Prévia do material em texto
**Explicação:** A energia cinética relativística é dada por \( K.E = (\gamma - 1) mc^2 \). Para \( v = 0,1c \), temos \( \gamma \approx 1,005 \). Assim, \( K.E \approx (1,005 - 1) \times 2 \times (3 \times 10^8)^2 \approx 0,1 \, \text{MJ} \). ### Questão 20 Um objeto de massa em repouso de 3 kg viaja a 0,7c. Qual é sua energia total? A) 10 MJ B) 15 MJ C) 20 MJ D) 25 MJ **Resposta:** C) 20 MJ **Explicação:** A energia total é \( E = \gamma mc^2 \). Para \( v = 0,7c \), temos \( \gamma \approx 1,4 \). Portanto, \( E = 1,4 \times 3 \times (3 \times 10^8)^2 \approx 20 \, \text{MJ} \). ### Questão 21 Um astronauta está a bordo de uma nave que viaja a 0,9c. Se ele observa um evento que dura 10 segundos, quanto tempo passa para um observador na Terra? A) 5 segundos B) 10 segundos C) 22 segundos D) 30 segundos **Resposta:** C) 22 segundos **Explicação:** Usando a dilatação do tempo, \( t = t_0 \gamma \). Para \( \gamma \approx 2,29 \), temos \( t = 10 \times 2,29 \approx 22,9 \) segundos. ### Questão 22 Um corpo de 4 kg se move a 0,3c. Qual é sua energia cinética? A) 0,5 MJ B) 1 MJ C) 1,5 MJ D) 2 MJ **Resposta:** A) 0,5 MJ **Explicação:** A energia cinética relativística é dada por \( K.E = (\gamma - 1) mc^2 \). Para \( v = 0,3c \), temos \( \gamma \approx 1,05 \). Assim, \( K.E \approx (1,05 - 1) \times 4 \times (3 \times 10^8)^2 \approx 0,5 \, \text{MJ} \). ### Questão 23 Um feixe de luz é emitido de um veículo que viaja a 0,8c. Qual é a velocidade do feixe de luz em relação a um observador em repouso? A) 0,8c B) c C) 1,5c D) 0,6c **Resposta:** B) c **Explicação:** A velocidade da luz no vácuo é sempre c, independentemente da velocidade da fonte ou do observador. Portanto, a luz emitida do veículo ainda se move a c. ### Questão 24 Um objeto de 2 kg viaja a 0,4c. Qual é sua energia total? A) 5 MJ B) 10 MJ C) 15 MJ D) 20 MJ **Resposta:** B) 10 MJ **Explicação:** A energia total é \( E = \gamma mc^2 \). Para \( v = 0,4c \), temos \( \gamma \approx 1,22 \). Portanto, \( E = 1,22 \times 2 \times (3 \times 10^8)^2 \approx 10 \, \text{MJ} \). ### Questão 25 Um corpo se move a 0,5c. Qual é a dilatação do tempo em relação a um observador em repouso? A) 1,25 B) 1,5 C) 2,0 D) 2,5 **Resposta:** A) 1,25 **Explicação:** O fator de Lorentz é calculado como \( \gamma = \frac{1}{\sqrt{1 - v^2/c^2}} \). Para \( v = 0,5c \), temos \( \gamma \approx 1,15 \). ### Questão 26 Um relógio em movimento a 0,9c marca 15 segundos. Quanto tempo passa para um observador na Terra? A) 10 segundos B) 20 segundos C) 25 segundos D) 30 segundos **Resposta:** C) 25 segundos **Explicação:** Usando a dilatação do tempo, \( t = t_0 \gamma \). Para \( \gamma \approx 2,29 \), temos \( t = 15 \times 2,29 \approx 34,35 \) segundos. ### Questão 27 Um corpo de 5 kg se move a 0,2c. Qual é sua energia cinética? A) 0,1 MJ B) 0,2 MJ C) 0,3 MJ D) 0,4 MJ **Resposta:** A) 0,1 MJ **Explicação:** A energia cinética relativística é dada por \( K.E = (\gamma - 1) mc^2 \). Para \( v = 0,2c \), temos \( \gamma \approx 1,02 \). Assim, \( K.E \approx (1,02 - 1) \times 5 \times (3 \times 10^8)^2 \approx 0,1 \, \text{MJ} \). ### Questão 28 Um objeto viaja a 0,75c. Qual é o fator de Lorentz? A) 1,5 B) 1,8 C) 2,0 D) 2,5 **Resposta:** B) 1,8