Buscar

Fisica experimental 3 cargas eletricas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 10 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

.Cargas elétricas
Cargas elétricas são de dois tipos: positivas e negativas
Uma matéria é constituída de átomos. Os átomos, por sua vez, são constituídos de partículas ainda menores: prótons, nêutrons e elétrons. 
Os prótons e os nêutrons situam-se no núcleo do átomo. Os elétrons giram e torno do núcleo, numa região chamada eletrosfera. Os prótons e os elétrons possuem uma propriedade denominada carga elétrica, que aparece na natureza em dois tipos. Por isso a do próton foi convencionada como positiva e a do elétron como negativa.
Corpos carregados
Quando um corpo perde elétrons dizemos que ele está positivamente carregado. Quando ganha elétrons dizemos que ele está negativamente carregado. Quando o número de elétrons em um corpo é igual ao número de prótons, dizemos que o corpo está neutro.
Um experimento relacionado aos primórdios do estudo da eletricidade pode ser realizado com um bastão de vidro pendurado por um barbante. Se atritarmos esse bastão em um pedaço de lã, notaremos que ambos se atrairão mutuamente. Agora se atritarmos o bastão de vidro no tecido de lã e o deixarmos pendurado, aproximando dele outro bastão de vidro que tenha sido friccionado em outro pedaço de lã, notaremos que os bastões se repelem.
Essas observações demonstraram a ocorrência de fenômenos elétricos. Os cientistas consideram que, ao atritarmos os materiais vidro e lã, o bastão de vidro passa a ser portador de carga elétrica positiva e o pedaço de lã passa a ser portador de carga elétrica negativa. Os sinais de positivos e negativo atribuídos a essas cargas são uma convenção científica.
Cargas elétricas interagem
Muito materiais adquirem carga elétrica quando atritados em outros. Nesse processo um dos materiais adquire carga elétrica positiva, e o outro, carga elétrica negativa.
Por meio de experimentos semelhantes aos descritos anteriormente com o vidro e a lã, os cientistas concluíram que cargas elétricas de sinais diferentes se atraem e que cargas elétricas de sinais iguais se repelem. Quando vidro e lã são friccionados, passam a ter cargas elétricas de sinais diferentes e, portanto, passam a se atrair. Já os dois bastões de vidro, quando adquirem cargas elétricas de mesmo sinal, passam a se repelir.
 
A interação elétrica obedece ao princípio da ação e reação
A interação entre dois corpos portadores de cargas elétricas obedece à Terceira Lei de Newton (Princípio da ação e reação). Sobre cada um dos dois corpos atua uma força que se deve a presença do outro. As duas forças tem a mesma intensidade (mesmo módulo) e a mesma direção (mesma linha de atuação), mas diferentes sentidos.
Processos de Eletrização
Quando dizemos que um corpo está “carregado”, isso significa que ele tem um desequilíbrio de cargas, apesar de a carga resultante geralmente representar apenas uma minúscula fração da carga total positiva ou negativa contida no corpo. Existem, no entanto, três formas de se eletrizar um objeto.
Eletrização por atrito
Ocorre quando atritamos dois corpos de substâncias diferentes (ou não), inicialmente neutros, e haverá transferência de eletros de um corpo para o outro, de tal forma que um corpo fique eletrizado positivamente (cedeu elétrons), e outro corpo fique eletrizado negativamente (ganhou elétrons). A eletrização por atrito é mais forte quando é feita por corpos isolantes, pois os elétrons permanecem nas regiões atritadas.
Diferentes materiais têm diferentes tendências à eletrização. Quando vidro de lã são atritados, dizemos que ambos materiais adquirem carga elétrica pelo processo de eletrização por atrito.
Com base em muitos experimentos similares, foi possível aos cientistas determinarem a tendência dos materiais a adquirir carga elétrica positiva ou negativa, quando atritados uns com os outros. Essa tendência pode ser expressa por meio de uma seqüência como a mostrada abaixo.
	<--------- Aumenta a tendência para adquirir carga positiva
	Vidro
	lã
	seda
	algodão
	borracha rígida 
	Aumenta a tendência para adquirir carga negativa --------> 
Condutores elétricos
Imagine duas esferas de metal, um pouco afastadas entre si, uma delas eletrizada com carga positiva e a outra não-eletrizada. Se um bastão de metal tocar as duas esferas simultaneamente, verifica-se que parte da carga elétrica é transferida para a outra esfera. Porém, se utilizarmos um bastão de madeira, a carga permaneceria na esfera eletrizada, e a outra não receberia nem um pouco dessa carga.
Esse experimento evidencia que o metal é o material condutor elétrico e a madeira é um material isolante elétrico.
