Buscar

Caderno de estudos de microbiologia Uniasselvi/2017

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 219 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 219 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 219 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Educação a Distância
GRUPO
Caderno de Estudos
MICROBIOLOGIA
Prof.ª Mara Rúbia Lenzi
Prof. Júlio Roussenq Neto
UNIASSELVI
2012
NEAD
CENTRO UNIVERSITÁRIO
LEONARDO DA VINCI
Rodovia BR 470, Km 71, nº 1.040, Bairro Benedito
89130-000 - INDAIAL/SC
www.uniasselvi.com.br
Copyright  UNIASSELVI 2010
Elaboração:
Profa. Mara Rúbia Lenzi
Prof. Júlio Roussenq Neto
Revisão, Diagramação e Produção:
Centro Universitário Leonardo da Vinci - UNIASSELVI
Ficha catalográfica elaborada na fonte pela Biblioteca Dante Alighieri
UNIASSELVI – Indaial.
 
579
L575m Lenzi, Mara Rúbia
 Microbiologia / Mara Rúbia Lenzi; Júlio Roussenq Neto. 
2. Ed. Indaial : Uniasselvi, 2012.
 
 211 p. : il
 
 ISBN 978-85-7830- 629-8
 1. Microbiologia.
 I. Centro Universitário Leonardo da Vinci.
 
 
APRESENTAÇÃO
Prezado(a) acadêmico(a)!
Iniciaremos agora o estudo da Microbiologia. Trata-se de um mundo invisível e totalmente 
desconhecido da maioria das pessoas. Será, sem dúvida, uma grande aventura, pois esse 
mundo pequeno e tão cheio de mistérios precisa ser explorado para podermos entender a 
relação que ele tem com o mundo em que vivemos.
Vamos entender qual é o papel representado por esses seres tão diminutos. Ao estudá-
los em seu mundo, iremos compreender a importância desses seres em nossas vidas. A 
existência deles está por toda a parte, no ar que respiramos, no alimento que comemos, no 
interior de nosso próprio corpo, nas montanhas, nos vulcões, no fundo do mar, nos mananciais, 
enfim, entramos em contato com inúmeros microrganismos diariamente. Vamos aprender 
também que alguns causam doenças e outros evitam e até curam doenças. Veremos que a 
maioria apresenta um papel fundamental nos processos que fornecem energia e, com isso, 
tornar a vida na Terra viável.
Com os diversos papéis exercidos pelos microrganismos no mundo, poderemos entender, 
então, por que a Microbiologia é uma disciplina de desafios e de descobertas importantes, que 
nos oferece muitas recompensas. Além de ser uma ciência fluente e de grande relevância, 
ela nos instiga, pois afeta a todos nós. Incontáveis são as áreas de atuação: da medicina à 
evolução, da agricultura à ecologia. Ela estará contribuindo tanto para o campo do conhecimento 
científico como para a solução dos inúmeros problemas da humanidade.
Vamos iniciar agora a nossa viagem ao mundo microscópico. 
Bons estudos!
Prof.ª Mara Rúbia Lenzi
Prof. Júlio Roussenq Neto
MICROBIOLOGIA iii
UNI
Oi!! Eu sou o UNI, você já me conhece das outras disciplinas. 
Estarei com você ao longo deste caderno. Acompanharei os seus 
estudos e, sempre que precisar, farei algumas observações. 
Desejo a você excelentes estudos! 
