Buscar

RESUMO TERMODINÂMICA AV2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 43 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 43 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 43 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Universidade do Vale do Para´ıba
Faculdade de Engenharias, Arquitetura e Urbanismo
APOSTILA DE TERMODINAˆMICA
Profa. Dra. Aˆngela Krabbe
Prof. Dr. Caius Selhorst
Ao Aluno
Esta apostila sera´ elaborada ao longo da disciplina de Termodinaˆmica, ministrada nos
cursos das Engenharias da Univap.
A apostila sera´ uma compilac¸a˜o das notas de aula que estara˜o fundamentadas nos
livros listados na bibliografia recomendada.
Estas notas de aula na˜o substituira˜o o uso dos livros textos, mas podera˜o auxilia´-lo no
entendimento dos conteu´dos dessa disciplina. Recomenda-se que o emprego desses livros
seja utilizado para uma melhor compreensa˜o dos conteu´dos desse curso.
Sa˜o Jose´ dos Campos, agosto de 2012
1
Conteu´do Programa´tico
1. Temperatura
1.1 Temperatura e Equil´ıbrio Te´rmico
1.2 Escalas de Temperatura
1.3 Dilatac¸a˜o Te´rmica
2. Teoria Cine´tica dos Gases
2.1 O Ga´s Ideal
2.2 A Natureza Atoˆmica da Mate´ria
2.3 Uma Visa˜o Molecular da Pressa˜o
2.4 A Trajeto´ria Livre Me´dia
2.5 A Distribuic¸a˜o das Velocidades Moleculares
2.6 A Distribuic¸a˜o das Energias Moleculares
2.7 Equac¸o˜es de Estado para os Gases Reais
3. A Primeira Lei da Termodinaˆmica
3.1 Calor: Energia em Traˆnsito
3.2 A Primeira Lei da Termodinaˆmica
3.3 Capacidade Te´rmica e Calor Espec´ıfico
3.4 Trabalho Realizado sobre ou por um Ga´s Ideal
3.5 Energia Interna de um Ga´s Ideal
3.6 Capacidade Te´rmica de um Ga´s Ideal
3.7 Aplicac¸o˜es da Primeira Lei da Termodinaˆmica
4. Entropia e a Segunda Lei da Termodinaˆmica
4.1 Processos Unidirecionais
2
4.2 Definic¸a˜o de Variac¸a˜o da Entropia
4.3 Variac¸a˜o de Entropia para Processos Irrevers´ıveis
4.4 A Segunda Lei da Termodinaˆmica
4.5 Entropia e Rendimento de Ma´quinas
4.6 Entropia e Desempenho de Refrigeradores
4.7 As Eficieˆncias de Ma´quinas Reais
4.8 A Segunda Lei Revista
Bibliografia
1. F´ısica II: Termodinaˆmica e Ondas
Autor: Young, H. D. & Freedman, R. A.
Edic¸a˜o: 12 Editora: Pearson
Ano: 2008
2. F´ısica 2
Autor: Resnick, R., Halliday, D., Krane, K. S.
Edic¸a˜o: 5 Editora: LTC
Ano: 2003
3. Princ´ıpios de F´ısica - Volume 2: Movimento Ondulato´rio e Termodinaˆmica
Autor: Serway, R. A. & Jewett Jr., J, W.
Edic¸a˜o: 3 Editora: Cengage Learning
Ano: 2004
3
1
Temperatura
A termodinaˆmica – a cieˆncia da energia no contexto mais amplo – surgiu lado a lado
com a revoluc¸a˜o industrial em decorreˆncia do estudo sistema´tico sobre a conversa˜o de
energia te´rmica em movimento e trabalho mecaˆnico. Da´ı o nome termo + dinaˆmica.
De fato, a ana´lise de motores e geradores de va´rios tipos permanece sendo o foco da
termodinaˆmica para a engenharia. Pore´m, como cieˆncia, a termodinaˆmica agora se estende
a todas as formas de conversa˜o de energia, incluindo as que envolvem os organismos vivos.
Por exemplo:
• Motores convertem energia dos combust´ıveis em energia mecaˆnica de pisto˜es, engre-
nagens e rodas de movimento;
• Ce´lulas de combust´ıvel convertem energia qu´ımica em energia ele´trica;
• Ce´lulas fotovoltaicas convertem energia eletromagne´tica da luz em energia ele´trica;
• Organismos convertem energia qu´ımica dos alimentos em uma variedade de outras
formas de energia, incluindo energia cine´tica, energia sonora e energia te´rmica;
1.1 Temperatura e Equil´ıbrio te´rmico
O conceito central da termodinaˆmica e´ a temperatura. Estamos ta˜o familiarizados com
essa palavra que temos a tendeˆncia de sermos excessivamente confiantes. Comec¸aremos
com a ide´ia do senso comum de que a temperatura seja uma medida de qua˜o ”quente”ou
”frio”esta´ um sistema. Essa ”sensac¸a˜o de temperatura”nem sempre e´ confia´vel.
Por exemplo, em um dia frio de inverno, um corrima˜o de ferro parece estar mais
frio ao toque do que uma estaca de uma cerca de madeira, apesar de ambos estarem a
mesma temperatura. Por queˆ? Esse erro na nossa percepc¸a˜o ocorre porque o ferro remove
energia dos nossos dedos mais rapidamente do que a madeira. Portanto, vamos entender
o conceito de temperatura mais profundamente.
Suponha que tive´ssemos dois corpos, com temperaturas diferentes, um em contato com
o outro e isolados de influeˆncias externas. Voceˆ poderia perceber que o corpo mais quente
iria se esfriando, enquanto o mais frio iria se aquecendo. Depois de um certo tempo, voceˆ
perceberia, usando o seu tato, que os corpos atingiram uma mesma temperatura. A partir
4
1.2. ESCALAS DE TEMPERATURA Temperatura
desse momento, as temperaturas dos corpos na˜o sofrera˜o alterac¸o˜es, isto e´, eles atingira˜o
uma situac¸a˜o final, denominada estado de equil´ıbrio te´rmico.
LEI ZERO DA TERMODINAˆMICA - Se cada um dos sistemas A e B esta´
em equil´ıbrio te´rmico com um terceiro sistema C, enta˜o A e B esta˜o em equil´ıbrio
te´rmico entre si.
Em linguagem menos formal, a mensagem da lei zero e´: ”Todo corpo possui uma
propriedade chamada temperatura”.
A lei zero surgiu no se´culo XX, na de´cada de 1930, muito depois da primeira e segunda
leis da termodinaˆmica terem sido propostas. Por ela servir de base para o conceito de
temperatura, a qual e´ fundamental para a primeira e segunda leis, recebeu um nu´mero
de ordem menor para designa´-la.
1.2 Escalas de Temperatura
A temperatura e´ uma das sete grandezas ba´sicas do S.I. e esta´ relacionada a` energia
te´rmica de um sistema. Para que a temperatura possa ser considerada uma grandeza
f´ısica, e´ necessa´rio que saibamos medi-la, para que se tenha um conceito quantitativo
desta grandeza. Esta medida e´ feita com termoˆmetros.
1.2.1 Escala Kelvin
A escala que universalmente adotada em f´ısica e´ a escala Kelvin, na qual o zero da
escala representa o limite mais baixo que a temperatura pode atingir, ou o zero absoluto
da temperatura.
A escala Kelvin e´ calibrada no chamado ponto tr´ıplice da a´gua, na qual o gelo, a´gua
l´ıquida e vapor d’a´gua coexistem em equil´ıbrio te´rmico e vale exatamente:
T3 = 273, 16K (1.1)
1.2.2 Escala Celsius
O grau Celsius (◦C) designa a unidade de temperatura, assim denominada em home-
nagem ao astroˆnomo sueco Anders Celsius (1701–1744), que foi o primeiro a propoˆ-la em
1742. Esta e´ utilizada em quase todos os pa´ıses do mundo para as medidas do dia a dia
e comerciais.
Originalmente, esta escala era baseada em dois pontos de calibrac¸a˜o:
• o ponto de congelamento da a´gua corresponde - 0◦C
• o ponto de ebulic¸a˜o da a´gua - 100 ◦C
Enquanto que os valores de congelac¸a˜o e evaporac¸a˜o da a´gua esta˜o aproximadamente
corretos, a definic¸a˜o original na˜o e´ apropriada como um padra˜o formal: ela depende da
definic¸a˜o de pressa˜o atmosfe´rica padra˜o, que por sua vez depende da pro´pria definic¸a˜o de
5
1.2. ESCALAS DE TEMPERATURA Temperatura
temperatura. A definic¸a˜o oficial atual de grau Celsius define 0,01 ◦C como o ponto triplo
da a´gua, e 1 grau Celsius como sendo 1/273,16 da diferenc¸a de temperatura entre o ponto
triplo da a´gua e o zero absoluto. Esta definic¸a˜o garante que 1 grau Celsius apresenta a
mesma variac¸a˜o de temperatura que 1 kelvin.
A temperatura na escala Celsius Tc em termos da escala Kelvin e´ dada pela equac¸a˜o:
Tc = T − 273, 15◦C (1.2)
1.2.3 Escala Fahrenheit
A escala Fahrenheit tambe´m foi originalmente baseada em dois pontos fixos:
• o ponto de congelamento da a´gua corresponde - 32◦F
• o ponto de ebulic¸a˜o da a´gua - 212 ◦F
A Fig.1.1 mostra as relac¸o˜es entre as essas treˆs escalas de temperatura.
Transformando ◦F para ◦C:
Tc − 0
100− 0 =
TF − 32
212− 32
Tc
100
=
TF − 32
180
Tc =
5
9
(TF − 32) (1.3)
Transformando ◦F para K:
T − 273
373− 273 =
TF − 32
212− 32
T − 273
100
=
TF − 32
180
T − 273 = 5
9
(TF − 32)
T =
5
9
(TF − 32) + 273 (1.4)
6
1.3. DILATAC¸A˜O TE´RMICA Temperatura
Figura 1.1: Escalas de Temperatura
Exerc´ıcios1. A que temperatura as escalas Fahrenheit e Celsius coincidem? R: -40
2. A que temperatura as escalas Fahrenheit e Kelvin coincidem? R: 574,25
3. A resisteˆncia de uma certa bobina de fio de platina aumenta um fator de 1,392 entre
o ponto tr´ıplice da a´gua e o ponto de ebulic¸a˜o da a´gua na pressa˜o atmosfe´rica. Qual
a temperatura medida por este termoˆmetro para o ponto de ebulic¸a˜o normal da
a´gua? R: 380,2K
4. Voceˆ deve se preocupar se o seu me´dico lhe disser que a sua temperatura e´ de 310
K? Explique sua resposta. R: 36,85 ◦C
5. A que temperatura a leitura da escala Fahrenheit e´ igual a :
(a) duas vezes a da escala Celsius? R: 320 ◦F
(b) metade da escala Celsius? R: -12 ◦F
6. Em 1964, a temperatura no vilarejo siberiano de Oymyakon atingiu -71 ◦C. Que
temperatura e´ esta na escala Fahrenheit e Kelvin? R: 202,15 K; -95,8 ◦F
1.3 Dilatac¸a˜o Te´rmica
Praticamente todas as substaˆncias, sejam so´lidas, l´ıquidas ou gasosas, dilatam-se com
o aumento da temperatura e contraem-se quando sua temperatura e´ diminu´ıda e o efeito
da variac¸a˜o de temperatura, especialmente a dilatac¸a˜o, tem muitas implicac¸o˜es na vida
7
1.3. DILATAC¸A˜O TE´RMICA Temperatura
Figura 1.2: Trilhos ferrovia´rios deformados por causa da expansa˜o te´rmica.
dia´ria. A dilatac¸a˜o te´rmica de um so´lido sugere um aumento da separac¸a˜o me´dia entre
os a´tomos do so´lido.