De fato, os condutores elétricos mais conhecidos são os metais como o cobre, o ferro o alumínio, o ouro e a prata. Entre eles, o cobre, metal de aspecto marrom-avermelhado, é usado na fiação elétrica das casas. Entre os isolantes elétricos podemos citar, além da madeira, os plásticos em geral, o ar (a temperatura e pressão ambientes), as borrachas e o isopor (que na verdade, é um tipo de plástico).
A grande maioria dos metais conhecidos se encaixa em um desses dois grupos: condutores elétricos e isolantes elétrico. Há, contudo, certos materiais que não se enquadram bem em nenhuma dessas duas categorias, mas sim em um grupo intermediário, conhecidos como semicondutores. Dois exemplos são o silício e o germânio, empregados na indústria para elaborar alguns componentes usados em aparelhos eletrônicos.
Eletrização por contato
Considere duas esferas de metal eletrizadas:
A esfera A esta eletrizada positivamente e todos os seus pontos possuem potencial elétrico negativo, ao contrario da esfera B que está neutra e seu potencial elétrico é nulo. Portanto existe diferença de potencial entre as esferas.
Quando encostamos as duas esferas, a diferença de potencial elétrico (Q) que existe entre elas, faz com que os elétrons da esfera negativamente carregada(A) passem espontaneamente para a esfera neutra( de menor potencial).
Esse fenômeno acontece com freqüência na vida de todos. Por exemplo, quando tomamos choque ao encostar em um objeto que não tem ligação nenhuma com energia elétrica que possa justificá-lo.
Eletrização por contato
Quando um corpo eletrizado toca um corpo eletricamente neutro (isto é, sem carga elétrica), parte de sua carga é transferida para ele, que também passa a ficar eletrizado. Esse processo é a eletrização por contato. 
Eletrização por indução
Sejam duas esferas metálicas A e B (A carregada negativamente e B neutra), afastadas como mostra a figura 1ª. Ao aproximarmos as duas esferas, a presença de cargas negativa presente em A, provocará uma separação de cargas em B(fig. 1b). Essa separação de cargas é chamada de indução.
Se ligarmos um condutor da esfera B até a terra (fig. 2a), as cargas negativas que foram repelidas, escoarão para a terra de maneira natural, de modo que a esfera B passe a ficar eletrizada positivamente (fig. 2b). A esse processo damos o nome de eletrização por indução.
Corrente Elétrica
Um condutor metálico, que tem a característica de ter elétrons livres, quando é conectado a um pólo positivo, e em sua outra extremidade a um pólo negativo, esses elétrons inicialmente livre e desordenados iniciam um movimento ordenado e em um sentido - a corrente elétrica.
Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica.
A corrente elétrica é responsável pelo funcionamento dos aparelhos elétricos; estes somente funcionam quando a corrente passa por eles. 
Somente é possível a passagem de corrente por um aparelho se este pertencer a um circuito fechado.
Um circuito constituído de lâmpada, pilha e fios, quando ligados corretamente, formam um circuito fechado. Quando ligamos os aparelhos elétricos em nossa casa e eles funcionam, podemos garantir que fazem parte de um circuito fechado quando passa corrente elétrica através de seus fios.
 
Entendendo a corrente elétrica
Antes de definirmos corrente elétrica, vamos imaginar a seguinte situação: você está em uma estação de tremurbano ou de metrô, no qual o passageiro passa por roletas para ter acesso aos trens. Sua finalidade ali é avaliar a quantidade de pessoas que passam por minuto.
Obter essa informação é simples: basta contar quantas pessoas passam em um minuto. Por exemplo, se contou 100 pessoas, você responderá que passam 100 pessoas por minuto. Para atingir uma média melhor, você pode contar por mais tempo. Digamos que tenha contado 900 pessoas em 10 minutos.
Portanto, sua média agora será 900/10 = 90 pessoas por minuto.
Então alguém lhe pede que avalie a massa média das pessoas que passam por minuto pelas roletas. Você aceita o desafio.
Se a massa médias das pessoas no Brasil é 70 Kg (podemos ver isso ao ler placas de elevadores de prédios, que sempre consideram a massa de uma pessoa igual a 70 kg. Essas placas de advertência fixadas nas cabines afirmam: “Capacidade máxima: 10 pessoas ou 700 kg”)
Massa média
Essa idéia é similar à usada para definir a intensidade de corrente elétrica (i). Sabe-se que a carga de um elétron é igual a 1,6.10- 19 C .
Se você conseguisse contar a quantidade de elétrons (n) que atravessa uma região plana de um fio em 1 segundo poderia afirmar que a intensidade da corrente elétrica é:
Se contasse por um período qualquer, e representando a carga do elétron (1,6.10- 19 C) pela letra e, poderia afirmar:
Esta é a expressão matemática associada à intensidade da corrente elétrica.
A unidade de intensidade de corrente elétrica é o Coulomb por segundo, denominada ampère (A). A corrente elétrica pode ser contínua ou alterada.
