezes o desconto racional composto, caso a 
antecipação seja de dez meses. Sabendo-se que o valor atual da dívida (valor de resgate) 
é de R$200.000,00, então o valor nominal da dívida, sem considerar os centavos, é igual a: 
a) R$ 230.000,00 d) R$ 320.000,00 
b) R$ 250.000,00 e) R$ 310.000,00 
c) R$ 330.000,00 
 
Sol.: Questão mais fácil da prova! Se foi dito que N=5.D, já se conclui que o valor atual será: 
? N – A = D ? 5D – A = D ? A=4D 
 
Daí, se A=200.000, conforme disse a questão, então: 
 
? 4D=200.000 E: ? D=50.000, 
 
Finalmente, sabendo que N=5D, conclui-se que: 
 
? N=5x50.000 ? N=250.000,00 ? Resposta! 
 
 
05- Em janeiro de 2005, uma empresa assumiu uma dívida no regime de juros compostos 
que deveria ser quitada em duas parcelas, todas com vencimento durante o ano de 2005. 
Uma parcela de R$2.000,00 com vencimento no final de junho e outra de R$5.000,00 com 
vencimento no final de setembro. A taxa de juros cobrada pelo credor é de 5% ao mês. No 
final de fevereiro, a empresa decidiupagar 50% do total da dívida e o restante no final de 
dezembro do mesmo ano. Assim, desconsiderando os centavos, o valor que a empresa 
deverá pagar no final de dezembro é igual a: 
a) R$ 4.634,00 d) R$ 4.234,00 
b) R$ 4.334,00 e) R$ 5.234,00 
c) R$ 4.434,00 
 
Sol.: Outra questão de equivalência composta! Passemos logo ao desenho: 
 
 
 5.000, 
 
 X 
 Y 2.000, 
 
 
 
 
 0 4m 7m 10m 
 
 
 Uma questão bem mais fácil do que parece. Reparemos que as duas parcelas em azul 
compõem a dívida original. Daí, se as projetarmos para a data do X (final de dezembro), 
descobriremos o quanto vale a dívida inteira nesta data. Teremos: 
 
? Dívida inteira = 2000.(1+0,05)6 + 5000.(1+0,05)3 = 8.468,32 
 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 12 
 Mas o que a questão quer saber? O valor do X, que corresponde, conforme dito pelo próprio 
enunciado, a metade da dívida. Daí, dividindo por dois o valor encontrado no cálculo acima, teremos: 
 
 ? X = dívida/2 = 8.468,32 / 2 = 4.234,16 ? Resposta! 
 
 
 
 
 
06- Edgar precisa resgatar dois títulos. Um no valor de R$ 50.000,00 com prazo de 
vencimento de dois meses, e outro de R$ 100.000,00 com prazo de vencimento de três 
meses. Não tendo condições de resgatá-los nos respectivos vencimentos, Edgar propõe ao 
credor substituir os dois títulos por um único, com vencimento em quatro meses. Sabendo-
se que a taxa de desconto comercial simples é de 4% ao mês, o valor nominal do novo 
título, sem considerar os centavos, será igual a: 
a) R$ 159.523,00 
b) R$ 159.562,00 
c) R$ 162.240,00 
d) R$ 162.220,00 
e) R$ 163.230,00 
 
Sol.: Uma questão de Equivalência Simples, com Desconto Simples por Fora. O enunciado nada disse 
sobre a data focal, obrigando-nos a adotar a data zero. O desenho é o seguinte: 
 
 X 
 
 
 100.000, 
 
 
 50.000, 
 
 
 
 
 0 2m 3m 4m 
 
 
 
Aplicando de uma vez a equação de equivalência, com data focal zero e desconto simples por 
fora, teremos: 
 
? [50.000.(100-4x2)/100] + [100.000.(100-4x3)/100] = [X.(100-4x4)/100] 
 
? 46.000 + 88.000 = 0,84.X ? X=134.000/0,84 
 
? X=159.523,00 ? Resposta! 
 
 
07- Paulo aplicou pelo prazo de um ano a quantia total de R$50.000,00 em dois bancos 
diferentes. Uma parte dessa quantia foi aplicada no Banco A, à taxa de 3% ao mês. O 
restante dessa quantia foi aplicado no Banco B a taxa de 4% ao mês. Após um ano, Paulo 
verificou que os valores finais de cada uma das aplicações eram iguais. Deste modo, o 
valor aplicado no Banco A e no Banco B, sem considerar os centavos, foram, 
respectivamente iguais a: 
a) R$ 21.948,00 e R$ 28.052,00 
b) R$ 23.256,00 e R$ 26.744,00 
c) R$ 26.589,00 e R$ 23.411,00 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 13 
d) R$ 27.510,00 e R$ 22.490,00 
e) R$ 26.477,00 e R$ 23.552,00 
 
Sol.: Essa questão foi anulável. A Esaf não usou nenhum sinal indicativo de que o regime é o 
composto! Mas, consideremos que houve um esquecimento fatal. Ok? Consideremos aqui o regime 
composto, como se fora informado. Ainda assim, continua cabendo anulação. Vejamos: 
 
? M1=C1.(1+0,03)12 = 1,425760.C1 
 
? M2=C2.(1+0,04)12 = 1,601032.C2 
 
Igualando os dois montantes, teremos: 
 
? 1,425760.C1 = 1,601032.C2 
 
? C1 = 1,122932. C2 
 
Sabendo que C1+C2=50.000, faremos: 
 
? 1,122932.C2 + C2 = 50.000 ? C2=50.000/2,122932 ? C2=23.552,00 
 
Daí, teremos finalmente que: 
 
? C1=50.000 – C2 ? C1=26.447,00 
 
? C1=26.447,00 e C2=23.552,00 ? Resposta! (Não há gabarito correto!) 
 
 
08- Um banco deseja operar a uma taxa efetiva de juros simples de 24% ao trimestre para 
operações de cinco meses. Deste modo, o valor mais próximo da taxa de desconto 
comercial trimestral que o banco deverá cobrar em suas operações de cinco meses deverá 
ser igual a: 
a) 19% 
b) 18,24% 
c) 17,14% 
d) 22% 
e) 24% 
 
Sol.: Essa também foi uma questão fácil. Sobretudo para quem conhecesse a relação entre as duas 
taxas – a de desconto simples por fora e a de desconto simples por dentro (= taxa 
efetiva de juros simples). Conhecendo-a, bastava uma aplicação direta da fórmula. Teremos: 
 
? (100/if)-(100/id)=n 
 
Colocando taxa e tempo na mesma unidade, usaremos id=8% ao mês e n=5 meses. Assim: 
 
? (100/if)-(100/8)=5 ? (100/if) – 12,5 = 5 ? (100/if) = 17,5 
 
? if = (100/17,5) ? if = 5,714% ao mês. 
 
Mas a questão não quer saber taxa mensal, e sim trimestral. Daí: 
? if=5,714x3 ? if=17,14% ao trimestre ? Resposta! 
 
 
 
 
 Por hoje é só, meus amigos! 
 
CURSOS ON-LINE – MATEMÁTICA FINANCEIRA – CURSO REGULAR 
PROFESSOR SÉRGIO CARVALHO 
www.pontodosconcursos.com.br 14 
 Um forte abraço a todos! E fiquem com Deus!

Mais conteúdos dessa disciplina