Voceˆ ja´ deve ter notado um espac¸amento nos blocos de concreto das ruas e avenidas,
bem como nos trilhos do trem ou em algumas pontes. Esse espac¸amento e´ necessa´rio
justamente por causa da dilatac¸a˜o que os materiais sofrem.
Tambe´m em casa, aplicamos o efeito do aumento da temperatura, por exemplo, para
abrirmos tampas de vidros de conserva, aquecendo-os de alguma forma.
O controle da temperatura feito atrave´s de termostatos com laˆminas bimeta´licas, utili-
zadas no ferro ele´trico e em termopares que sa˜o os dispositivos que constam em automo´veis
e outros tipos de termoˆmetros, ocorre com base na dilatac¸a˜o de certos materiais.
Dilatac¸a˜o Linear
Se a temperatura de uma haste meta´lica de comprimento L for elevada de uma quan-
tidade ∆T , verifica-se que o seu comprimento aumenta uma quantidade
∆L = Lα∆T, (1.5)
onde α e´ uma constante chamada de coeficiente de expansa˜o linear de um dado
material.
Exemplo 1. De quanto se dilata um trilho de ferro de 10 m de comprimento, quando
aquecido de 0◦C a 30 ◦C? Dado: αFerro = 12×10−6(◦C)−1.
∆L = Lα∆T = 12× 10−6(◦C)−1×10m× (30◦C–0◦C) = 0, 0036m = 3, 6mm. (1.6)
Dilatac¸a˜o Superficial e Volume´trica
Para muitos so´lidos os coeficientes de dilatac¸a˜o sa˜o os mesmos nas diversas dimenso˜es
(dilatac¸a˜o isotro´pica). Considerando que uma placa de dimenso˜es L01 e L02 para uma
8
1.3. DILATAC¸A˜O TE´RMICA Temperatura
dada temperatura inicial Ti sofra dilatac¸a˜o para L1 e L2 quando variamos a temperatura
em ∆T .
Sendo α∆T = ∆L
L0
muito menor que 1 (α∆T << 1)
∆L = L− L0 (1.7)
substituindo 1.7 em 1.5, temos
L− L0 = L0α∆T
L = L0 + L0α∆T
L = L0(1 + α∆T ) (1.8)
Para os comprimentos L1 e L2 , temos:
L1 = L01(1 + α∆T ) (1.9)
L2 = L02(1 + α∆T ) (1.10)
Podemos, enta˜o, definir uma relac¸a˜o entre a variac¸a˜o de a´rea sofrida pela placa, onde:
A0 = L01L02 (1.11)
A = L1L2 (1.12)
A = L01(1 + αδT )L02(1 + α∆T )
A = L01L02(1 + 2α∆T + (α∆)
2)
A = A0(1 + 2α∆T + (α∆)
2) (1.13)
Como α∆T << 1, enta˜o α∆T >> (α∆T )2, podemos assim desconsiderar o termo
(α∆T )2
A = A0(1 + 2α∆T )
A = A0 + 2αA0∆T
A− A0 = 2αA0∆T
9
1.3. DILATAC¸A˜O TE´RMICA Temperatura
∆A = 2αA0∆T (1.14)
O mesmo procedimento pode ser feito em relac¸a˜o a` dilatac¸a˜o volume´trica dos so´lidos,
chegando a equac¸a˜o
∆V = 3αV0∆T (1.15)
Tambe´m e´ poss´ıvel deduzir essa relac¸a˜o usando o ca´lculo diferencial. Consideremos
um cubo de um material com um lado L e volume V = L3. Na temperatura inicial, os
valores sa˜o L0 e V0. Quando a temperatura aumenta de dT , a aresta aumenta de dL, e o
volume aumenta uma quantidade dV dada por
dV =
dV
dL
dL = 3L2dL (1.16)
Substitu´ımos agora L e V pelos valores iniciais L0 e V0. Conforme a equac¸a˜o 1.5, dL
e´ dado por
dL = αL0dL (1.17)
Como V0 = L
3
0, podemos expressar dV do seguinte modo
dV = 3L20αL0dT = 3αV0dT (1.18)
O comportamento incomum da a´gua
L´ıquidos geralmente aumentam em volume com o aumento de temperatura e teˆm
coeficientes me´dios de expansa˜o de volume dez vezes maiores do que dos so´lidos. A a´gua
fria e´ uma excec¸a˜o a` regra, como voceˆ pode ver a partir da curva de densidade versus
temperatura, mostrada na Fig. 1.3. Conforme a temperatura aumenta de ◦C a 4◦C, a
a´gua se contrai e, enta˜o, sua densidade aumenta. Acima de 4◦C, a a´gua se expande com o
aumento de temperatura e, enta˜o, sua densidade diminui. Portanto, a densidade da a´gua
atinge um valor ma´ximo de 1 g/cm3 a 4◦C.
Podemos usar esse comportamento incomum de expansa˜o te´rmica da a´gua para expli-
car por que uma lagoa comec¸a a congelar na superf´ıcie em vez de no fundo. Quando a
temperatura do ar cai de, por exemplo, 7◦C para 6◦C, a´ agua da superf´ıcie tambe´m esfria
e, consequentemente, diminui em volume. A a´gua da superf´ıcie e´ mais densa que abaixo
da superf´ıcie, que na˜o esfriou e diminui em volume. Como resultado, a a´gua da superf´ıcie
afunda, e a mais quente do fundo se move para a superf´ıcie. Quando a temperatura do
ar esta´ entre 4◦C e 0◦C, no entanto, a a´gua da superf´ıcie se expande a` medida que esfria,
ficando menos densa que a abaixo da superf´ıcie. O processo de mistura para, e eventual-
mente a a´gua da superf´ıcie congela. A` medida que a a´gua congela, o gelo permanece na
superf´ıcie, porque e´ menos denso que a a´gua. O gelo continua a se acumular na superf´ıcie,
enquanto a a´gua perto do fundo permanece a 4◦C. Se na˜o fosse esse o caso, peixes e outras
formas de vida marinha na˜o sobreviveriam.
10
1.3. DILATAC¸A˜O TE´RMICA Temperatura
Figura 1.3: Variac¸a˜o na densidade da a´gua a` pressa˜o atmosfe´rica com a temperatua.
Exerc´ıcios
1. Uma re´gua me´trica de ac¸o esta´ para ter a sua marcac¸a˜o gravada e deseja-se que os
intervalos de mil´ımetros apresentem uma exatida˜o de 5× 10−5 a uma determinada
temperatura. Qual e´ a variac¸a˜o ma´xima da temperatura que pode ocorrer durante
a gravac¸a˜o? Dado: αac¸o = 11× 10−6(◦C)−1 R: 4,55 ◦C
2. Uma barra feita com uma liga de alumı´nio mede 10 cm a 20 ◦C e 10,015 cm no
ponto de ebulic¸a˜o da a´gua. (a) Qual o seu comprimento no ponto de congelamento
da a´gua? (b) Qual e´ a sua temperatura, se o seu comprimento e´ de 10,009 cm? R:
(a) 9,99625cm; (b) 68◦C
3. Um furo circular em uma placa de alumı´nio possui um diaˆmetro de 2,725 cm a 12
◦C. Qual o diaˆmetro do furo quando a temperatura da placa e´ aumentada ate´ 140
◦C? Dado: αAl = 23× 10−6(◦C)−1 R: 2,733cm
4. Um cubo de lata˜o tem aresta de 30 cm. Qual o aumento de sua a´rea superficial, se
a temperatura subir de 20 para 75 ◦C? Dado: αlata˜o = 19× 10−6(◦C)−1. R: 11, 29
cm2
5. Uma barra de ac¸o a 25 ◦C tem 3 cm de diaˆmetro. Um anel de lata˜o tem diaˆmetro in-
terior de 2,992 cm a 25 ◦C. A que temperatura comum o anel se ajustara´ exatamente
a barra? R: 360,46 ◦C.
11
2
Teoria Cine´tica dos Gases
2.1 O Ga´s Ideal
A equac¸a˜o de expansa˜o de volume ∆V = 3αV0∆T e´ baseada na suposic¸a˜o de que o
material tem volume inicial Vi antes que a variac¸a˜o na temperatura ocorra. Esse e´ o caso
para l´ıquidos e so´lidos, porque teˆm volume fixo a certa temperatura.
Para gases, o caso e´ completamente diferente. As forc¸as interatoˆmicas dentro dos
gases sa˜o muito fracas, e, em muitos casos podemos imagina´-las como na˜o existentes e,
ainda assim, fazer boas aproximac¸o˜es. Portanto, na˜o ha´ separac¸a˜o de equil´ıbrio para os
a´tomos e nenhum volume “padra˜o” a certa temperatura; o volume depende do tamanho
do recipiente. Como resultado,na˜o podemos expressar variac¸o˜es no volume ∆V em um
processo em um ga´s com a equac¸a˜o 1.15.
Para um ga´s e´ u´til saber as quantidades volume V , pressa˜o p e temperatura T se
relacionam para uma amostra de ga´s de massa m. Em geral, a equac¸a˜o que relaciona
essas quantidades, chamada equac¸a˜o de estado e´ muito complicada. Se o ga´s e´ mantido
a uma pressa˜o muito baixa (ou massa espec´ıfica baixa), no entanto, a equac¸a˜o de estado
e´ bastante simples, e pode ser determinada a partir de resultados experimentais. Um ga´s
de densidade ta˜o baixa e´ geralmente chamado de ga´s ideal.
Ga´s ideal e´ um ga´s cujas propriedades representam o comportamento limite de gases
reais com massas espec´ıficas suficientemente baixas.
O ga´s ideal e´ uma abstrac¸a˜o, mas e´ uma abstrac¸a˜o u´til porque:
1. Gases reais - com massas espec´ıficas suficientemente baixas apresentam um com-
portamento pro´ximos de um ga´s ideal;
2. as propriedades termodinaˆmicas de um ga´s ideal esta˜o relacionados entre si atrave´s
de uma forma simples.
Atrave´s de experimentos desenvolvidos em laborato´rio com gases reais descobriu-se
que as suas presso˜es p , volume V , e temperatura T esta˜o esta˜o relacionadas por
pV = NkT (2.1)
Aqui N e´ o nu´mero de mole´culas contidas no volume V e k e´ uma constante chamada
constante de Boltzman. O seu valor medido e´:
12
2.1. O GA´S IDEAL Teoria Cine´tica dos Gases
k = 1, 38× 10−23J/K
A temperatura T na equac¸a˜o acima sera´ sempre expressa em Kelvins.
Frequentemente e´ u´til expressar a quantidade de ga´s em termos do nu´mero de mols n:
n =
N
NA
onde NA e´ a constante de Avogrado, isto e´, o nu´mero de mole´culas contidas em um mol
de qualquer substaˆncia. O cientista italiano Amadeo Avogrado (1776-1856) sugeriu que
todos os gases conteˆm o mesmo nu´mero de a´tomos ou mole´culas quando eles ocupam
o mesmo volume sob as mesmas condic¸o˜es de temperatura e pressa˜o. O seu valor e´
NA = 6, 02 times10
23 mole´culas/mol
O mol e´ uma das sete unidades de base do SI e e´ definido como o nu´mero de a´tomos
em uma amostra de 12 g de carbono-12.
Em termos de nu´mero de mols, pode-se escrever a equac¸a˜o 2.1 como
pV = nRT (2.2)
ondeR = k/NA e´ uma constante, chamada constante molar do ga´s. O seu valor e´R = 8, 31
J/mol K.
