Buscar

Reações químicas - Termodinamica

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 11 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

77 
 
Aula 13 – Reações Químicas: Termodinâmica 
 
1. Introdução 
A termodinâmica tem por objetivo o estudo das transformações de energia, em 
particular da transformação de calor em trabalho e vice-versa. 
A termodinâmica clássica, desenvolvida durante o século dezenove, não se preocupa 
com a constituição interna da matéria, ou seja, nessa abordagem pode-se desenvolver e 
aplicar a termodinâmica sem mencionar a existência de átomos e moléculas. 
A termodinâmica estatística, sempre que apropriado, estabelece uma relação entre a 
termodinâmica (que fornece relações úteis entre as propriedades macroscópicas da matéria) e 
as propriedades dos átomos e moléculas (que são em última análise as responsáveis pelas 
propriedades macroscópicas). 
 
2. A Conservação da Energia 
Para os propósitos termodinâmicos, a energia pode ser definida como sendo a 
capacidade de se realizar trabalho e podemos definir trabalho como sendo o movimento 
contra uma força oposta. 
Ao longo dos séculos, muitos se esforçaram para produzir energia do nada. Entretanto 
a despeito dos inúmeros esforços, muitos deles mostrando-se fraudulentos, todos falharam! 
Como resultado de todas essas experiências frustradas tem-se a conservação da energia: a 
energia não pode ser criada nem destruída, apenas convertida de uma forma para outra e 
transportada de um lugar para outro. 
 
3. Sistema e Vizinhança 
 
Quando utilizamos a termodinâmica para analisar as 
mudanças de energia, focalizamos nossa atenção em uma parte do 
universo limitada e bem definida. A parte que selecionamos para 
estudar é chamada sistema. Todo o resto é chamado vizinhança. É 
necessário distinguir três tipos de sistema: 
 
A. Sistema aberto: pode trocar energia e massa com a vizinhança. Uma célula 
biológica é um exemplo, pois os nutrientes e os resíduos podem 
passar pelas paredes da célula; 
78 
 
 
B. Sistema fechado: pode trocar energia, mas não pode trocar massa, com a 
vizinhança. Podemos citar como exemplo um frasco arrolhado, pois pode-
se trocar energia com o conteúdo do frasco se as paredes do mesmo 
foram capazes de conduzir o calor, mas não haverá troca de massa com a 
vizinhança; 
 
 
 
C. Sistema isolado: não pode trocar nem energia nem massa com a 
vizinhança. Um exemplo de um sistema isolado é um frasco selado que 
está térmica, mecânica e eletricamente isolado da vizinhança. 
 
4. Trabalho e Calor 
 
A. Visão macroscópica: 
A energia pode ser trocada entre um sistema fechado e a vizinhança como trabalho ou como 
calor. O trabalho é uma transferência de energia que pode causar um movimento contra uma 
força que se opõe a esse movimento. O calor é uma transferência de energia devida a uma 
diferença de temperatura entre o sistema e a vizinhança. 
Exemplo: Para mostrar as duas formas de transferência de energia, vamos considerar 
uma reação química que produz um gás, como a reação de um ácido com zinco: 
)()()(2)( 22 gHaqZnClaqHClsZn +→+ 
 
 
 
 
 
 
79 
 
Admitamos primeiramente que a reação ocorra num cilindro provido de um pistão. O 
gás produzido empurra o pistão, elevando o peso na vizinhança. Nesse caso a energia migra, 
para a vizinhança, na forma de trabalho. No entanto parte da energia do sistema também 
migra em forma de calor. Podemos detectá-la imergindo o vaso reacional num banho de gelo e 
verificando o quanto o gelo é derretido. 
Se realizarmos a mesma reação nos mesmo recipiente, porém com o pistão travado 
numa certa posição então nenhum trabalho será realizado. Entretanto iremos verificar que a 
quantidade de gelo derretido é maior que no primeiro experimento, o que nos leva a concluir 
que, neste caso, mais energia migrou para a vizinhança na forma de calor. 
Paredes que permitem a passagem de calor são chamadas diatérmicas, podemos citar 
como exemplo um recipiente de metal. Paredes que não permitem a passagem de calor, 
mesmo quando há uma diferença de temperatura entre o sistema e a vizinhança, são 
denominadas adiabáticas. Para esse caso podemos citar como exemplo (aproximado) as 
paredes de uma garrafa térmica. 
 