 UNI
MICROBIOLOGIA iv
MICROBIOLOGIA v
SUMÁRIO
UNIDADE 1: MICROBIOLOGIA – FUNDAMENTOS ....................................................... 1
TÓPICO 1: HISTÓRIA DA MICROBIOLOGIA .................................................................. 3
1 INTRODUÇÃO ............................................................................................................... 3
2 MICROBIOLOGIA COMO UMA CIÊNCIA ..................................................................... 4
3 ORIGEM DA VIDA ......................................................................................................... 5
3.1 MICROSCÓPIO ........................................................................................................... 9
3.2 A DESCOBERTA DA CÉLULA ................................................................................... 12
3.3 CARACTERÍSTICAS DAS CÉLULAS PROCARIÓTICAS E EUCARIÓTICAS ......... 15
LEITURA COMPLEMENTAR .......................................................................................... 24
RESUMO DO TÓPICO 1 ................................................................................................. 27
AUTOATIVIDADE ........................................................................................................... 29
TÓPICO 2: PRINCIPAIS GRUPOS DE MICRORGANISMOS ....................................... 31
1 INTRODUÇÃO ............................................................................................................. 31
2 TAXONOMIA ................................................................................................................ 31
3 CLASSIFICAÇÃO ........................................................................................................ 36
3.1 BACTÉRIAS .............................................................................................................. 37
3.2 PROTOZOÁRIOS ...................................................................................................... 39
3.3 ALGAS E FUNGOS ................................................................................................... 41
3.4 VÍRUS ........................................................................................................................ 43
LEITURA COMPLEMENTAR .......................................................................................... 44
RESUMO DO TÓPICO 2 ................................................................................................. 46
AUTOATIVIDADE ........................................................................................................... 48
TÓPICO 3: ESTRUTURA DOS MICRORGANISMOS ................................................... 50
1 INTRODUÇÃO ............................................................................................................. 50
2 CARACTERÍSTICAS DA CITOLOGIA BACTERIANA ................................................ 50
LEITURA COMPLEMENTAR .......................................................................................... 66
RESUMO DO TÓPICO 3 ................................................................................................. 68
AUTOATIVIDADE ........................................................................................................... 69
PRÁTICA - MICROBIOTA E HIGIENIzAÇÃO DE MÃOS .............................................. 71
PRÁTICA - COLORAÇÃO DE GRAM ............................................................................ 76
AVALIAÇÃO .................................................................................................................... 81
UNIDADE 2: METABOLISMO E GENÉTICA MICROBIANA ......................................... 83
TÓPICO 1: CONCEITOS ESSENCIAIS DE METABOLISMO ........................................ 85
1 INTRODUÇÃO ............................................................................................................. 85
2 METABOLISMO CELULAR E FONTES DE ENERGIA DOS MICRORGANISMOS ..... 85
LEITURA COMPLEMENTAR 1 ....................................................................................... 98
LEITURA COMPLEMENTAR 2 ....................................................................................... 99
RESUMO DO TÓPICO 1 ............................................................................................... 101
AUTOATIVIDADE .......................................................................................................... 103
TÓPICO 2: GENÉTICA MICROBIANA E VARIABILIDADE ........................................ 104
1 INTRODUÇÃO ........................................................................................................... 104
2 MATERIAL GENÉTICO DE CÉLULAS PROCARIÓTICAS E EUCARIÓTICAS ...... 104
3 DUPLICAÇÃO DO DNA OU ADN ............................................................................. 108
4 GENE E A TRANSCRIÇÃO GÊNICA – RNA OU ARN ..............................................110
5 MUTAÇÃO .................................................................................................................. 111
LEITURA COMPLEMENTAR ......................................................................................... 112
RESUMO DO TÓPICO 2 ................................................................................................ 115
AUTOATIVIDADE .......................................................................................................... 116
TÓPICO 3: BIOTECNOLOGIA ...................................................................................... 117
1 INTRODUÇÃO .............................................................................................................117
2 ENGENHARIA GENÉTICA – TRANSFERÊNCIA DE GENES ................................... 117
3 APLICAÇÃO INDUSTRIAL DA MICROBIOLOGIA ................................................... 120
LEITURA COMPLEMENTAR 1 ..................................................................................... 122
LEITURA COMPLEMENTAR 2 ..................................................................................... 124
RESUMO DO TÓPICO 3 ............................................................................................... 126
AUTOATIVIDADE ......................................................................................................... 127