2.1.1 Massa Molar
A massa de uma mole´cula e´ determinada somando-se as massas dos a´tomos consti-
tuintes da mole´cula. As massas atoˆmicas sa˜o geralmente fornecidas em unidades de u.
Por exemplo, a massa de uma mole´cula de dio´xido de enxofre (SO2) e´
m(SO2) = m(S) + 2 ·m(O)
= 32, 1u+ 2 · (16, 0u)
= 64, 1u
onde: 1u = 1, 661 · 10−24 g ou 1, 661 · 10−27 kg.
Como muitas vezes descrevemos um ga´s em termos do nu´mero de mols (n), podemos
fazer o mesmo com a massa de uma mole´cula e calcular a chamada massa molar M , a
qual e´ simplesmente a massa da mole´cula multiplicada pelo nu´mero de mole´culas por mol
M = m ·NA
A massa molar, medida em gramas e´ numericamente igual a` massa molecular, medida
em u. Assim, a massa molar do SO2 e´
M = 64, 1 g/mol = 0, 0641 kg/mol.
13
2.1. O GA´S IDEAL Teoria Cine´tica dos Gases
Exerc´ıcios
1. Um cilindro isolado com um eˆmbolo montado conte´m oxigeˆnio a uma temperatura
de 20◦C e uma pressa˜o de 15 atm em um volume de 22 litros. O eˆmbolo e´ baixado,
diminuindo o volume do ga´s para 16 litros e, simultaneamente, a temperatura e´
aumentada para 25◦C. Supondo que o oxigeˆnio comporta-se como um ga´s ideal sob
estas condic¸o˜es, qual e´ a pressa˜o final do ga´s? R : pf = 21atm
2. (a) Calcule o volume ocupado por 1 mol de um ga´s ideal em condic¸o˜es normais, isto
e´, pressa˜o de 1 atm e temperatura de 0◦C. R : V = 2,246 · 10−2m3 = 22,46l
(b) Mostre que o nu´mero de mole´culas por cm3 em condic¸o˜es normais e´ 2, 68×1019.
3. O melhor va´cuo que pode ser obtido em laborato´rio corresponde a uma pressa˜o de
aproximadamente 10−18 atm, ou, ou 1, 01 × 10−13 Pa. Quantas mole´culas existem
por cm3 neste va´cuo a 22 ◦C. R : N = 22,8 mole´culas
4. Uma quantidade de ga´s ideal ocupa um volume de 2,47 m3 a 12,0 ◦C e a 108 kPa.
(a) Quantos mols do ga´s esta˜o presentes? R : n = 112,64 mols
(b) Se a pressa˜o e´ aumentada para 316 kPa e a temperatura e´ aumentada para 31,0
◦C, qual e´ o novo volume ocupado pelo ga´s? R : Vf = 0,900m3
5. Ga´s oxigeˆnio com volume de 1130 cm3 a 42,0 ◦C e a uma pressa˜o de 101 kPa expande
ate´ que o seu volume seja 1530 cm3e sua pressa˜o seja 106 kPa. Determine
(a) o nu´mero de mols de oxigeˆnio no sistema. R : n = 0,044 mols
(b) a sua temperatura final. Tf = 447,62K
14
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
2.2 Propriedades Moleculares dos Gases
Nesta sec¸a˜o estudaremos o modelo de ga´s ideal do ponto de vista microsco´pico. Cons-
truiremos um modelo estrutural de um ga´s mantido em um recipiente. A estrutura ma-
tema´tica e as previso˜es feitas por este modelo constituem a teoria cine´tica dos gases.
Em nosso modelo estrutural, faremos as seguintes suposic¸o˜es:
1. O nu´mero de mole´culas no ga´s e´ alto e a separac¸a˜o me´dia entre elas e´ grande quando
comparada com suas dimenso˜es.
2. As mole´culas obedecem a`s leis do movimento de Newton, mas, como um todo se
movem aleatoriamente.
3. As mole´culas interagem somente por meio de forc¸as de curto alcance durante coliso˜es
ela´sticas.
4. As mole´culas fazem coliso˜es ela´sticas com as paredes.
5. O ga´s ideal em considerac¸a˜o e´ uma substaˆncia puras, isto e´, todas as mole´culas sa˜o
ideˆnticas.
2.2.1 Uma visa˜o molecular da pressa˜o
Considere que as N mole´culas de um ga´s ideal estejam confinadas em um recipiente
cu´bico de lado L, conforme mostra a figura 2.1.
Prof. Romero Tavares da Silva
Cap 20 www.fisica.ufpb.br/~romero 4
 As moléculas desse gás estão continu-
amente colidindo com as paredes do recipi-
ente. Vamos analisar especificamente a co-
lisão de uma molécula, que se dirige para
colidir com a parede do recipiente paralela
ao plano yz e que passa pela origem.
Quando ela colide com a parede, não acon-
 - mvx
 x
 +mvx
tecerá mudança nas componentes y e z
do momento linear, mas a componente x
do momento linear mudará de sinal, aconte-
cerá uma reversão neste movimento. Esta-
mos considerando que as colisões são
perfeitamente elásticas. A variação do mo-
mento dever-se-á apenas a mudança da
componente x .
!p = pf – pi = mvx – (-mvx) = 2mvx
 Sejam A1 e A2 as paredes do cubo
perpendiculares ao eixo x . A molécula vai
colidir com a face A1 e levar um intervalo
 y
 A2
 A1
 x
 z
de tempo !t para colidir com a face oposta A2 e depois colidir novamente com A1 .
O tempo t necessário para essa molécula ir de uma face até outra é dado por
t=L/vx , e desse modo:
Xv
L
tt
2
2 ==!
A variação do momento linear de uma molécula, num intervalo !t entre duas coli-
sões com a mesma face do recipiente é dada por:
L
mv
vL
mv
t
p X
X
XX
2
/2
2
==
!
!
A equação anterior nos dá a força que uma molécula exerce na face considerada.
Para se encontrar a força total exercida por todas as moléculas, devemos considerar as
contribuições de todas as N moléculas:
( )22 22 1 XNXXX vvv
L
m
F +++= !
A pressão que essas moléculas exercerão dependerá da força média e será dada
por:
( )22 22 132 XNXX
X
vvv
L
m
L
F
p +++== !
onde estamos representando o valor médio de uma grandeza A por <A> . Como as
moléculas não são distinguíveis, os valores médios das componentes x de cada uma
das moléculas são iguais, ou seja:
Figura 2.1: Choque ela´sticode uma part´ıculas contra as paredes do recipiente cu´bico.
Vamos nos concentrar na ana´lise de uma u´nica mole´cula de massa m, cuja velocidade
~v pode ser decomposta segundo as componentes vx, vy e vz. Quando essa mole´cula atinge
a face A1 do cubo mostrado na figura 2.1, ela rebate com componente de velocidade na
direc¸a˜o x invertida, uma vez que todas as coliso˜es sa˜o admitidas como ela´sticas, isto e´,
15
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
vx → −vx.
Na˜o havera´ qualquer efeito sobre vy ou vz, de modo que a variac¸a˜o da quantidade de
movimento linear da mole´cula possui apenas uma componente na direc¸a˜o x, expressa por
(Quantidade de movimento final) − (Quantidade de movimento inicial) =
(−mvx)− (mvx) =
−2mvx
Uma vez que a quantidade de movimento linear total e´ conservada durante a colisa˜o,
a quantidade de movimento linear atribu´ıda a` sua a´rea A1 e´ +2mvx .
Suponha que essa mole´cula atinja a a´rea A2 sem colidir com qualquer outra mole´cula
ao longo de sua trajeto´ria. O tempo necessa´ria para cruzar o cubo e´
∆t =
L
vx
.
Em A2 ela novamente possui componente de velocidade na direc¸a˜o x invertida, re-
tornando para A1. Admitindo que na˜o haja colisa˜o com outra mole´cula, a trajeto´ria
completa leva um tempo igual a
∆t =
2L
vx
,
que e´ o tempo entre as coliso˜es com a superf´ıcie A1. A forc¸a impulsiva me´dia exercida
por essa mole´cula sobre A1 e´ igual a` quantidade de movimento transferida dividida pelo
intervalo de tempo entre as transfereˆncias, isto e´,
Fx =
2mvx
2L/vx
=
mv2x
L
.
Para obter a forc¸a total sobre A1, deve-se somar as quantidades
mv2x
L
para todas as
mole´culas
Fx =
m
L
(v21x + v
2
2x + v
2
3x + ...).
Em seguida, para obter a pressa˜o, divide-se essa forc¸a pela a´rea A1, ou seja, L
2. A
pressa˜o e´, portanto,
p =
Fx
a´rea
=
m(v21x+v
2
2x+v
2
3x+...)
L
L2
=
m
L3
(v21x + v
2
2x + v
2
3x + ...).
Se N e´ o nu´mero total de mole´culas do recipiente, enta˜o Nm e´ a massa total, e a
massa espec´ıfica (ρ) sera´ dada por
ρ =
Nm
L3
,
assim,
m
L3
=
ρ
N
16
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
e
p = ρ
(
v21x + v
2
2x + v
2
3x + ...
N
)
.
A quantidade entre pareˆnteses e´ o valor me´dio de v2x para as mole´culas do recipiente,
que sera´ representada por (v2x)med. Assim,
p = ρ(v2x)med.
Para qualquer mole´cula,
v2 = v2x + v
2
y + v
2
z .
Uma vez que existem muitas mole´culas e tendo em vista que elas se movem de forma
totalmente aleato´ria, os valores me´dios de v2x, v
2
y e v
2
z sa˜o ideˆnticos, e o valor de cada um
e´ exatamente um terc¸o do valor me´dio de v2. Logo,
(v2x)med =
(v2)med
3
assim,
p =
1
3
ρ(v2)med.
A raiz quadrada de (v2)med e´ chamada velocidade me´dia quadra´tica das mole´culas, e
vale
vrms =
√
(v2)med
vrms =
√
3p
ρ
.
Exerc´ıcios
1. Verifica-se que cinco mole´culas escolhidas ao acaso possuem velocidades de 500, 600,
700, 800 e 900m/s.
(a) Ache sua velocidade me´dia. R : vmed = 700m/s
(b) Qual a velocidade me´dia quadra´tica das mole´culas? R : vrms = 714m/s
2. Calcule a velocidade me´dia quadra´tica das mole´culas de hidrogeˆnio na temperatura
de 0,00◦C e a uma pressa˜o de 1,00atm, admitindo que o hidrogeˆnio seja um ga´s
ideal. Nessas condic¸o˜es, o hidrogeˆnio possui massa espec´ıfica ρ de 8, 99 ·10−2 kg/m3.
R : vrms = 1836m/s
3. Um recipiente cu´bico possui 10cm de lado e conte´m oxigeˆnio a uma pressa˜o de
1,0atm e uma temperatura de 300K.
(a) Quantos mols de oxigeˆnio esta˜o presentes no interior do recipiente?
R : n = 0,041 mols
(b) Quantas mole´culas? R : N = 2,5 · 1022mole´culas
(c) Dado que a velocidade me´dia quadra´tica das mole´culas e´ 483m/s, calcule a taxa
aproximada que as mole´culas atingem as superf´ıcies do recipiente.
R : Taxa ≈ 2 · 1025coliso˜es/s
17
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
2.2.2 Trajeto´ria Livre Me´dia
v.t
(a)
(b)
(c)
v.!t
Figura 2.2: a) Choque entre duas mole´culas ideˆnticas de diaˆmetro d. b) Descric¸a˜o alter-
nativa: choque entre uma mole´cula com diaˆmetro 2d e outra pontual. c) Cilindro gerado
pelo deslocamento da part´ıcula de diaˆmetro 2d.