 
 
 
 
 
 
 
 
 Dentro desse raciocínio temos também os seguintes conceitos: Um processo que libera 
calor para a vizinhança é chamado exotérmico e um processo que absorve calor da vizinhança 
é chamado de endotérmico. 
 
B. Visão microscópica: 
 
O entendimento da natureza molecular do trabalho surge quando pensamos no 
movimento de um peso em termos dos átomos que o formam. Quando um peso é elevado, 
todos os seus átomos se movem na mesma direção. Assim poderíamos definir trabalho, em 
termos microscópicos, como sendo a transferência de energia que realiza ou aproveita um 
movimento ordenado dos átomos na vizinhança. Sempre que pensamos em trabalho, 
pensamos em um movimento uniforme de alguma natureza. Podemos citar como exemplo o 
80 
 
trabalho elétrico que corresponde ao movimento dos elétrons, na mesma direção, através de 
um circuito. Outro exemplo é o trabalho mecânico que corresponde ao movimento dos 
átomos que são empurrados numa mesma direção e contra uma força que se opõe ao seu 
movimento. 
Agora vamos analisar a natureza molecular do calor. Quando a energia de um 
determinado sistema é transferida para um banho de gelo e provoca a fusão de parte desse 
gelo, as moléculas de água no gelo passam a oscilar mais rapidamente em torno de suas 
posições de equilíbrio. O ponto-chave a ser notado é que o movimento estimulado, pela 
chegada da energia proveniente do sistema, é desordenado (não sendo uniforme como no 
caso do trabalho). Essa observação sugere que, em termos microscópicos, calor é a 
transferência de energia que realiza ou aproveita um movimento desordenado dos átomos na 
vizinhança. 
 
5. Medida do Trabalho 
 
Por definição, o trabalho pode ser calculado como sendo igual ao produto da distância 
percorrida pela força que se opõe ao movimento: 
 
Trabalho (w) = distância x força que se opõe 
 
Se a força considerada for a atração gravitacional (g = 9,81 m.s-2) da Terra sobre uma certa 
massa m, então a força que se opõe à elevação vertical da massa é mg. Portanto, o trabalho 
necessário para se elevar uma massa de uma altura h em relação à superfície da Terra é: 
 mghmghwTrabalho =×=).( 
Exemplo: A elevação de um livro, com massa aproximada de 1Kg, do chão até uma mesa de 75 
cm de altura requer: 
 
 JsKgm
s
mKg
cm
m
cmwTrabalho 4,74,781,90,1
100
175).( 222 ==⋅⋅×= − 
 
A unidade usada nas medições de energia (portanto de trabalho e calor) é o joule (J), 
assim denominada em homenagem a James Joule, um mestre-cervejeiro de Manchester que 
estudou detalhadamente o calor e o trabalho no século 19. 
 
81 
 
Exemplo 2: Sabendo-se que cada batida do coração humano realiza um trabalho de 
aproximadamente 1 J, então cerca de 100 kJ de energia são gastos diariamente para fazer o 
sangue circular em nosso corpo. 
 
O trabalho (w) é considerado negativo quando a energia sai do sistema como 
trabalho, ou seja, quando o sistema faz trabalho sobre a vizinhança. 
 
 
 
 
 
 
 
 
Por outro lado, o trabalho é positivo quando a energia entra no sistema (ou seja, a energia do 
sistema aumenta). A convenção de sinais é fácil de ser acompanhada se pensarmos nas 
variações de energia que ocorrem no sistema: 
 
A energia do sistema diminui (trabalho negativo) se ela sai do sistema como trabalho, e 
aumenta (trabalho positivo) se ela entra no sistema como trabalho. 
 