AVALIAÇÃO ................................................................................................................... 129
UNIDADE 3: CONTROLE DOS MICRORGANISMOS E OS PRINCIPAIS GRUPOS ..... 131
TÓPICO 1: FUNDAMENTOS DO CONTROLE MICROBIANO ................................... 133
1 INTRODUÇÃO ........................................................................................................... 133
2 AGENTES FÍSICOS E QUÍMICOS ............................................................................ 133
LEITURA COMPLEMENTAR 1 ..................................................................................... 142
LEITURA COMPLEMENTAR 2 ..................................................................................... 144
RESUMO DO TÓPICO 1 ............................................................................................... 148
AUTOATIVIDADE ......................................................................................................... 149
TÓPICO 2: VÍRUS ......................................................................................................... 151
1 INTRODUÇÃO ........................................................................................................... 151
2 CARACTERÍSTICAS GERAIS .................................................................................. 151
2.1 REPLICAÇÃO ......................................................................................................... 155
3 DOENÇAS CAUSADAS POR VÍRUS ....................................................................... 160
LEITURA COMPLEMENTAR 1 ..................................................................................... 162
LEITURA COMPLEMENTAR 2 ..................................................................................... 164
RESUMO DO TÓPICO 2 ............................................................................................... 165
AUTOATIVIDADE ......................................................................................................... 166
MICROBIOLOGIA vi
MICROBIOLOGIA vii
TÓPICO 3: PRINCIPAIS GRUPOS DE MICRORGANISMOS EUCARIONTES E
 PARASITAS ............................................................................................... 169
1 INTRODUÇÃO ........................................................................................................... 169
2 FUNGOS .................................................................................................................... 169
3 ALGAS ....................................................................................................................... 179
4 PROTOzOÁRIOS ...................................................................................................... 183
LEITURA COMPLEMENTAR ........................................................................................ 190
RESUMO DO TÓPICO 3 ............................................................................................... 192
AUTOATIVIDADE ......................................................................................................... 193
TÓPICO 4: METODOLOGIAS PARA O ENSINO DE MICROBIOLOGIA .................... 197
1 INTRODUÇÃO ........................................................................................................... 197
2 AULAS PRÁTICAS .................................................................................................... 198
LEITURA COMPLEMENTAR 1 ..................................................................................... 198
LEITURA COMPLEMENTAR 2 ..................................................................................... 200
LEITURA COMPLEMENTAR 3 ..................................................................................... 202
3 JOGOS DIDÁTICOS .................................................................................................. 204
4 RECURSOS AUDIOVISUAIS .................................................................................... 206
5 SAÍDAS DE CAMPO .................................................................................................. 207
RESUMO DO TÓPICO 4 ............................................................................................... 208
AUTOATIVIDADE ......................................................................................................... 209
AVALIAÇÃO .................................................................................................................. 210
REFERÊNCIAS .............................................................................................................. 211
MICROBIOLOGIA viii
M
I
C
R
O
B
I
O
L
O
G
I
A
UNIDADE 1
MICROBIOLOGIA – FUNDAMENTOS
OBJETIVOS DE APRENDIzAGEM
 A partir desta unidade você será capaz de:
	conhecer alguns fatos históricos que contribuíram para o 
reconhecimento da Microbiologia como ciência;
	conhecer os princípios básicos de funcionamento dos microscópios 
e compreender como a evolução desses aparelhos está relacionada 
ao progresso da Microbiologia;
	reconhecer os principais grupos de microrganismos;
	compreender como os seres microscópicos são classificados.
TÓPICO 1 – HISTÓRIA DA MICROBIOLOGIA
TÓPICO 2 – PRINCIPAIS GRUPOS DE 
MICRORGANISMOS
TÓPICO 3 – ESTRUTURA DOS 
MICRORGANISMOS
PLANO DE ESTUDOS
Esta primeira unidade está dividida em três tópicos. Você 
encontrará, no final de cada um deles, leituras complementares e 
atividades que irão contribuir para a compreensão dos conteúdos 
explorados.
M
I
C
R
O
B
I
O
L
O
G
I
A
M
I
C
R
O
B
I
O
L
O
G
I
A
HISTÓRIA DA MICROBIOLOGIA
1 INTRODUÇÃO
TÓPICO 1
UNIDADE 1
Prezado(a) acadêmico(a)! Em sua imaginação, quando você pensa em Microbiologia, 
com certeza irá pensar em todos aqueles micróbios (microrganismos) que causam doenças ou 
em seres tão repulsivos que, de tão pequenos, são invisíveis a olho nu. Sua imaginação estará 
voltada também para aqueles indivíduos de roupas brancas, sentados à frente de microscópios, 
em seus laboratórios, pesquisando um mundo distante e pouco conhecido por você. É muito 
difícil para você, quando pensar em Microbiologia, fazer qualquer relação desses seres com a 
vida na Terra. Olhando ao seu redor, com certa atenção, você irá se deparar com um grande 
trabalho microbiano. A ação microbiana é intensa e de extrema importânciapara o ambiente e 
em todos os aspectos da vida humana. Seria impossível a vida na Terra sem a presença deles.
