Prévia do material em texto
Derivadas Aplicações das Regras A derivada primeira crescimento Utilizadas para resolver ou decreecimento. limites complexos em A derivada segunda Facilitam a de ajuda a Identificar comportamento concavidade. Ajudam na determinação de Derivadas são pontos de essencials para Essenciale em otimização encontrar extremos. de A continuidade dos funções crucial para a Indeterminação Máximos e Mínimos As são aplicadas local ocorre quando a em função um pico. local o ponto mais Casos 0/0 em um . m/m, A segunda positiva A derivada fundamental um para a aplicação. A derivada segunda negativa Resultados podem Indica um máximo. dependendo da função. Conceitos Fundamentais Limites fundamentale para o cálculo diferencial. A continuidade para Pontos Críticos a aplicação das regras. Polinômios Encontrar pontos criticos é um conceito chave em limites. requer a derivada a zero. A relação entre funções limites é essencial. Pontos criticos podem ser de ou locals. envolve derivadas de Análise da derivada várias ordens. determina a Compreender natureza do ponto. comportamento de pontos crucial. na de Os extremos de funções. são importantes em aplicações.