A mesma conversão é utilizada para energia transferida como calor. 
 
 Um tipo de trabalho muito importante em química é o trabalho de expansão,ou seja, 
o trabalho feito pelo sistema quando se expande contra uma pressão que se opõe à expansão. 
A ação do ácido sobre o zinco, mostrado como exemplo anteriormente, é um exemplo de uma 
reação que realiza trabalho de expansão. 
 
Trabalho de expansão: 
 
 Para calcular o trabalho quando um sistema se expande de um volume inicial Vi a um 
volume final Vf com uma variação no volume ΔV = Vf - Vi , consideramos um pistão de seção 
reta de área A se movendo de uma distância h. A força que se opõe à expansão é a pressão 
externa pex multiplicada pela área do pistão (uma vez que a força é o produto da pressão pela 
área). O trabalho realizado é, portanto: 
Trabalho (w) 
W < 0 
Trabalho (w) 
W > 0 
82 
 
 
 
 
Vpw
AhpAphw
Fdistânciaw
ex
exex
∆×=
××=××=
×=
)()(
 
 
 
onde AhV ×=∆ é a expansão do volume.Ou seja, para expansão o trabalho realizado pelo 
sistema é a pressão externa pex multiplicada pela variação do volume. Considerando a 
convenção de sinais discutida anteriormente, temos neste caso o sistema perdendo energia 
para a vizinhança (ou seja, w é negativo) assim temos: 
 
Vpw ex ∆×−= 
 
De acordo com a equação acima, é a pressão externa que determina o trabalho 
realizado por um dado sistema ao se expandir de um certo volume: assim quanto maior a 
pressão externa, maior a força que se opõe ao movimento e portanto maior é o trabalho 
realizado pelo sistema. 
Quando a pressão externa for zero, w = 0. Nesse caso, o sistema não realiza trabalho 
ao se expandir, pois nada se opõe ao seu movimento. A expansão contra uma pressão externa 
nula é chamada de expansão livre. Assim para obter o trabalho mínimo de expansão de um 
sistema basta reduzir a pressão externa a zero. 
Segundo a equação acima, o trabalho máximo de expansão será obtido quando a 
pressão externa tiver um valor máximo. Assim a força que se opõe à expansão será a maior 
possível e conseqüentemente, o sistema fará o máximo de esforço para empurrar o pistão. 
Entretanto, a pressão externa não pode ultrapassar a pressão p do gás dentro do sistema, pois 
do contrário, a pressão externa iria comprimir o gás em vez de permitir a sua expansão. 
Portanto, o trabalho máximo é obtido quando a pressão externa é apenas 
infinitesimalmente menor que a pressão do gás no sistema. 
 
Em termos práticos, as duas pressões são essencialmente iguais. Essa seria uma condição de 
um estado em equilíbrio mecânico. Assim, concluímos que: 
 
Um sistema em equilíbrio mecânico realiza um trabalho máximo de expansão. 
Pressão, p 
h 
Pressão 
externa, p 
A 
83 
 
 
Exemplo: Calcule o trabalho realizado por um sistema onde ocorre uma reação que resulta na 
formação de 1,0 mol de CO2 (g), a 25 ºC e 100 kPa. O aumento no volume é de 25 L sob essas 
condições de o gás é perfeito. 
 
1 J = 1 Pa.m3 
 
Resp: p = 100 kPa = 100 x 103 Pa 
 
kJJmPamPaVpw
m
L
mLV
5,2105,2.105,2105,210100
105,2
1
1025
333323
32
33
=×=×=×××=∆×=
×=×=∆
−
−
−
 
 
trabalho realizado por um sistema então a energia sai do sistema logo o trabalho será 
negativo. Portanto: 
 
kJw 5,2−= 
 
Trabalho de expansão isotérmica reversível 
Para uma expansão isotérmica, T é constante. Então: 
i
f
V
V
nRTw ln×−= 
Exemplo: Calcule o trabalho realizado quando 1,0 mol de Ar(g), confinado num cilindro de 1,0 L 
a 25 ºC, se expande isotérmica e reversivelmente até o volume de 2,0L. 
Resp: T = 25 + 273,15 = 298,15 K 
kJJw
Jw
K
molK
J
molw
V
V
nRTw
i
f
.7,1.29,1718
2ln15,298.314451,8
1
2ln15,298
.
31451,80,1
ln
−≅−=
××−=
×××−=
×−=
 