Existem certas bactérias que absorvem o nitrogênio do ar, ajudando, com isso, certos 
tipos de plantas a crescer. Juntamente com os fungos, degradam plantas mortas, resíduos 
de esgotos, restos alimentares e óleos de derramamento. Muitas bactérias são utilizadas nas 
indústrias de alimentos, na produção de drogas úteis ao homem (antibióticos) e ao ambiente. É 
bom lembrar que nem sempre são nocivas, ou seja, que provocam danos ao homem, apenas 
uma pequena porcentagem é patogênica (causa doenças). Boa parte delas, na verdade, irá 
melhorar a qualidade de vida na Terra através da reciclagem da matéria, dando sustentação a 
muitos processos vitais que todos os organismos realizam. Podemos dizer que a Terra é o que é 
hoje devido à ação dos microrganismos. É por isso que o estudo da Microbiologia é importante.
UNIDADE 1TÓPICO 14
M
I
C
R
O
B
I
O
L
O
G
I
A
2 MICROBIOLOGIA COMO UMA CIÊNCIA
A origem do termo microbiologia deriva de três palavras gregas: mikros: pequeno; 
bios: vida e logos: ciência. Sendo assim, podemos definir Microbiologia como o estudo da 
vida microscópica, ou seja, há a necessidade de estudá-la com o auxílio de um microscópio.
Grandes são os obstáculos que os cientistas enfrentam quando estudam a origem da 
vida na Terra. As transformações ocorridas na crosta terrestre fizeram com que fossem apagados 
todos os vestígios dos primeiros seres vivos. Para Pelczar, Chan e Krieg (1997a), as deduções 
feitas pelos cientistas com relação à origem dos microrganismos datam de quatro bilhões de 
anos atrás. Segundo os cientistas, eles teriam surgido de um material orgânico complexo em 
águas oceânicas ou de prováveis nuvens que circundavam nossa Terra primitiva. No mesmo 
raciocínio, Pelczar, Chan e Krieg (1997a) afirmam que, sendo esses os primeiros indícios de 
vida na Terra, os microrganismos são considerados os ancestrais de todas as outras formas 
de vida.
Apesar dos microrganismos existirem há tanto tempo, a Microbiologia se apresenta como 
uma ciência extremamente jovem. Segundo Pelczar, Chan e Krieg (1997a), os pesquisadores 
observaram os microrganismos pela primeira vez há 300 anos. O detalhe interessante dessa 
descoberta é que essa informação não foi compreendida no início, pois somente 200 anos 
após essa descoberta é que a importância dos microrganismos foi reconhecida.
As várias tentativas científicas de se conseguir maiores conhecimentos a respeito dos 
microrganismos contribuíram de forma intensiva para o reconhecimento da Microbiologia como 
ciência. Na segunda metade do século XIX houve a comprovação, por parte dos cientistas, 
de que os microrganismos eram originados de pais iguais a eles próprios e não de causas 
sobrenaturais, como se acreditava na época, e muito menos de plantas e animais em putrefação 
(Teoria da Abiogênese).
UNI
Uma dúvida que sempre tivemos é se os micróbios são anteriores 
à fermentação ou resultado dela. Você já parou para pensar nisso? 
Vejamos, a seguir, o que Pelczar, Chan e Krieg (1997) descobriram.
Segundo Pelczar, Chan e Krieg (1997a), em um momento mais adiante, os estudiosos 
do assunto provam que os micróbios não são o resultado, mas sim a causa dos processos 
UNIDADE 1 TÓPICO 1 5
M
I
C
R
O
B
I
O
L
O
G
I
A
3 ORIGEM DA VIDA
Tentar entender de onde surgiram os seres vivos sempre ocupou a mente da maioria 
das pessoas e, em razão disso, diversas explicações foram construídas ao longo da história da 
humanidade. Filósofos gregos tentaram explicar o surgimento da vida na Terra. Entre eles está 
Aristóteles que, há mais de 2000 anos, já se preocupava com o problema e lançou inúmeros 
postulados que iriam guiar por muito tempo as diversas áreas do conhecimento. Entre as 
várias ideias sobre a origem da vida, uma delas ganhou destaque: a do “princípio ativo” ou 
“princípio vital”.
fermentativos da uva para produção do vinho. Outra descoberta muito importante foi a de que 
apenas um tipo específico de micróbio causaria uma doença específica. Para Pelczar, Chan 
e Krieg (1997a), todas essas informações trouxeram a compreensão e o reconhecimento da 
influência crítica dessas novas formas de vida sobre a saúde e o bem-estar do homem. Outro 
dado importante que os microbiologistas puderam aprender durante o início do século XX foi 
a de observar a capacidade que os micróbios possuem de realizar uma grande variedade 
de reações químicas, ou seja, de possuírem a capacidade de quebrar substâncias e a de 
sintetizar novos compostos. Após todas essas descobertas, cria-se a expressão diversidade 
bioquímica como uma forma de caracterizar microrganismos. Outra observação valiosa que 
os microbiologistas fizeram foi quanto às reações químicas realizadas pelos microrganismos. 
