Prévia do material em texto
264 7 QUANTUM THEORY as the integrand can be written as the product of a function of θ with a function of ϕ, the integral can be separated = NaNb ∫ 2π 0 sin ϕ cos ϕ dϕ∫ π 0 sin3 θ dθ = (NaNb/2) × sin2 ϕ∣ 2π 0 × ∫ π 0 sin3 θ dθ = (NaNb/2) × [sin2(2π) − sin2(0)] × ∫ π 0 sin3 θ dθ = 0 Hence, ψa and ψb are orthogonal. (d) �e wavefunctions are normalized if ∫ 2π ϕ=0 ∫ π θ=0 ψ∗aψa sin θ dθ dϕ = 1 and ∫ 2π ϕ=0 ∫ π θ=0 ψ∗bψb sin θ dθ dϕ = 1 Note that both ψa and ψb are real. For ψa this integral is I =∫ 2π ϕ=0 ∫ π θ=0 (Na sin θ cos ϕ)2 sin θ dθ dϕ = N2a ∫ 2π ϕ=0 ∫ π θ=0 sin3 θ cos2 ϕ dθ dϕ �is integral can be separated I = N2a ∫ 2π 0 cos2 ϕ dϕ∫ π 0 sin3 θ dθ = N2a ∫ 2π 0 1 − sin2 ϕ dϕ∫ π 0 sin3 θ dθ �e integral in ϕ can be evaluated using Integral T.3 and the integral in θ using Integral T.2 I = N2a[2π − 2π/2 + (1/4) sin 2(2π)](1/3)[2 − (sin2 π + 2) cos π] = N2a(π)(4/3) �e normalizing factor is therefore Na = √ 3/4π . For ψb , I =∫ 2π ϕ=0 ∫ π θ=0 (Nb sin θ sin ϕ)2 sin θ dθ dϕ = N2b ∫ 2π ϕ=0 ∫ π θ=0 sin3 θ sin2 ϕ dθ dϕ �is integral can be separated I = N2b ∫ 2π 0 sin2 ϕ dϕ∫ π 0 sin3 θ dθ �e integral in ϕ is evaluated using Integral T.3 and the integral in θ using Integral T.2 I = N2b[2π + 2π/2 − (1/4) sin 2(2π)](1/3)[2 − (sin2 π + 2) cos π] = N2b(π)(4/3) �e normalizing factor is therefore Nb = √ 3/4π .