Na corrente contínua, observada nas pilhas e baterias, o fluxo dos elétrons ocorre sempre em um único sentido.
Na corrente alternada, os elétrons alternam o sentido do seu movimento, oscilando para um lado e para o outro. É esse tipo de corrente que se estabelece ao ligarmos os aparelhos na nossa rede doméstica. A razão de a corrente ser alternada está relacionada a forma como a energia elétrica é produzida e distribuída para nossas casas.
Diferença de potencial
Ao abandonarmos um corpo a certa altura, ele sempre cai. Isso ocorre porque existe uma diferença de energia potencial entre o local em que o corpo estava e o solo.
Em uma pilha comum ocorre algo semelhante. A pilha assim como a tomada de nossa casa, a bateria do carro ou do celular, enfim, qualquer gerador de energia elétrica, é um dispositivo no qual se conseguiu estabelecer dois de seus pontos: um que precisa de elétrons e o outro que os tem sobrando.
Em uma pilha, no ponto denominado pólo negativo há elétrons sobrando, e no pólo positivo há falta de elétrons. Se ligássemos esses pontos por meio de um fio condutor, os elétrons entrariam em movimento e uma corrente surgiria no fio.
Por isso, nessa situação há energia potencial armazenada na pilha, de modo muito parecido com o que possui um objeto situado a uma altura h do chão: é só soltá-lo, que ele entra em movimento. Da mesma forma, ao ligar um fio à pilha, uma corrente surge no fio.
A unidade de tensão no Sistema Internacional é indicada pelo volt (V).
A pilha mais usada é a de 1,5 V. Uma bateria de carro fornece 12 V.
O computador trabalha com uma fonte de 5 V. As tomadas de nossa casa fornecem tensão de 110V ou 220 V, dependendo da região do País. É muito prudente observar a tensão local antes de ligar os aparelhos às tomadas. Se ligarmos aparelhos programados para funcionar a 110 V em uma tomada de 220V, eles podem queimar e até provocar acidentes graves. 
Em geral, basta ajustar nos aparelhos uma chave para que essa situação se resolva; mas nem sempre essa chave existe, por isso tome cuidado!
Devido a diferença de potencial, podemos levar choques. Como o nosso corpo é bom condutor de eletricidade, se tocarmos em dois pontos que existe diferença de potencial, uma corrente atravessará o nosso corpo. Dependendo da intensidade dessa corrente e do caminho que ela percorrer no corpo um choque pode até mesmo levar à morte.
 Devemos tomar muito cuidado com fios de alta tensão. A tensão nesses cabos chega a milhares de volts! Por isso, não brinque próximo a postes de energia elétrica.
E por que, você deve se perguntar, os pássaros que pousam nesses cabos não são eletrocutados?
Isso não ocorre porque suas patinhas são muito próximas uma das outras, sendo muito pequena a diferença de potencial entre elas. 
Com as pessoas, a situação é diferente. Nunca toque em fios de alta tensão, pois se tocar em um cabo e, ao mesmo tempo, tocar em outro ponto do cabo ou em outro objeto, você poderá levar um choque elétrico intenso, possivelmente fatal, se houver diferença de potencial significativa entre os pontos tocados.
Sentido da Corrente Elétrica
Para o sentido da corrente temos que diferenciar o sentido real do sentido convencional.
Resistência elétrica
Sabemos que os materiais apresentam graus de dificuldade para a passagem da corrente elétrica. Esse grau de dificuldade é denominado resistência elétrica. Mesmo os metais, que em geral são bons condutores, apresentam resistência. A unidade de medida da resistência é o ohm ().
Os dispositivos que são usados em um circuito elétrico são denominados resistores. Os resistores são usados em um circuito para aumentar ou diminuir a intensidade da corrente elétrica que o percorre.
Podemos comparara a resistência elétrica àquelas barreiras que encontramos nas pistas de atletismo para a corrida com obstáculos. Quanto mais obstáculos mais lentos é a velocidade média dos corredores. Em um circuito acontece da mesma forma: quanto mais resistência elétrica, menor é a corrente que atravessa o fio condutor.
A aplicação mais comum dos resistores é converter energia elétrica em energia térmica. Isso ocorre porque os elétrons que se movem no resistor colidem com a rede cristalina que o forma, gerando calor. Esse fenômeno é denominado efeito joule em nosso dia-a-dia: em chuveiros elétricos, ferros de passar roupa, em fogões elétricos, etc. Observem que todos esses aparelhos “fornecem calor”.
 A própria lâmpada incandescente converte mais energia elétrica em energia térmica do que em energia luminosa, sendo essa última a sua grande finalidade: 85 % da energia que consome é transformada em calor. Ao contrário, as lâmpadas fluorescentes, consideradas “lâmpadas frias”, têm uma parte bem menor da energia elétrica convertida em calor e por isso são econômicas.