Entre coliso˜es sucessivas, o movimento de uma mole´cula de um ga´s ideal e´ retil´ıneo e
uniforme. A distaˆncia me´dia que uma mole´cula percorre entre duas coliso˜es sucessivas e´
chamada trajeto´ria livre me´dia.
Se tivermos duas mole´culas de diaˆmetro d, ocorrera´ uma colisa˜o quando seus centros
se aproximarem de uma distaˆncia d (Figura 2.2a).
Uma descric¸a˜o equivalente das coliso˜es entre mole´culas consiste em considerar uma
delas pontual e a outra com diaˆmetro 2d, pois a colisa˜o ocorrera´ quando os seus centros
se aproximarem de uma distaˆncia d (Figura 2.2b), assim como na situac¸a˜o anterior.
Se estivermos observando uma mole´cula nas suas mu´ltiplas coliso˜es, podemos consi-
derar que ela tem um diaˆmetro 2d e as outras sa˜o pontuais.
Em um intervalo de tempo ∆t, a mole´cula ‘maior’ percorre um cilindro cuja a´rea de
sec¸a˜o transversal e´ pid2, o comprimento e´ Lcil = v ·∆t, onde v e´ a velocidade da mole´cula
(Figura ??c). O volume do cilindro sera´:
Vcil = a´rea da base × comprimento
Vcil = pid
2 × v ·∆t
Considere que o volume do recipiente no qual o ga´s esta´ confinado seja V e que o
recipiente contenha N mole´culas. Assim, o nu´mero de mole´culas pontuais no cilindro e´
Ncil = N
Vcil
V
=
Npid2v∆t
V
18
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
Uma vez que a mole´cula em movimento e as mole´culas pontuais exercem forc¸as umas
sobre as outras, esse e´ tambe´m o nu´mero de coliso˜es associadas a` mole´culas em movimento
no intervalo de tempo ∆t.
A trajeto´ria livre me´dia λ e´ a distaˆncia total percorrida pela mole´cula em movimento
no intervalo de tempo ∆t, dividida pelo nu´mero de coliso˜es ocorridas neste intervalo, ou
λ =
Lcil
Ncil
=
v∆tV
Npid2v∆t
λ =
V
Npid2
Esse resultado e´ apenas uma primeira aproximac¸a˜o, pois ele se baseia na hipo´tese de
que apenas uma mole´cula se move e que todas as outras esta˜o em repouso.
Uma conclusa˜o similar sobre a me´dia pode ser obtida para o caso em que as mole´culas
possuem velocidades diferentes. Um ca´lculo completo, considerando a distribuic¸a˜o real
das velocidades das mole´culas fornece
vrelativa =
√
2 · vme´dia.
Como resultado, temos que a trajeto´ria livre me´dia me´dia e´:
λ =
V√
2Npid2
ou, em termos da pressa˜o p e temperatura T
λ =
kT√
2ppid2
Exerc´ıcios
1. Quais sa˜o (a) a trajeto´ria livre me´dia e (b) a taxa me´dia de coliso˜es para o nitrogeˆnio
a` temperatura ambiente (T = 300K) e a` pressa˜o atmosfe´rica (p = 1, 01 · 105Pa)?
Uma mole´cula de nitrogeˆnio possui diaˆmetro efetivo d = 3, 15 · 10−10m e, para as
condic¸o˜es estabelecidas, uma velocidade me´dia vmed = 478m/s.
R: a) λ = 9,3 · 10−8m; b) taxa = 5,1 · 109 coliso˜es/segundo
2. A 2500 km acima da superf´ıcie da Terra, a massa espec´ıfica e´ de aproximadamente
1 mole´cula/cm3. Qual a trajeto´ria livre me´dia prevista? Suponha o diaˆmetro mo-
lecular igual a 2, 0 · 10−8cm. R: λ = 5,6 · 1012m
3. O livre percurso me´dio das mole´culas de nitrogeˆnio, a 0◦C e 1atm, e´ 0, 80·10−5cm. A
esta temperatura e pressa˜o ha´ 2, 7 · 1019 mole´cula/cm3. Qual o diaˆmetro molecular?
R: 3,2 · 10−10m
4. (a) Qual a velocidade me´dia quadra´tica das mole´culas de oxigeˆnio (O2) a` 27
◦C?
R: vrms = 483m/s
(b) Qual o caminho livre me´dio para estas mole´culas, supondo que elas possuem
diaˆmetro de d = 4 · 10−10m e esta˜o a` pressa˜o de 1atm? R: λ = 5,8 · 10−8m
(c) Qual o tempo livre me´dio entre as coliso˜es destas mole´culas, suponha v = vrms?
R: tme´d = 1,2 · 10−10s
192.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
2.2.3 Distribuic¸a˜o das velocidades moleculares
O f´ısico escoceˆs James Clerk Maxwell (1831-1879) foi quem primeiro resolveu o pro-
blema da distribuic¸a˜o das velocidades em um ga´s contendo um grande nu´mero de mole´culas.
A distribuic¸a˜o de mole´culas de Maxwell para uma amostra de ga´s com temperatura T
contendo N mole´culas, cada uma com massa m, e´ dada por
N(v) = 4piN
(
m
2pikBT
)3/2
v2e−mv
2/2kBT . (1)
A figura 2.3 mostra duas distribuic¸o˜es de velocidades para N = 105 mole´culas de
nitrogeˆnio (N2), considerando as temperaturas de 300K (curva azul) e 900K (curva la-
ranja).
Figura 2.3: Exemplos da distribuic¸a˜o das velocidades moleculares para o N2.
N(v) e´ o produto N(v) · dv (adimensional) e fornece o nu´mero de mole´culas que
possuem velocidades na faixa de v a v+dv. Ao integrar os nu´meros de mole´culas presentes
entre v = 0 e v → ∞, devemos obter o nu´mero total de mole´culas do sistema (N). Isto
e´, deve ser verdadeira a equac¸a˜o
N =
∫ ∞
0
N(v) · dv
Consequeˆncias da Distribuic¸a˜o de Velocidades
Pode-se obter muitas informac¸o˜es u´teis a partir da equac¸a˜o de distribuic¸a˜o das velo-
cidades moleculares (Eq. 1).
1. A velocidade mais prova´vel (vp): Essa e´ a velocidade para a qual (N(v)) apre-
senta seu valor ma´ximo. Esse valor pode ser obtido impondo
N(v)
dv
= 0
20
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
e resolvendo para v. O resultado e´
vp =
√
2kBT
m
ou vp =
√
2RT
M
2. A velocidade me´dia (vme´d): Para se obter a velocidade me´dia das mole´culas,
adiciona-se todas as velocidades individuais e divide-se pelo nu´mero de mole´culas,
isto e´:
vme´d =
1
N
∫ ∞
0
v ·N(v) · dv
O resultado e´
vme´d =
√
8kBT
pim
ou vme´d =
√
8RT
piM
3. A velocidade me´dia quadra´tica (vrms): Essa quantidade ja´ foi obtida no inicio
do cap´ıtulo. Para obteˆ-la a partir da equac¸a˜o de distribuic¸a˜o de velocidades, proce-
demos conforme descrito no item anterior, exeto pelo fato de se obter o valor me´dio
de v2, ou seja:
vme´d =
1
N
∫ ∞
0
v2 ·N(v) · dv
Esta integrac¸a˜o resulta em
(v2)me´d =
3kBT
m
.
A velocidade me´dia quadra´tica e´ igual a` raiz quadrada dessa quantidade, isto e´,
vrms =
√
(v2)me´d. Como resultado temos:
vme´d =
√
3kBT
m
ou vme´d =
√
3RT
M
4. A energia cine´tica me´dia de translac¸a˜o por mole´cula (Ktrans): Devido a`
hipo´tese de que o ga´s ideal e´ monoatoˆmico, a energia cine´tica de translac¸a˜o e´ a
u´nica forma de energia que a mole´cula pode possuir. Uma mole´cula pontual na˜o
pode possuir energia de rotac¸a˜o e admite-se que na˜o hajam variac¸o˜es nas energias
internas da mole´cula.
Para obtermos Ktrans, devemos, inicialmente, obter a energia cine´tica de translac¸a˜o
total do conjunto de N mole´culas e, em seguida, dividi-la por N . A energia total
K e´
K =
1
2
m(v21 + v
2
2 + ...+ v
2
N)
K =
1
2
mN
(v21 + v
2
2 + ...+ v
2
N)
N
K =
1
2
mNv2rms
Substituindo v2rms = 3kBT/m, temos
K =
3
2
NkBT
Dividindo por N, teremos Ktrans
Ktrans =
3
2
kBT
21
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
Exerc´ıcios
1. As velocidades de dez part´ıculas em m/s sa˜o:
0,0; 1,0; 2,0; 3,0; 3,0; 3,0; 4,0; 4,0; 5,0 e 6,0.
Determine:
(a) a velocidade me´dia; R: vme´d = 3,1 m/s
(b) a velocidade me´dia quadra´tica; R: vrms = 3,5 m/s
(c) a velocidade mais prova´vel. R: vp = 3,0 m/s
2. Um tanque de volume de 0, 300m3 conte´m 2 mols de ga´s He´lio a 20, 0◦C. Supondo
que o He´lio comporta-se como um ga´s ideal, encontre:
(a) a energia interna total do ga´s. R: K = 7,30 · 103J
(b) a energia me´dia por mole´cula. R: Ktrans = 6,07 · 10−21J
3. A partir das definic¸o˜es para velocidade me´dia quadra´tica, encontre a equac¸a˜o dos
gases ideais.
4. A partir da distribuic¸a˜o das velocidades moleculares (N(v)), encontre:
(a) a velocidade mais prova´vel das mole´culas (vp).
(b) a velocidade me´dia das mole´culas (vme´d).
Dica:
∫ ∞
0
x3e−ax
2
dx =
1
2a2
22
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
2.2.4 Distribuic¸a˜o das Energias moleculares
Uma descric¸a˜o alternativa do movimento das mole´culas pode ser obtida observando
a distribuic¸a˜o das energias ao inve´s da distribuic¸a˜o das velocidades. Isto e´, observando
a distribuic¸a˜o de N(E), de modo que N(E) · dE fornece o nu´mero de mole´culas com
energias entre E e E + dE.
Sendo o nu´mero de mole´culas com energias cine´ticas entre E e E + dE ideˆntico ao
nu´mero de mole´culas com velocidades entre v e v + dv, matematicamente temos:
N(E) · dE = N(v) · dv,
N(E) = N(v) · dv
dE
(1)
Considerando que as mole´culas possuam apenas energia cine´tica, temos:
E =
1
2
mv2
v =
(
2E
m
)1/2
(2)
dv
dE
=
1
2
E−1/2
(
2
m
)1/2
(3)
Dado: N(v) = 4piN
(
m
2pikBT
)3/2
v2e−mv
2/2kBT (4)
Substituindo as equac¸o˜es (2), (3) e (4) na equac¸a˜o (1), temos:
N(E) =
2N√
pi
1
(kBT )3/2
E1/2e−E/kBT (5)
A equac¸a˜o (5) e´ a distribuic¸a˜o das energias de Maxwell-Boltzmann. A partir desta
equac¸a˜o, pode-se calcular a frac¸a˜o de mole´culas de um ga´s que possuem energias entre E
e E + dE, que e´ expressa por
N(E)dE
N
.
Conforme considerado anteriormente, N e´ o nu´mero total de mole´culas, e pode ser deter-
minado por
N =
∫ ∞
0
N(E) · dE.