Essas reações assemelham-se àquelas que ocorrem em formas de vida superiores.
ATEN
ÇÃO!
A partir de agora vamos estudar as principais teorias para 
explicar a origem da vida em nosso Planeta.
IMP
OR
TAN
TE! �
Segundo Aristóteles, a existência de um “princípio ativo” era capaz 
de produzir matéria viva a partir de matéria bruta, desde que em 
condições favoráveis (UZUNIAN; PINSETA; SASSON, 1991). Em 
uma sequência de eventos, segundo Aristóteles, esse “princípio 
ativo” tinha o poder de se organizar de tal forma que acabariam 
por determinar o aparecimento de um ser vivo (“princípio vital”).
UNIDADE 1TÓPICO 16
M
I
C
R
O
B
I
O
L
O
G
I
A
Essa teoria conhecida por abiogênese ou geração espontânea teve ampla aceitação 
até há pouco mais de um século. Muitos anos depois de Aristóteles, vários cientistas famosos 
ainda acreditavam na geração espontânea. 
Para citar um caso muito interessante, no século XVII, Jean Baptiste Van Helmont, 
médico belga, escreveu uma receita para produzir camundongos em 21 dias a partir de uma 
camisa suja colocada em contato com germe de trigo. 
FONTE: Disponível em: <http://www.biomania.com.br/bio/conteudo.asp?cod=1225>. Acesso em: 27 
nov. 2010.
Não existia na época o conhecimento sobre métodos científicos. A geração espontânea 
para o pensamento dominante na época era algo tão evidente que não tinha de ser testado.
UNI
UNI
Para você ter uma ideia, muitos daquela época acreditavam que 
de cascas de árvores à beira de um lago originavam-se gansos 
ou que algumas árvores davam frutos que continham carneiros 
completamente formados dentro deles. Sapos e tartarugas 
surgiam a partir de fontes de água. Folhas de árvores que caíam 
sobre lagos originavam patos. Insetos em geral surgiam de fezes 
de animais ou de qualquer outro material em putrefação.
Vamos estudar agora como Redi tentou derrubar a Teoria da 
Abiogênese através de um experimento simples.
Com o desenvolvimento do conhecimento, vamos encontrar o início de uma investigação 
científica moderna sobre o problema da origem da vida nos trabalhos de Francesco Redi 
(1626-1697), biólogo e médico de Florença (Itália), em meados do século XVII (PELCZAR; 
CHAN; KRIEG, 1997a). Através de seu trabalho, deu-se início à fase de contestações sobre a 
abiogênese. Ficou demonstrado, pelas experiências realizadas por Redi, que a vida só podia 
ser originada de vida pré-existente – a biogênese.
Em seu experimento, Redi colocou alguns pedaços de animais mortos em frascos de 
boca larga, vedando alguns deles com uma gaze bem fina e deixando outros abertos (PELCZAR; 
CHAN; KRIEG, 1997a). Nos frascos não cobertos pela gaze, moscas entravam e saíam livremente 
onde mais tarde surgiam “vermes”. Nos frascos que estavam cobertos pela gaze, que impedia a 
entrada das moscas, não surgiu nenhum verme, mesmo depois de alguns dias (Figura 1).
UNIDADE 1 TÓPICO 1 7
M
I
C
R
O
B
I
O
L
O
G
I
A
IMP
OR
TAN
TE! �
Prezado(a) acadêmico(a)! Para enriquecer os seus estudos,no 
Ambiente Virtual de Aprendizagem (AVA), no link material de apoio, 
estão disponíveis todas as imagens deste Caderno de Estudos na 
versão colorida. Se acaso você não conseguir visualizar, peça ajuda 
ao(à) seu(sua) Professor(a)-Tutor(a) Externo(a) para que faça a 
apresentação dessas imagens em um dos Encontros Presenciais 
da disciplina.
FONTE: Disponível em: <http://www.ufmt.br/bionet/dicas/15.07.04/exp_re14.
jpg>. Acesso em: 16 set. 2010.