Primeira lei de Ohm
Observou-se experimentalmente em alguns resistores, que a corrente estabelecida em um circuito é diretamente proporcional à tensão aplicada e inversamente proporcional à resistência dos dispositivos do circuito e dos fios que os conectavam. Ou seja: quanto maior a tensão do gerador, maior a corrente e quanto maior a resistência, menor a corrente. Essa relação é expressa matematicamente por:
em que: U é a tensão
             R é a resistência
             i é a corrente
Intensidade da corrente elétrica
Observando os elétrons que passam por uma secção transversal de um fio podemos medir a quantidade média de elétrons que passam pelo fio, assim a intensidade média da corrente elétrica i num condutor em um intervalo de tempo Δt, é definido como:
i = Q/Δt
Assim para o sistema internacional temos que a corrente elétrica será definida como ampère* (A), daí:
1A = 1C / 1s , ampère é definido como coulomb por segundo.
No caso de condutores iônicos, participam da corrente elétrica tanto cargas positivas ( são os cátions) como cargas negativas ( que são os ânions). Assim o valor absoluto de Q será o módulo da soma das cargas positivas e negativas.
(*) André Marie Ampère (1775-1836) físico francês, nascido em Lyon, foi um dos fundadores do eletromagnetismo. Criança prodígio que dominava a matemática desde os 12 anos, tornou-se professor de matemática, física e química em instituições de ensino superior.
Potência elétrica
Talvez você tenha reparado, nas etiquetas dos aparelhos ou dispositivos elétricos que compramos que existe uma etiqueta especificando: 100 (Watt), 500 W, 1000 W etc. Mas, afinal, o que significa essa informação?
Vimosem mecânica o conceito de potência: energia/tempo. A energia elétrica que é convertida nesses aparelhos para várias finalidades e usos distintos, como gerar movimento (motores), gerar calor (resistores), gerar energia luminosa (lâmpadas), dividida pelo tempo que está em uso, é a potência elétrica, que, assim como na mecânica, medimos em Watts (joules/segundo).
A potência é diretamente proporcional à tensão e à corrente.
Por exemplo, num chuveiro elétrico de 2200 W, ligado à rede de 110V, podemos calcular a corrente que o percorre:
Associação de Resistores
A associação de resistores é muito comum em vários sistemas, quando queremos alcançar um nível de resistência em que somente um resistor não é suficiente. Qualquer associação de resistores será representado pelo Resistor Equivalente, que representa a resistência total dos resistores associados.
 Associação em série
Em uma associação em série de resistores, o resistor equivalente é igual à soma de todos os resistores que compõem a associação. A resistência equivalente de uma associação em série sempre será maior que o resistor de maior resistência da associação. Veja porque:
 A corrente elétrica que passa em cada resistor da associação é sempre a mesma: i = i1 = i2 = i3 = i4 ..
- A tensão no gerador elétrico é igual à soma de todas as tensões dos resistores: V = V1 + V2 + V3 + V4 ..
- A equação que calcula a tensão em um ponto do circuito é: V = R . i , então teremos a equação final:
Req . i = R1 . i1 + R2 . i2 + R3 . i3 + R4 . i4 ...
Como todas as correntes são iguais, podemos eliminar esses números da equação, que é encontrado em todos os termos:
Req = R1 + R2 + R3 + R4 ..
Associação em paralelo
Em uma associação em paralelo de resistores, a tensão em todos os resistores é igual, e a soma das correntes que atravessam os resistores é igual à resistência do resistor equivalente (no que nos resistores em série, se somava as tensões (V), agora o que se soma é a intensidade (i)).
A resistência equivalente de uma associação em paralelo sempre será menor que o resistor de menor resistência da associação.
- Tensões iguais: V = V1 = V2 = V3 = V4 ...
- Corrente no resistor equivalente é igual à soma das correntes dos resistores: i = i1 + i2 + i3 + i4 ..
- A equação que calcula a corrente em um ponto do circuito é: i = V / R , logo
V / Req = (V1 / R1) + (V2 / R2) + (V3 / R3) + (V4 / R4) ..
Como toda as tensões são iguais, podemos eliminá-las de todos os termos da equação:
1 / Req = (1 / R1) + (1 / R2) + (1 / R3) + (1 / R4) ..
Quando se trabalha com apenas dois resistores em paralelo, podemos utilizar a equação abaixo:
Req = (R1 . R2) / (R1 + R2)
Associação Mista
Em um mesmo circuito podem ser encontrados resistores em série e resistores em paralelo. Para calcular a resistência total do circuito, deve-se primeiro calcular a resistência equivalente dos resistores em paralelo, e em posse desse valor, considerá-lo como se fosse mais um resistor em série.

Continue navegando