Exerc´ıcios
1. A partir da distribuic¸a˜o das energias moleculares (N(E)), encontre:
(a) a energia mais prova´vel das mole´culas (Ep).
(b) a energia me´dia das mole´culas (Eme´d).
Dica:
∫ ∞
0
x2ne−ax
2
dx =
1 · 3 · 5 · ... · (2n− 1)
2n+1 · an
√
pi
a
23
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
Lista de revisa˜o I
1. Em um dia quando a temperatura alcanc¸a 60 ◦F, qual e´ a temperatura em graus
Celsius e em kelvins?
2. O ouro tem ponto de fusa˜o de 1.064 ◦C e um ponto de ebulic¸a˜o de 2.660 ◦C. (a)
Expresse estas temperaturas em graus Fahrenheit e kelvis. (b) Calcule a diferenc¸a
entre estas temperaturas nas 3 escalas termome´tricas utilizadas.
3. A variac¸a˜o dia´ria da temperatura da ponte Golden Gate em Sa˜o Francisco pode
exceder 20 ◦C. O comprimento da ponte e´ de aproximadamente 2 km e ela e´ feita
de ac¸o (α = 1, 1×10−5 ◦C−1). Qual e´ aproximadamente a variac¸a˜o do comprimento
da ponte para esta variac¸a˜o de temperatura?
4. Um mastro de alumı´nio de uma bandeira possui 33 m de altura. De quanto aumenta
o seu comprimento quando a temperatura sobe 15 ◦C? (αAl = 2, 3× 10−5 ◦C−1)
5. Uma esfera oca de alumı´nio tem um raio interno de 10 cm e raio externo de 12 cm a
15 ◦C. O coeficiente de dilatac¸a˜o linear do alumı´nio e´ 2, 3× 10−5 ◦C−1. De quantos
cm3 varia o volume da cavidade interna quando a temperatura sobre para 40◦ C?
O volume da cavidade aumenta ou diminui?
6. Uma barra retil´ınea e´ formada por uma parte de lata˜o soldada em outra de ac¸o. A
20◦, o comprimento total da barra e´ 30 cm, dos quais 20 cm de lata˜o e 10 cm de ac¸o.
Os coeficientes de dilatac¸a˜o linear sa˜o 1, 9×10−5 ◦C−1 para o lata˜o e 1, 1×10−5 ◦C−1
para o ac¸o. Qual e´ o coeficiente de dilatac¸a˜o linear da barra?
7. O comprimento de uma haste, medido com uma re´gua de ac¸o (α = 1, 1×10−5 ◦C−1)
e´ temperatura ambiente de 20 ◦C, e´ igual a 20,05 cm. Em seguida, a haste e a
re´gua sa˜o colocadas em um forno a 270 ◦C. Dentro deste forno, o comprimento da
haste medida com a mesma re´gua e´ de 20,11 cm. Calcule o coeficiente de dilatac¸a˜o
te´rmica do material da haste.
8. Um ga´s ideal ocupa um volume de 100 cm3 a 20, 0 ◦C e 100 Pa. (a) Encontre
o nu´mero de moles do ga´s no recipiente. (b) Quantas mole´culas do ga´s esta˜o no
recipiente?
9. Massa espec´ıficae´ massa dividida pelo volume. Se o volume V depende da tem-
peratura, a massa espece´fica ρ tambe´m depende. Mostre que a variac¸a˜o na massa
espece´fica ∆ρ com uma variac¸a˜o de temperatura ∆T e´ dada por
∆ρ = −βρ∆T,
onde β e´ o coeficiente de dilatac¸a˜o volume´trica. Explique o sinal negativo.
10. Dado um tanque de he´lio com volume de 0, 100 m3 e pressa˜o 150 atm. Quantos
balo˜es este tanque pode inflar se cada bala˜o cheio for uma esfera de 0,300 m de
diaˆmetro em uma pressa˜o absoluta de 1,20 atm?
11. Um ga´s ideal e´ mantido em um recipiente de volume constante. Inicialmente, sua
temperatura e´ 10, 0 ◦C e sua pressa˜o 2,50 atm. Qual sera´ sua pressa˜o quando sua
temperatura for 80, 0 ◦C?
24
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
12. Um cilindro conte´m oxigeˆnio e´ temperatura de 20 ◦C, pressa˜o de 15 atmosferas e
volume de 100 litros. Um eˆmbolo e´ deslocado no cilindro de modo a diminuir o
volume do ga´s para 80 litros e aumentando sua temperatura para 25 ◦C. Supondo
que o oxigeˆnio se comporte como ga´s ideal nestas condic¸o˜es, determinar sua pressa˜o
final.
13. Sendo a velocidade quadratica me´dia das mole´culas de um ga´s dada por
vrms =
√
3p
ρ
,
encontre uma equac¸a˜o que relacione a vrms com a temperatura (T ) e a massa molar
(M).
14. A 0 ◦C e a` pressa˜o de 1, 000 atm a densidade do ar, do oxigeˆnio e do nitrogeˆnio sa˜o,
respectivamente 1, 293 kg/m3, 1, 429 kg/m3 e 1, 251 kg/m3. Calcule a percentagem
de nitrogeˆnio no ar, a partir desses dados, supondo apenas a presenc¸a destes dois
u´ltimos gases.
15. Em um per´ıodo de 1, 00 s, 5, 00× 1023 mole´culas de nitrogeˆnio atingem uma parede
com uma a´rea de 8, 00 cm2. Se as mole´culas deslocam-se com uma velocidade
de 300 m/s e atingem a parede frontalmente em coliso˜es perfeitamente ela´sticas,
qual a pressa˜o exercida na parede? (A massa molecular de uma mole´cula de N2 e´
4, 68× 10−26 kg.)
16. A massa da mole´cula de H2 e´ 3, 32 × 10−24 g. Se 1023 mole´culas de hidrogeˆnio
chocam-se por segundo contra 2, 0 cm2 de uma parede inclinada de 45◦ em relac¸a˜o
a` direc¸a˜o da velocidade, que vale 105 cm/s, qual e´ a pressa˜o que elas exercem sobre
a parede?
17. Uma bolha de ar de 19, 4 cm3 de volume esta´ no fundo de um lago com 41,5 m de
profundidade, onde a temperatura e´ de 3, 80 ◦C. A bolha sobe ate´ a superf´ıcie, que
esta´ a` temperatura de 22, 6 ◦C. Considere que a temperatura da bolha e´ a mesma
da a´gua a` sua volta e determine o seu volume no instante imediatamente anterior a`
chegada da bolha ‘a` superf´ıcie.
18. A 273◦F e 1, 00 × 10−2 atm a densidade de um ga´s e´ de 1, 24 × 10−5 g/cm3. (a)
Determinar a vrms para as mole´culas do ga´s. (b) Determinar a massa molar do ga´s.
19. (a) Determinar o valor me´dio da energia cine´tica das mole´culas de um ga´s ideal a
0, 00 ◦C e a 100, 0 ◦C. (b) Qual e´ a energia cine´tica por mol de um ga´s ideal nessas
temperaturas?
20. (a) Quantos a´tomos de ga´s he´lio enchem um bala˜o de 30, 0 cm de diaˆmetro a 20, 0 ◦C
e 1,00 atm? (b) qual e´ a energia cine´tica me´dia dos a´tomos de he´lio? (c) Qual e´ a
velocidade me´dia quadra´tica dos a´tomos de he´lio?
21. Um reservato´rio de ac¸o conte´m 315 g de amoˆnia (NH3) a uma pressa˜o absoluta de
1, 35×106 Pa e a uma temperatura de 77, 0 ◦C. (a) Qual o volume desse reservato´rio?
(b) Faz-se uma verificac¸a˜o posterior no reservato´rio quando a temperatura diminuiu
para 22 ◦C e a pressa˜o absoluta caiu para 8, 68 × 105 Pa. Quantos gramas de ga´s
escapou do reservato´rio?
25
2.2. PROPRIEDADES MOLECULARES DOS GASES Teoria Cine´tica dos Gases
22. Nas CNTP (Condic¸o˜es Normais de Temperatura e Pressa˜o - 0 ◦C e 1,00 atm) a
trajeto´ria livre me´dia dos a´tomos no he´lio e´ de 285 nm. Determinar (a) o nu´mero
de mole´culas por metro cu´bico e (b) o diaˆmetro efetivo dos a´tomos de he´lio.
23. Um reservato´rio cil´ındrico com 56,0 cm de comprimento e 12,5 cm de diaˆmetro,
mante´m 0,350 moles de ga´s nitrogeˆnio a uma pressa˜o de 2,05 atm. Determine a
velocidade me´dia quadra´tica (vrms) das mole´culas de nitrogeˆnio.
24. A 2500 km acima da superf´ıcie da Terra, a massa espec´ıfica e´ de aproximadamente
1 mole´cula/cm3. Qual a trajeto´ria livre me´dia? Suponha um diaˆmetro molecular
igual a 2, 0× 10−8 cm.
25. Calcule a velocidade me´dia quadra´tica das mole´culas de amoˆnia (NH3) a 56, 0
◦C.
Um a´tomo de nitrogeˆnio possui uma massa de 2, 33 × 10−26 kg e um a´tomo de
hidrogeˆnio possui massa de 1, 67× 10−27 kg.
26. A temperatura no espac¸o interestrelar e´ de 2,7 K. Determine a velocidade me´dia
quadra´tica das mole´culas de hidrogeˆnio a essa temperatura.
27. O livre percurso me´dio das mole´culas de nitrogeˆnio, a 0 ◦C e 1 atm, e´ 0, 80 ×
10−5 cm. A essa temperatura e pressa˜o ha´ 2, 7 × 1019 mole´culas/cm3. Qual o
diaˆmetro molecular?
28. Considere uma amostra de ga´s argoˆnio a 35, 0 ◦C e sob pressa˜o de 1,22 atm. Suponha
que o raio de um a´tomo (esfe´rico) de argoˆnio seja de 0, 710 × 10−10 m. Calcule a
frac¸a˜o do volume do recipiente que e´ realmente ocupada pelos a´tomos.
29. Dez part´ıculas se movem com a seguinte distribuic¸a˜o de velocidades: quatro a
200 m/s, duas a 500 m/s e quatro a 600 m/s. Calcule as velocidades me´dia e
me´dia quadra´tica.
26
3
Primeira Lei da Termodinaˆmica
Calor (Q) e´ a energia que flui entre um sistema e a sua vizinhanc¸a devido a uma
diferenc¸a de temperatura entre eles. Calor na˜o e´ uma propriedade dos sistemas termo-
dinaˆmicos, e por tal na˜o e´ correto afirmar que um corpo possui mais calor que outro, e
ta˜o pouco e´ correto afirmar que um corpo ”possui”calor. O conceito de calor utilizado
pela populac¸a˜o, em senso comum, de forma na˜o cient´ıfica, geralmente e´ apegado a` ideia
do calo´rico. Assim, costuma-se ouvir casos como: “que calor!”, “que frio!”e outros. Per-
cebemos que isso e´ errado uma vez que o termo ”calor”e´ a transic¸a˜o de energia de um
corpo mais quente para um corpo mais frio.
Podemos transferir energia entre um sistema e o seu ambiente na forma de Trabalho
W por meio de uma forc¸a atuando sobre um sistema. Calor e trabalho , diferentemente
da temperatura, da pressa˜o e do volume, na˜o sa˜o propriedades intr´ınsecas de um sistema.