84 
 
6. Medida do Calor 
 
O fornecimento de calor (q) a um sistema leva, geralmente, a um aumento de sua 
temperatura. Uma das formas de medir o valor de “q” é através de um calorímetro. Um 
calorímetro consiste em um recipiente, onde ocorre um processo físico ou químico, provido de 
um termômetro, imerso em um banho de água. O conjunto é então isolado termicamente. 
 
CALORÍMETRO DE JOULE 
É possível medir a energia para um sistema na forma de calor, se soubermos a 
Capacidade calorífica, C, do sistema que é definida como sendo a razão entre o calor fornecido 
e o aumento de temperatura que ele provoca. 
 
atemperaturdeaumento
fornecidocalor
caloríficaCapacidade
..
.
. = → 
T
qC
∆
= 
 
A capacidade calorífica é uma propriedade extensiva, ou seja, uma propriedade que 
depende do tamanho da amostra. Temos então que quanto maior a amostra, mais calor é 
necessário para aumentar a sua temperatura, portanto, maior será sua capacidade calorífica. 
É comum, portanto, registrar a capacidade calorífica específica (freqüentemente 
chamada de calor específico, CS) que nada mais é que a capacidade calorífica dividida pela 
massa da amostra. Ou a capacidade calorífica molar, Cm, que é a capacidade calorífica dividida 
pela quantidade (em mols) da amostra. 
Por razões que discutiremos mais adiante, a capacidade calorífica depende da forma 
como o calor é fornecido, ou seja, se ele é fornecido com a amostra mantida a volume 
constante ou a pressão constante. A capacidade calorífica a volume constante é representada 
por Cv e a capacidade calorífica a pressão constante é representada por Cp. 
A questão agora é se podemos calcular q assim como podemos calcular w. O caso mais 
simples é o de um gás perfeito que sofre uma expansão isotérmica. Como a temperatura final 
do gás é igual a inicial, a velocidade média das moléculas do gás é a mesma. 
Consequentemente a energia cinética total do gás é constante. Mas como sabemos, para o 
caso de um gás perfeito, a única contribuição para a energia vem da energia cinética das 
85 
 
moléculas, o que nos permite concluir que a energia total do gás é a mesma antes e após a 
expansão. Mas o sistema perdeu energia sob a forma de trabalho; então o sistema deve ter 
recebido uma quantidade equivalente de energia na forma de calor. Assim podemos escrever: 
 
q = - w 
 
Da mesma forma que para se calcular o Trabalho de expansão isotérmica reversível utilizamos 
a equação: 
i
f
V
V
nRTw ln×−= 
podemos imediatamente concluir que para se calcular fornecimento de calor (q) em uma 
expansão isotérmica reversível podemos utilizar a seguinte equação: 
 
i
f
V
V
nRTq ln×−= 
 
Quando Vf > Vi , como numa expansão, o logaritmo é positivo e q > 0, como esperado, ou seja, 
o calor flui para o sistema para compensar a perda de energia pelo trabalho realizado. 
 
7. Primeira Lei da Termodinâmica 
 
Até agora examinamos separadamente a transferência de energia na forma de trabalho ou 
de calor. Entretanto, em muitos processos, a energia interna de um sistema muda em 
conseqüência do trabalho e do calor. Em geral a variação de energia interna de um sistema é o 
resultado de dois tipos de transferência. 
 
qwU +=∆ 
A energia interna (U) mede as “reservas de energia” do sistema. A energia interna é a 
soma de todas as contribuições de energia cinética e de energia potencial, de todos os átomos, 
íons ou moléculas que formam o sistema, ou seja, é a energia total do sistema. 
A única forma de mudar a energia interna de um sistema fechado é transferir energia 
para ele como calor ou trabalho. Se o sistema está isolado isso não é possível, logo a energia 
interna não pode mudar. Essa observação é conhecida como a primeira lei da termodinâmica, 
que declara: A energia interna de um sistema isolado é constante. 
 
