Prévia do material em texto
Matemática 2o bimestre – Aula 20 – Sequência de Atividades 7 Ensino Fundamental: Anos Finais Números fracionários e decimais: comparar e relacionar – Parte 1 ● Números racionais. ● Reconhecer que os números racionais positivos podem ser expressos nas formas fracionárias e decimais; ● Estabelecer relações entre os números racionais positivos, expressos nas formas fracionária e decimal, passando de uma representação para outra. Você se lembra de quais situações em que os números racionais podem ser utilizados no nosso dia a dia? Cite algumas. Os números racionais são utilizados em diversas situações do nosso dia a dia, por exemplo, em um termômetro digital ou uma balança digital marcando as medidas com números decimais, ou, mesmo, em uma receita culinária na qual as proporções dos ingredientes podem estar representadas na forma fracionária. O conjunto dos números racionais é formado por todos os números que podem escritos na forma fracionária, com denominador e numerador inteiros e denominador diferente de zero: O números racionais são uma importante classe de números que incluem números inteiros, fracionários e números decimais. 𝒂 𝒃 , sendo 𝒂 e 𝒃 números inteiros e 𝒃 ≠ 0 Leitura: um mil quatrocentos e vinte e três inteiros e quinhentos e oitenta e nove milésimos. Leitura e escrita de decimais Leitura e escrita de decimais Frações cujo denominador é uma potência de base 10 Denominador Exemplo de fração Leitura Número decimal 10 2 10 Dois décimos 0,2 100 32 100 Trinta e dois centésimos 0,32 1 000 7 1 000 Sete milésimos 0,007 E como fazer a transformação de uma fração em um número decimal? E como fazer a transformação de um número decimal em uma fração? Para transformar uma fração em um número decimal, podemos dividir o numerador da fração pelo seu denominador: 9 2 = 9 ÷ 2 = 4,5 Para transformar um número decimal em uma fração, podemos multiplicar o número decimal por 10, 100, 1000 e assim por diante, de acordo com o número de casas decimais: 0,3 = 3 10 0,21 = 21 100 Ana Maria adicionou alguns valores na calculadora e obteve como resultado o número 21,3. Agora, ela pretende representar o número, obtido na calculadora, na forma de fração. Vamos ajudá-la a resolver este problema? Como você faria isto? Atividade 1 Correção Ana Maria adicionou alguns valores na calculadora e obteve como resultado o número 21,3. Agora, ela pretende representar o número, obtido na calculadora, na forma de fração. Vamos ajudá-la a resolver este problema? Como você faria isto? Descrição da resposta pessoal. 21,3 = 213 10 Atividade 2 Ao sair com sua mãe para jantar, Thales comeu 3 8 de uma pizza. Como ele poderia representar a quantidade que comeu da pizza com um número na forma decimal? Explique como você chegou a esta resposta. Correção Ao sair com sua mãe para jantar, Thales comeu 3 8 de uma pizza. Como ele poderia representar a quantidade que comeu da pizza com um número na forma decimal? Explique como você chegou a esta resposta. Descrição da resposta pessoal. 3 8 = 3 ÷ 8 = 0,375 30 8 - 24 0,375 60 - 56 40 - 40 0 Que número é maior: 0,8 ou 4 5 ? Desafio! Que número é maior: 0,8 ou 4 5 ? Para converter uma fração em um número decimal, podemos dividir o numerador pelo seu denominador: 𝟒 𝟓 = 0,8 Assim, 𝟎, 𝟖 = 𝟒 𝟓 . 40 5 - 40 0,8 0 Correção Aprofundando 1. (Simulado – Prova Brasil 2011) Nas figuras abaixo, as áreas escuras são partes tiradas do inteiro. A parte escura que equivale aos 3 5 tirados do inteiro é: A. B. C. D. Mostre-me 1. (Simulado – Prova Brasil 2011) Nas figuras abaixo, as áreas escuras são partes tiradas do inteiro. A parte escura que equivale aos 3 5 tirados do inteiro é: Correção Aprofundando Alternativa correta C. O inteiro está dividido em 5 partes, e a parte escura equivale a 3. A. B. C. D. Aprofundando 2. (SARESP – 2008) Assinale a alternativa que mostra corretamente a escrita de 6 8 na forma decimal. A. 0,50 B. 0,75 C. 0,30 D. 0,80 Mostre-me Correção Aprofundando 2. (SARESP – 2008) Assinale a alternativa que mostra corretamente a escrita de 6 8 na forma decimal. A. 0,50 B. 0,75 C. 0,30 𝟔 𝟖 = 𝟔 ÷ 𝟖 = 𝟎, 𝟕𝟓 Alternativa B. D. 0,80 60 8 - 56 0,75 40 - 40 0 ● Reconhecemos que os números racionais positivos podem ser expressos nas formas fracionárias e decimais; ● Estabelecemos relações entre os números racionais positivos, expressos nas formas fracionária e decimal, passando de uma representação para outra. LEMOV, D. Aula nota 10 3.0: 63 técnicas para melhorar a gestão da sala de aula. Porto Alegre: Penso, 2023. SÃO PAULO (Estado). Secretaria da Educação. Aprender Sempre, 2024. Matemática, 7o ano – Ensino Fundamental, v. 1. SÃO PAULO (Estado). Secretaria da Educação. Currículo Paulista, 2019. Lista de imagens Slide 3 – https://tenor.com/pt-BR/view/cat-sticker-line-sticker-question-mark-confused-curious-gif- 26478616. Acesso em: 11 mar. 2024. Slide 4 – https://www.gettyimages.com.br/detail/foto/fitness-and-gym-concept-young-healthy-man-on- home-imagem-royalty-free/1410725167?phrase=balan%C3%A7a+digital&adppopup=true. Acesso em: 11 mar. 2024. Slide 5 – https://tenor.com/pt-BR/view/blink-idea-bulb-light-electricity-gif-17844233. Acesso em: 11 mar. 2024. Slides 14 e 15 – https://tenor.com/pt-BR/view/adhd-brain-adhd-brain-gif-13598913. Acesso em: 11 mar. 2024. https://tenor.com/pt-BR/view/cat-sticker-line-sticker-question-mark-confused-curious-gif-26478616 https://tenor.com/pt-BR/view/cat-sticker-line-sticker-question-mark-confused-curious-gif-26478616 https://www.gettyimages.com.br/detail/foto/fitness-and-gym-concept-young-healthy-man-on-home-imagem-royalty-free/1410725167?phrase=balan%C3%A7a+digital&adppopup=true https://www.gettyimages.com.br/detail/foto/fitness-and-gym-concept-young-healthy-man-on-home-imagem-royalty-free/1410725167?phrase=balan%C3%A7a+digital&adppopup=true https://tenor.com/pt-BR/view/blink-idea-bulb-light-electricity-gif-17844233 https://tenor.com/pt-BR/view/adhd-brain-adhd-brain-gif-13598913 Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6: Leitura e escrita de decimais Slide 7 Slide 8 Slide 9 Slide 10: Atividade 1 Slide 11: Correção Slide 12: Atividade 2 Slide 13: Correção Slide 14: Desafio! Slide 15: Correção Slide 16 Slide 17: Correção Slide 18 Slide 19: Correção Slide 20 Slide 21 Slide 22