Eles possuem significado apenas quando descrevem a transfereˆncia do ambiente para o
sistema. O calor e´ positivo quando energia se transfere do seu ambiente para uma
energia te´rmica do sistema (dizemos que o calor e´ absorvido). O calor e´ negativo quando
se transfere energia de uma energia te´rmica do sistema para o seu ambiente (dizemos que
o calor e´ liberado ou perdido). Essa transfereˆncia de energia e´ mostrada na figura 3.1
Antes de os cientistas se darem conta de que o calor e´ energia transferida, o calor
era medido em termos da sua capacidade de aumentar a temperatura da a´gua. Assim, a
caloria (cal) foi definida como a quantidadade de calor que elevaria a temperatura de 1
g de a´gua de 14,5 ◦C para 15,5 ◦C .
Em 1948, a comunidade cient´ıfica decidiu que ja´ que o calor e´ energia transferida, a
unidade SI para o calor deveria ser a que usamos para energia, ou seja, o joule (J). As
relac¸o˜es entre as va´rias unidades de calor sa˜o:
1cal = 3, 969× 10−3Btu = 4, 186J (3.1)
3.1 A absorc¸a˜o de calor
Capacidade Calor´ıfica
Quando certa quantidade de calor e´ transmitida para um corpo, na maioria dos casos sua
temperatura aumenta. A propriedade f´ısica que define a quantidade de calor Q necessa´ria
27
3.1. A ABSORC¸A˜O DE CALOR Primeira Lei da Termodinaˆmica
Figura 3.1: Se a temperatura de um sistema exceder a do seu ambiente como em (a), o
sistema perde Calor (Q) para o ambiente ate´ que se estabelec¸a um equil´ıbrio te´rmico (b).
(c) Se a temperatura do sistema estiver abaixo da temperatura do ambiente, o sistema
absorve calor ate´ se estabelecer o equil´ıbrio te´rmico.
para aquecer determinado material ∆T e´ chamadacapacidade te´rmica, sendo definida
matematicamente como:
C =
Q
∆T
ou Q = C∆T (3.2)
Desse modo poderemos calcular a capacidade te´rmica de 1 litro de a´gua, de 2 litros de
a´gua, 1 litro de azeite, etc. A capacidade te´rmica caracteriza o corpo, e na˜o a substaˆncia
que o constitui. Dois corpos de massas e de substaˆncias diferentes podem possuir a mesma
capacidade te´rmica. Dois corpos de massas diferentes e de mesma substaˆncia possuem
capacidades te´rmicas diferentes.
A grandeza que caracteriza uma substaˆncia e´ o calor espec´ıfico.
Calor Espec´ıfico
E´ definido como sendo a quantidade de calor Q necessa´ria para elevar em 1oC a massa de
1g de determinado material, ou seja:
c =
Q
m∆T
28
3.1. A ABSORC¸A˜O DE CALOR Primeira Lei da Termodinaˆmica
Q = mc∆T (3.3)
A unidade no SI e´ J/(kg.K). Uma outra unidade mais usual para calor espec´ıfico e´
cal/(g.◦C).
Calores de Transformac¸a˜o
Como foi mencionado, uma substaˆncia altera a sua temperatura quando ela troca calor
com a sua vizinhanc¸a. No entanto, um corpo pode absorver certa quantidade de calor e
manter sua temperatura constante. Por exemplo, uma pedra de gelo a 0 ◦C e´ retirada do
congelador e colocada dentro de um copo na temperatura ambiente de 30 ◦C. Esse material
ira´ absorver calor da sua vizinhanc¸a e transformar-se em a´gua a uma temperatura de 0◦C.
No exemplo acima na˜o houve mudanc¸a de temperatura, mas houve mudanc¸a de estado
f´ısico, do estado so´lido para o l´ıquido.
A propriedade f´ısica que define a quantidade de calor (Q) necessa´ria para uma mudanc¸a
de fase de uma massa m de determinada substaˆncia e´ chamada calor latente, e e´ definida
como
L =
Q
m
(3.4)
Q = Lm (3.5)
A unidade do calor latente e´ cal/g. Calor latente de fusa˜o Lf e´ o termo usado
quando a mudanc¸a de fase e´ do so´lido para o l´ıquido (fundir significa “combinar por
derretimento”), e o calor latente de vaporazic¸a˜o Lv e´ o termo usado quando a mudanc¸a
de fase e´ do l´ıquido para o gasoso ( o l´ıquido “vaporiza”). O calor latente de va´rias
substaˆncias varia consideravelmente.
Exerc´ıcios
1. Em um episo´dio de gripe, um homem de 80 kg tem 39◦C de febre (cerca de 2
◦C acima da temperatura normal de 37 ◦C). Considerando que o corpo humano e´
constitu´ıdo essencialmente de a´gua, qual seria o calor necessa´rio para produzir essa
variac¸a˜o de temperatura? Dado: c =1,00 cal/g ◦C R: 160 kcal.
2. Calcule a energia necessa´ria para elevar a temperatura de 0,500 kg de a´gua por 3
◦C . R: 1500 cal
3. Qual o calor espec´ıfico da a´gua no S.I.? 4190 J/kg K
4. A temperatura de uma pec¸a de metal de 0,0500 kg e´ elevada para 200,0 ◦C e enta˜o
e´ colocada em um be´quer isolado contendo 0,400 kg de a´gua inicialmente a 20 ◦C.
Se a temperatura final de equil´ıbrio do sistema combinado for 22,4 ◦C, descubra o
calor espec´ıfico do metal. Despreze as trocas de calor com o be´quer. R: 0,108 cal/
g ◦C
29
3.2. TRABALHO Primeira Lei da Termodinaˆmica
Qagua +Qmetal = 0
5. Qual a energia total transferida para a a´gua no exerc´ıcio anterior? R: 960 cal
6. Um estudante faz uma refeic¸a˜o que conte´m 2000 kcal de energia. Ele deseja realizar
uma quantidade equivalente de trabalho na academia levantando o objeto de 50,0
kg. Quantas vezes ele deve levantar o objeto para gastar esta quantidade de energia?
Considere que ele levanta o peso a uma distaˆncia de 2,00 m cada vez.
W = Ph = mgh
7. Que quantidade de calor deve ser absorvida por uma massa de gelo m = 720 g a
-10◦C para leva´-la ao estado l´ıquido a 15 ◦C?
3.2 Trabalho
Nesta sec¸a˜o, olhamos com algum detalhe como a energia pode ser transferida na forma de
calor (Q) e trabalho (W) entre um sistema e o seu ambiente. As grandezas Q e W na˜o sa˜o
caracter´ısticas do estado de equil´ıbrio do sistema, mas sim dos processos termodinaˆmicos
pelos quais o sistema passa de um estado de equil´ıbrio para outro. Desse modo, se o
sistema vai de um estado de equil´ıbrio inicial i para outro estado de equilibrio final, por
dois caminhos diferentes, para cada caminho ele tera´ um valor de (Q) e (W) espec´ıfico.
Neste caso, Q e W sa˜o definidos como:
Q = calor transferido para o sistema
W = trabalho realizado pelo sistema
Por exemplo, considere um so´lido ou um fluido em um cilindro com um pista˜o mo´vel,
como mostrado na Figura 3.2. Suponha que a sec¸a˜o reta do cilindro possua a´rea A e que
a pressa˜o exercida pelo sistema sobre a face do pista˜o seja igual a P . A forc¸a total F
exercida pelo sistema sobre o pista˜o e´ dada por F = PA. Quando o pista˜o se move uma
distaˆncia infinitesimal dx, o trabalho dW realizado por essa forc¸a e´
Figura 3.2: O trabalho infinitesimal realizado pelo sistema durante a pequena expansa˜o
dW = Fdx = PAdx (3.6)
30
3.3. PRIMEIRA LEI DA TERMODINAˆMICA Primeira Lei da Termodinaˆmica
Pore´m,
Adx = dV (3.7)
onde dV e´ uma variac¸a˜o infinitesimal do volume do sistema. Logo, o trabalho realizado
pelo sistema durante essa variac¸a˜o infinitesimal do volume e´
dW = PdV (3.8)
Para uma variac¸a˜o finita de volume entre o estado inicial e o final, temos
W =
∫ V f
V i
PdV (3.9)
Em geral, a pressa˜o do sistema pode variar durante a variac¸a˜o do volume. Esse e´ o
caso, por exemplo, dos cilindros de um motor de automo´vel quando os pisto˜es movem-se
para frente e para tra´s. Para calcular a integral na equac¸a˜o 3.9, devemos saber como a
pressa˜o no sistema varia em func¸a˜o do volume. A figura 3.3 e´ representada graficamente
pela a´rea embaixo da curva de P em func¸a˜o de V entre os limites V1 e V2. O trabalho e´
positivo quando o sistema se expande (Fig. 3.3a). Quando um sistema e´ comprimido,
seu volume diminui e ele realiza trabalho negativo sobre as vizinhanc¸as.
Figura 3.3: O trabalho realizado e´ dado pela a´rea embaixo da curva em um diagrama PV
3.3 Primeira Lei da Termodinaˆmica
Para o processo de compressa˜o de ga´s em um cilindro, o trabalho realizado depende
da trajeto´ria espec´ıfica percorrida entre o estado inicial e o final, conforme sugerido na
Figura 3.3. Existe sempre uma infinidade de caminhos poss´ıveis. A Figura 3.4 mostra
treˆs caminhos diferentes para ir do estado 1 para o estado 2.
Define-se uma grandeza, chamada energia interna E, caraterizada pelos diversos tipos
de energia poss´ıveis de existir em uma substaˆncia quando ela esta´ em um determinado
estado.
31
3.3. PRIMEIRA LEI DA TERMODINAˆMICA Primeira Lei da Termodinaˆmica
Figura 3.4: O trabalho realizado pelo sistema durante uma transic¸a˜o entre dois estados
depende do caminho escolhido.
No caso mais simples, de um ga´s monoatoˆmico, a energia interna depende apenas do
movimento dos a´tomos (energia cine´tica de translac¸a˜o).
A diferenc¸a de energia interna entre os estados inicial e final ∆Eint = Ef − Ei e´ uma
grandeza de grande importaˆncia na termodinaˆmica, porque independe do percurso usado
para ir de um estado para outro. Assim temos que:
∆Eint = Q−W (3.10)
Podemos reagrupar a equac¸a˜o anterior na forma
Q = ∆Eint +W (3.11)
Esta´ e´ a Primeira Lei da Termodinaˆmica, que e´ um princ´ıpio da conservac¸a˜o da
energia para incluir a transfereˆncia de energia sob forma de calor, assim como a realizac¸a˜o
de trabalho mecaˆnico. “A diferenc¸a entre a quantidade de calor Q e o trabalho W en-
volvidos em um percurso entre os estados inicial e final, depende apenas dos estados, e
fornece o mesmo valor independente do percurso escolhido.
Casos especiais da Primeira Lei da Termodinaˆmica
1. Processos adiaba´ticos. Um processo adiaba´tico e´ um processo que ocorre ta˜o
rapidamente ou ocorre em um sistema que esta´ ta˜o bem isolado que na˜o ocorre
32
3.3. PRIMEIRA LEI DA TERMODINAˆMICA Primeira Lei da Termodinaˆmica
nenhuma transfereˆncia de energia na forma de calor entre o sistema e o seu ambiente.