86 
 
Exercícios 
1. Calcule o trabalho que uma pessoa deve realizar para elevar um corpo de massa de 1,0 
kg, a uma altura de 10 m da superfície:(a) da Terra (g = 9,81 m.s-2) e (b) da Lua (g = 1,60 m.s-2) 
2. Quando estamos interessados em fontes de energia biológicas e metabolismo, 
precisamos saber, entre outras coisas, o trabalho que um organismo realiza para 
executar suas atividades vitais. Quanta energia um pássaro de 200g metaboliza para 
realizar um vôo ascendente de 20 m nas vizinhanças da superfície da Terra? Despreze 
todas as perdas devidas à fricção, imperfeições fisiológicas e ao ganho de energia 
cinética. 
3. Calcule o trabalho necessário para uma pessoa de 65 kg subir uma altura de 4,0 m na 
superfície da Terra. 
4. O centro de massa de uma coluna cilíndrica de líquido está localizado na metade do 
comprimento da coluna. Calcule o trabalho necessário para elevar uma coluna de 
mercúrio (densidade 13,6 g.cm-3), de diâmetro 1,00 cm, a uma altura de 760 mm na 
superfície da Terra (g = 9,81 m.s-2). 
5. O trabalho realizado por um motor pode depender de sua orientação no campo 
gravitacional, pois a massa do pistão é relevante quando a expansão é vertical. Uma 
reação química se passa num vaso de seção reta uniforme de 55,0 cm2, provido de um 
pistão de massa igual a 250 g. Em virtude da reação o pistão se desloca: (a) 
horizontalmente, (b) verticalmente de 155 cm contra uma pressão externa de 105 kPa. 
Calcule o trabalho feito pelo sistema em cada caso. 
6. Uma amostra de 4,5 g de metano gasoso ocupa o volume de 12,7 L a 310 K. (a) calcule 
o trabalho feito quando um gás se expande isotermicamente contra uma pressão 
externa constante de 200 Torr até o seu volume aumentar de 3,3 L (b) calcule o 
trabalho se a mesma expansão for realizada isotérmica e reversivelmente. 
7. Numa compressão isotérmica reversível de 52 mmoles de um gás perfeito a 260 K, o 
volume do gás se reduz de 300 mL para 100 mL. Calcule o trabalho no processo. 
8. Uma amostra de plasma sanguíneo ocupa 0,550 L a 0 ºC e 1,03 bar, e é comprimida 
isotermicamente em 0,57% sob pressão constante de 95,2 bar. Calcule o trabalho 
envolvido no processo. 
87 
 
9. Uma corrente de 1,34 A, proveniente de uma fonte de 110 V, circulou numa 
resistência, imersa num banho de água, por 5,0 minutos. Que quantidade de calor foi 
transferida para água? 
10. A elevada capacidade calorífica da água é ecologicamente benéfica, pois estabiliza a 
temperatura dos lagos e oceanos. Assim, uma grande quantidade de energia deve ser 
perdida ou recebida para que haja uma alteração significativa na temperatura. A 
capacidade calorífica molar da água é de 75,3 J.K-1.mol-1. Que energia é necessária para 
aquecer 250 g de água de 40 ºC. 
 
Respostas: 
1. (a) 98 J; (b) 16 J 
2. 39 J 
3. 2,6 kJ 
4. 3,03 J 
5. (a) 895 J; (b) 899 J 
6. (a) -88 J; (b) -167 J 
7. +123 J 
8. +2,99 Kj 
9. 4,4 x 104 J 
10. 42 kJ

Outros materiais