Num processo adiaba´tico, Q = 0 e de acordo com a Primeira Leida Termodinaˆmica:
∆Eint = −W (3.12)
2. Processos a volume constante. Sa˜o os chamados processos isovolume´tricos.
Usando a definic¸a˜o de trabalho executado pelo sistema entre os estado inicial e
final, encontramos que:
Wif =
∫ f
i
PdV = 0 (3.13)
pois na˜o aconteceu variac¸a˜o de volume. Atrave´s da Primeira Lei da Termodinaˆmica
encontramos que:
∆Eint = Q (3.14)
3. Processos C´ıclicos. Num processo c´ıclico o sistema passa por va´rias transformac¸o˜es,
mas ao final do processo ele retorna ao estado inicial. Desse modo, temos que
Ei = Ef e portanto na˜o existe variac¸a˜o de energia interna, logo:
Q = W (3.15)
Exerc´ıcios
1. Calcule o trabalho realizado por um ga´s ideal que se expande isotermicamente desde
o volume inicial Vi ate´ o volume final Vf
2. Que massa de vapor d’a´gua a 100 ◦C deve ser misturada com 150 g de gelo no seu
ponto de fusa˜o, em um recipiente isolado termicamente, para produzir a´gua l´ıquida
a 50◦C? Dados: cagua = 1 cal/g◦C, Lf = 79, 5 cal/g, Lv = 539 cal/g
3. Um sistema termodinaˆmico e´ levado de um estado inicial A para um outro estado
B e de volta ao estado A, passando pelo estado C, como mostrado pela trajeto´ria
ABCA no diagrama p− V .
(a) Complete a tabela da Figura abaixo preenchendo-a com + ou - para o sinal de
cada grandeza termodinaˆmica associada com cada etapa do ciclo.
(b) Calcule o valor nume´rico do trabalho realizado pelo sistema para o clico ABCA
completo.
4. Quando um sistema e´ levado do estado i para o estado f ao longo da trajeto´ria iaf
na Figura abaixo, Q = 50 cal e W = 20 cal. Ao longo da trajeto´ria ibf , Q = 36 cal.
33
3.4. CALOR ESPECI´FICO MOLAR DE UM GA´S IDEALPrimeira Lei da Termodinaˆmica
(a) Qual o valor de W ao longo da trajeto´ria ibf?
(b) Se W = −13 cal para a trajeto´ria de volta fi, qual sera´ Q para esta trajeto´ria?
(c) Considere Eint,i = 10 cal. Qual e´ Eint,f?
(d) Se Eint,b = 22cal, qual o valor de Q para a trajeto´ria ib e para a trajeto´ria bf?
3.4 Calor espec´ıfico molar de um ga´s ideal
3.4.1 Volume constante
A figura 3.5 mostra n moles de um ga´s ideal na pressa˜o p e temperatura T , confinados
em um cilindro de volume fixo V . Este estado inicial i do ga´s esta´ marcado no diagrama
p− V . Suponha agora que voceˆ adiciona uma pequena quantidade de energia ao ga´s sob
a forma de calor Q aumentando lentamente a temperatura do reservato´rio te´rmico. A
temperatura do ga´s se eleva de uma pequena quantidade para T + ∆T , e a sua pressa˜o
se eleva para p+ ∆p, levando o ga´s ao estado final f .
O calor esta´ relacionado com a variac¸a˜o de temperatura por :
Q = nCV ∆T (volume constante) (3.16)
onde CV e´ uma constante chamada calor espec´ıfico molar a volume constante.
34
3.4. CALOR ESPECI´FICO MOLAR DE UM GA´S IDEALPrimeira Lei da Termodinaˆmica
Figura 3.5: Processo a volume cosnatante em um diagrama p− V .
Como o volume e´ mantido constante, o ga´s na˜o consegue se expandir e portanto na˜o
consegue realizar nenhum trabalho. Assim podemos escrever a ∆Eint como:
∆Eint = nCV ∆T (3.17)
Esta equac¸a˜o nos diz que uma variac¸a˜o na energia interna Eint de um ga´s ideal con-
finado depende apenas da variac¸a˜o de temperatura do ga´s; ela na˜o depende de qual tipo
de processo produz a variac¸a˜o na temperatura.
3.4.2 Pressa˜o Constante
Agora supomos que a temperatura do ga´s ideal e´ aumentada da mesma pequena quan-
tidade ∆T como antes, mas que a energia necessa´ria (calor Q) e´ adicionada com o ga´s
sujeito a pressa˜o constante. Esse processo e´ mostrado na figura 3.6.
Figura 3.6: Processo a pressa˜o constante em um diagrama p−V . O trabalho p∆V e´ dado
pela a´rea sombreada.
O calor esta´ relacionado com a variac¸a˜o de temperatura por :
35
3.4. CALOR ESPECI´FICO MOLAR DE UM GA´S IDEALPrimeira Lei da Termodinaˆmica
Q = nCp∆T (pressa˜o constante) (3.18)
onde Cp e´ uma constante chamada calor espec´ıfico molar a pressa˜o constante. Este
Cp e´ maior do que o calor espec´ıfico molar a volume constante CV , pois agora deve-se
fornecer energia na˜o apenas para elevar a temperatura do ga´s, mas tambe´m para que o
ga´s realize trabalho.
Exerc´ıcios
1. Encontre os valores dos calores espec´ıficos molares para os casos isoba´rico e isovo-
lume´trico para um ga´s ideal a partir da Primeira Lei da Termodinaˆmica.
2. Dado que as curvas do diagrama (p− V ) abaixo representam variac¸o˜es isote´rmicas,
e que as variac¸o˜es de energia ∆Eab e ∆Eac sa˜o iguais, encontre uma relac¸a˜o entre
CV e Cp a partir da Primeira Lei da Termodinaˆmica.
3. Encontre os valores dos calores espec´ıficos molares para os casos isoba´rico e iso-
volume´trico (de um ga´s ideal monoatoˆmico) a partir da Primeira Lei da Termo-
dinaˆmica.
4. A partir da relac¸a˜o para os gases ideais pV γ = constante
5. Um cilindro conte´m 3 mols de ga´s he´lio a` temperatura de 300 K.
(a) Quanta energia deve ser transferida para o ga´s pelo calor para aumentar sua
temperatura para 500 K se ele for aquecido a volume constante?
(b) Quanta energia deve ser transferida para o ga´s pelo calor a pressa˜o constante
para aumentar a temperatura para 500 K?
6. Qual o trabalho realizado no processo anterior no processo isoba´rico?
7. A mistura ar-combust´ıvel no cilindro de um motor a diesel a 200 ◦C e´ comprimida
a partir de uma pressa˜o inicial de 1 atm e volume de 800 cm3 para um volume de
60 cm3. Considerando que a mistura se comporta como um ga´s ideal com γ = 1, 40
e a compressa˜o e´ adiaba´tica, descubra a pressa˜o e a temperatura finais da mistura.
36
3.5. MECANISMOS DE TRANSFEREˆNCIA DE CALORPrimeira Lei da Termodinaˆmica
3.5 Mecanismos de transfereˆncia de calor
A transfereˆncia de calor de um ponto a outro de um meio se da´ atrave´s de treˆs processos
diferentes: convecc¸a˜o, radiac¸a˜o e conduc¸a˜o.
Figura 3.7: Exemplos dos mecanismos de transfereˆncia de calor.
A convecc¸a˜o ocorre tipicamente num fluido, e se caracteriza pelo fato de que o calor
e´ transferido pelo movimento do pro´prio fluido, que constitui uma corrente de convecc¸a˜o.
Um fluido aquecido localmente em geral diminui de densidade e por conseguinte tende
a subir sob o efeito gravitacional, sendo substitu´ıdo por um fluido mais frio, o que gera
naturalmente correntes de convecc¸a˜o. O borbulhar da a´gua fervente em uma panela e´ o
resultado de correntes de convecc¸a˜o.
A radiac¸a˜o transfere calor de um ponto a outro atrave´s da radiac¸a˜o eletromagne´tica. A
radiac¸a˜o te´rmica e´ emitida de um corpo aquecido e ao ser absorvida por outro corpo pode
aqueceˆ-lo, convertendo-se em calor. O aquecimento solar e´ uma forma de aproveitamento
da radiac¸a˜o solar para a produc¸a˜o de calor. Um ferro em brasa emite radiac¸a˜o te´rmica e
aquece a regia˜o que o rodeia.
A conduc¸a˜o de calor so´ pode acontecer atrave´s de um meio material, sem que haja
movimento do pro´prio meio. Ocorre tanto em fluidos quanto em meios so´lidos sob o efeito
de diferenc¸as de temperatura.
3.5.1 Conduc¸a˜o
Considere um bloco cujo material tem
espessura ∆x e um corte transversal de
a´rea A com as faces opostas a temperaturas
diferentes T1 e T2, onde T2 > T1.
O bloco permite que a energia seja trans-
ferida da regia˜o de alta temperatura para a
de baixa temperatura por meio da conduc¸a˜o
te´rmica. A taxa de transfereˆncia de energia
pelo calor
P = Q
∆t
Fluxo de energia
T2>T1
!x
T2
T1
A
37
3.5. MECANISMOS DE TRANSFEREˆNCIA DE CALORPrimeira Lei da Termodinaˆmica
e´ proporcional a` a´rea do corte transversal do bloco e a` diferenc¸a de temperatura e
inversamente proporcional a` espessura do bloco:
P = Q
∆t
∝ A∆T
∆x
Como cada material tem uma condutividade te´rmica espec´ıfica, introduzimos a constante
k na equac¸a˜o, assim:
P = kA∆T
∆x
(Watts).
3.5.2 Radiac¸a˜o
Radiac¸a˜o te´rmica e´ a radiac¸a˜o eletromagne´tica emitida por um corpo em qualquer tempe-ratura. A radiac¸a˜o e´ uma forma de transmissa˜o de calor pela qual um segundo corpo pode
absorver as ondas que se propagam pelo espac¸o em forma de energia eletromagne´tica au-
mentando sua temperatura.
A taxa de emissa˜o de energia de um corpo por meio da radiac¸a˜o te´rmica a partir de
sua superf´ıcie e´ proporcional a` quarta poteˆncia de sua temperatura superficial absoluta.
Este princ´ıpio e´ conhecido como a Lei de Stefan e e´ expressa por:
P = σAeT 4,
onde:
P e´ a poteˆncia irradiada pelo corpo (W);
σ e´ a constante de Stefan-Boltzmann e vale 5, 6696 · 10−8 W/(m2K4);
A e´ a a´rea da superf´ıcie do corpo (m2);
e e´ a emissividade;
T a temperatura da superf´ıcie do corpo (K).
Exerc´ıcios
1. Uma janela cuja a´rea e´ de 2, 0m2 e´ envidrac¸ada com vidro de espessura de 4, 0mm.
A janela esta´ na parede de uma casa e a temperatura externa e´ 10◦C. A temperatura
no interior da casa e´ 25◦C. Quanta energia e´ transferida atrave´s da janela pelo calor
em 1h? Dados: kvidro = 0, 8W/(m
◦C)
2. O filamento de tungsteˆnio de uma laˆmpada de 100W irradia 2W de luz (os demais
98W sa˜o carregados para fora por convecc¸a˜o e conduc¸a˜o). O filamento tem a´rea
superficial de 0, 250mm2 e a emissividade de 0,950. Descubra a temperatura do
filamento.
3. Uma barra de ouro esa´ em contato te´rmico com uma barra de prata de mesmo
comprimento e a´rea. Uma extremidade da barra composta e´ mantida a 80◦C e a
extremidade oposta esta´ a 30◦C. Quando a transfereˆncia de energia atinge o estado
estaciona´rio, qual a temperatura da junc¸a˜o?
Dados: kAu = 314W/(m
◦C) e kAg = 427W/(m◦C)
38
3.5. MECANISMOS DE TRANSFEREˆNCIA DE CALORPrimeira Lei da Termodinaˆmica
Lista de revisa˜o II
1. Uma geo´loga trabalhando no campo toma seu cafe´ da manha˜ em uma x´ıcara de
alumı´nio. A x´ıcara possui uma massa igual a 0,120 kg e estava inicialmente a 20 ◦C
quando a geo´loga a encheu com 0,300 kg de um cafe que estava inicialmente a uma
temperatura de 70 ◦C. Qual e´ a temperatura final depois que o cafe´ e a x´ıcara
atingem o equil´ıbrio te´rmico? (Suponha que o calor espec´ıfico do cafe´ seja igual
ao da a´gua (cH2O w 4190 J/kgK), e que na˜o exista nenhuma troca com o meio
ambiente (cAl w 910 J/kgK)). Resp.: Tf = 66 ◦C
2. Um calor´ımetro de alumı´nio de 250 g conte´m 0, 5 l de a´gua a 20 ◦C, inicialmente
em equil´ıbrio. Coloca-se dentro do calor´ımetro um bloco de gelo de 100 g. Calcule
a temperatura final do sistema. O calor espec´ıfico do alumı´nio e´ 0, 21 cal/g◦C e o
calor latente de fusa˜o do gelo e´ de 80 cal/g (durante o processo de fusa˜o, o gelo
permanece a 0 ◦C). Resp.: Tf = 4,7 ◦C
3. Um calor´ımetro de lata˜o de 200 g conte´m 250 g de a´gua a 30 ◦C, inicialmente
em equil´ıbrio. Quando 150 g de a´lcool et´ılico a 15 ◦C sa˜o despejadas dentro do
calor´ımetro, a temperatura de equil´ıbrio atingida e´ de 26, 3 ◦C. O calor espec´ıfico
do lata˜o e´ 0, 09 cal/g◦C. Calcule o calor espec´ıfico do a´lcool et´ılico.
Resp.: c = 0,59 cal/g◦C
4. Um calor´ımetro de capacidade te´rmica igual a 50 cal/g conte´m uma mistura de
100 g de agua e 100 g de gelo, em equil´ıbrio te´rmico. Mergulha-se nele um aquecedor
ele´trico de capacidade te´rmica desprez´ıvel, pelo qual se faz passar uma corrente, com
poteˆncia P constante. Apo´s 5 minutos, o calor´ımetro conte´m a´gua a 39, 7 ◦C. O
calor latente de fusa˜o e´ 80 cal/g. Qual e´ a poteˆncia (em W) do aquecedor? Resp.:
P = 250 W
5. A uma temperatura ambiente de 27 ◦C, uma bala de chumbo de 10 g, com uma
velocidade de 300 m/s, penetra num peˆndulo bal´ıstico de massa igual a 200 g e
fica retida nele. se a energia cine´tica dissipada pela bala fosse totalmente gasta
em aqueceˆ-la, daria para derreter uma parte dela? Em caso afirmativo, quantas
gramas? O calor espec´ıfico do chumbo e´ 0, 031 cal/g◦C, sua temperatura de fusa˜o e´
de 327 ◦C e o calor latente de fusa˜o e´ 5,85cal/g. Resp.: md = 1,6 g
6. Uma chaleira de alumı´nio contendo a´gua em ebulic¸a˜o, a 100 ◦C, esta´ sobre uma
chama. O raio do fundo da chaleira e´ de 7,5 cm e sua espessura e´ de 2 mm. A
condutividade te´rmica do alumı´nio e´ 0, 49 cal/s cm ◦C. A chaleira vaporiza 1 l de
a´gua em 5 min. O calor de vaporizac¸a˜o da a´gua a 100 ◦C e´ de 540 cal/g. A que
temperatura esta´ o fundo da chaleira? Despreze as perdas pelas superf´ıcies laterais.
Resp.: T = 104,6 ◦C
7. Uma caixa de isopor usada para manter as bebidas frias em um piquenique possui
a´rea total (incluindo a tampa) igual a 0, 80 m2, e a espessura de sua parede mede
2,0 cm. A caixa este´ cheia de a´gua, gelo e latas de Coca-Cola a 0 ◦C. Qual e´ a taxa
de fluxo de calor para o interior da caixa, se a temperatura da parede externa for
de 30 ◦C? Qual e´ a quantidade de gelo que se liquefaz durante um dia? Resp.:
H = 12 W = 12 J/s e m = 3,1 kg
39
3.5. MECANISMOS DE TRANSFEREˆNCIA DE CALORPrimeira Lei da Termodinaˆmica
8. Uma barra de ac¸o de 10,0 cm de comprimento e´ soldada pela extremidade a uma
barra de cobre de 20,0 cm de comprimento. As duas barras sa˜o perfeitamente
isoladas em suas partes laterais. A sec¸a˜o reta das duas barras e´ um quadrado de
lado igual a 2,0 cm. A extremidade livre da barra de ac¸o e´ mantida a 100 ◦C pelo
contato com vapor d’a´gua obtido por ebulic¸a˜o, e a extremidade livre da barra de
cobre e´ mantida a 0 ◦C por estar em contato com gelo. Calcule a temperatura
na junc¸a˜o entre as duas barras e a taxa total da transfereˆncia de calor. Resp.:
T = 20,7 ◦C e H = 15,9 W
9. Uma placa quadrada de ac¸o, com lado igual a 10 cm, e´ aquecida em uma forja ate´
uma temperatura de 800 ◦C. Sabendo que a emissividade e´ igual a 0,60, qual e´ a
taxa de energia transmitida por radiac¸a˜o? Resp.: H = 900 W
10. Sabendo que a a´rea total do corpo de uma pessoa e´ 1, 20 m2, e que a temperatura
da superf´ıcie e´ de 37 ◦C, calcule a taxa total de transfereˆncia de calor do corpo
por radiac¸a˜o. Se o meio ambiente esta´ a uma temperatura de 20 ◦C, qual a taxa
resultante de calor perdido pelo corpo por radiac¸a˜o? A emissividade do corpo e´
pro´xima da unidade. Resp.: H = 628 W e Htotal = 127 W
11. Voceˆ deseja comer um sundae com calda quente com um valor aliment´ıcio de 900
Calorias (kcal) e a seguir subir correndo va´rios lances de escada para transformar
em energia a sobremesa ingerida. Ate´ que altura tera´ de subir? Use a sua massa
como paraˆmetro de entrada. Resp.: uma pessoa com 60 kg teria que subir
∼ 6400 m
12. Um grama de a´gua (1 cm3) se transforma em 1671 cm3 quando ocorre o processo de
ebulic¸a˜o a uma pressa˜o constante de 1 atm. O calor de vaporizao para essa pressa˜o
e´ Lv = 2, 256 × 106J/kg. Calcule a) o trabalho realizado pela a´gua quando ela se
transforma em vapor; b) o aumento de sua energia interna. Resp.: a) W = 169 J
e ∆E = 2087 J
13. A` pressa˜o atmosfe´rica, a vaporizac¸a˜o completa de 1 l de a´gua a 100 ◦C gera 1, 671 m3
de vapor de a´gua. O calor latente de vaporizac¸a˜o da a´gua a esta temperatura e´
539,6 cal/g.
(a) Quanto trabalho e´ realizado pela expansa˜o do vapor no processo de vaporizac¸a˜o
de 1 l de a´gua?
(b) Qual e´ a variac¸a˜o de energia interna do sistema nesse processo?
Resp.: a)W = 1,64 · 105 J; b)∆E = 2,09 · 106 J
14. Um quarto to´pico conte´m cerca de 2500 moles de ar. Calcule a variac¸a˜o de energia
interna para essa quantidade de ar quando ele e´ resfriado de 23, 9 ◦C ate´ 11, 6 ◦C
mantendo-se uma pressa˜o constante igual a 1, 0 atm. Considere o ar um ga´s ideal
com γ = 1, 40. Resp.: ∆E = −6,39 · 105 J
15. A raza˜o de compressa˜o de um motor diesel e´ 15 para 1; isto significa que o ar e´
comprimido no interior do cilindro ate´ um volume igual a 1
15
do seu volume inicial.
Sabendo que a pressa˜o inicial e´ de 1, 015 Pa e que a temperatura inicial e´ 27 ◦C,
40
3.5. MECANISMOS DE TRANSFEREˆNCIA DE CALORPrimeira Lei da Termodinaˆmica
calcule a temperatura final e a pressa˜o final depois da compressa˜o. O ar e´ basica-
mente umamistura dos gases diatoˆmicos oxigeˆnio e hidrogeˆnio; considere o ar um
ga´s com γ = 1, 40. Resp.: Tf = 613
◦C; Pf = 44 Pa
16. No exerc´ıcio anterior, qual e´ o trabalho realizado pelo ga´s durante a compressa˜o,
sabendo que o volume inicial e´ de 1, 0 litro? Considere o CV igual a 20, 8 J/mol ·K.
Resp.: W = −494 J
17. O motor a gasolina de um caminha˜o grande consome 10 kJ de calor e realiza 2 kJ
de trabalho mecaˆnico em cada ciclo. O calor e´ obtido pela queima de gasolina com
calor de combusta˜o LC = 5, 0× 104 J/g.
(a) Qual e´ a eficieˆncia teˆrmica dessa ma´quina?
(b) Qual e´ a quantidade de calor rejeitada em cada ciclo?
(c) Qual e´ a quantidade de gasolina queimada em cada ciclo?
(d) Se o motor completa 25 ciclos por segundo, qual e´ a poteˆncia fornecida em
watts?
(e) Qual e´ a quantidade de gasolina queimada por segundo? E por hora?
Resp.: a) e = 20%, b) QC = −8000 J, c) QH = 0,20 g, d) P = 50 kW, e)
5,0 g/s ou 18 kg/h
18. Calcule o trabalho por mol realizado por um ga´s ideal que se expande isotermica-
mente, quer dizer, a` temperatura constante, desde o volume inicial Vi ate´ o volume
final Vf . Obs.: O trabalho realizado pode ser representado como:
W =
∫ Vf
Vi
p dV
19. Um fluido homogeˆneo pode passar de um estado inicial i a um estado final f no
plano (p, V) atrave´s de dois caminhos diferentes, representados por iaf e ibf no
diagrama indicador (fig.). A diferenc¸a de energia interna entre os estados inicial e
final e´ Ef − Ei = 50 J. O trabalho realizado pelo sistema na passagem de i para b
e´ de 100 J. O trabalho realizado pelo sistema quando descreve o ciclo (iafbi) e´ de
200 J. A partir desses dados, determine, em magnitude e sinal:
(a) A quantidade de calor Q(ibf), associada ao caminho ibf ;
(b) O trabalho W(iaf);
(c) A quantidade de calor Q(iaf) associada ao caminho iaf ;
(d) Se o sistema regressa do estado final ao estado inicial seguindo a diagonal fci
do retaˆngulo (fig.), o trabalho W(fci) e a quantidade de calor Q(fci) associados
a esse caminho.
Resp.: a)Qa = 150 J; b)W(iaf) = 300 J; c) Qc = 350 J; d) Q = −250 J
41
3.5. MECANISMOS DE TRANSFEREˆNCIA DE CALORPrimeira Lei da Termodinaˆmica
0 V (m3)
p (Pa)
i
a
b
c
f
20. O diagrama indicador da Figura abaixo, onde a pressa˜o e´ medida em bar (1 bar =
105 Pa) e o volume em l, esta´ associado com um ciclo descrito por um fluido ho-
mogeˆneo. Sejam W , Q e ∆E, respectivamente o trabalho, quantidade de calor e
variac¸a˜oo de energia interna do sistema associados com cada etapa do ciclo e com
o ciclo completo, cujos valores (em J) devem ser preenchidos na tabela abaixo.
Etapa W (J) Q (J) ∆E (J)
ab 800
bc
ca -100
Ciclo (abca)
0 V (l)
p (Bar)
a
c
b1
2
5 10
42

Continue navegando