No experimento de Redi, que contrariava a geração espontânea, pode-se observar 
nos frascos tampados com gaze que nenhuma larva aparece (PELCZAR; CHAN; KRIEG, 
1997a). Nos frascos abertos, onde as moscas podem entrar e colocar seus ovos sobre a carne, 
aparecem as larvas na carne da qual se alimentam.
Poderíamos imaginar que, após esse experimento, a teoria da geração espontânea seria 
superada, porém ela ainda não estava derrotada. Para Black (2002), de nada adiantava demonstrar 
que as larvas não surgiam espontaneamente, pois havia muitos cientistas que ainda acreditavam na 
geração espontânea. Entre eles estava o clérigo inglês John Needhan (1713-1781) que, em 1745, 
montou alguns experimentos que reforçaram a ideia da origem da vida por abiogênese (PELCZAR; 
CHAN; KRIEG, 1997a). Nesses experimentos, ele utilizou caldos nutritivos, como caldo de galinha, 
carne e alguns tipos de sucos de vegetais, bem como alguns outros tipos de líquidos que continham 
partículas alimentares. Esses caldos foram colocados dentro de frascos e, após terem sido fervidos 
durante alguns minutos para destruir os microrganismos, eram imediatamente vedados com rolha 
de cortiça. Passados alguns dias, os caldos apresentaram-se repletos de microrganismos. Needhan 
argumentou que a fervura eliminaria todos os seres existentes no caldo inicial e como os frascos 
estavam tampados não haveria como um ser vivo penetrar através das rolhas (PELCZAR; CHAN; 
KRIEG, 1997a). A única explicação de Needhan para a presença de microrganismos nos frascos 
era que eles haviam surgido por geração espontânea (PELCZAR; CHAN; KRIEG, 1997a).
Um dos maiores opositores a Needhan era o clérigo e cientista italiano Lazzaro 
FIGURA 1 – EXPERIMENTO DE REDI
UNIDADE 1TÓPICO 18
M
I
C
R
O
B
I
O
L
O
G
I
A
Spallanzani (1729-1799), um fervoroso defensor da biogênese (PELCZAR; CHAN; KRIEG, 
1997a). Para demonstrar a sua descrença à abiogênese e ao método empregado por Needhan, 
Spallanzani resolveu refazer os experimentos de Needhan e tentar, com isso, provar a biogênese 
(PELCZAR; CHAN; KRIEG, 1997a). Em 1769, Spallanzani preparou alguns frascos com caldo 
nutritivo de carne e vegetal. Esses foram vedados e, após uma hora de fervura, foram postos de 
lado por alguns dias. Ao analisar o material, pôde constatar a ausência total de vida em todos 
eles. Com isso, pôde demonstrar que Needhan não tinha aquecido os frascos suficientemente 
para matar todos os microrganismos neles existentes. Fica evidente que, após os líquidos terem 
sido aquecidos por pouco tempo, poderia ainda haver certa quantidade de microrganismos 
vivos que se reproduziriam logo que os frascos esfriassem.
Needhan reagiu afirmando que, com a fervura do líquido em temperatura muito alta e por 
muito tempo, destruiria seu “princípio ativo” ou “princípio vital”, ou seja, o ar era simplesmente 
essencial à vida, como também para a geração espontânea dos microrganismos, e que teria 
sido excluído do experimento de Spallanzani (PELCZAR; CHAN; KRIEG, 1997a). Claro que 
não seriam apenas alguns trabalhos, mesmo tendo sido muito bem planejados, que destruiriam 
uma ideia sustentada já há alguns séculos. Muitos foram os cientistas que contestaram a 
abiogênese, porém sem muito sucesso. 
Em 1860, outro grande cientista, o químico e biólogo francês Louis Pasteur (1822-1895), 
através de uma análise longa e lógica sobre o problema da origem da vida, rejeita a teoria 
da geração espontânea, pois concluiu que o ar é uma fonte de microrganismos (PELCZAR; 
CHAN; KRIEG, 1997a). As substâncias não sofreriam alterações se estivessem protegidas do 
contato com os microrganismos presentes no ar, no solo, nos vidros e nas mãos. Repetiu várias 
vezes, sob várias circunstâncias, que soluções nutritivas bem como outros tipos de materiais 
não geravam organismos vivos depois de terem passado por um processo cuidadoso de 
esterilização. Em uma das mais célebres experiências – frascos de “pescoço de cisne” (Figura 
2) –, Pasteur consegue uma vitória sobre a abiogênese.
FONTE: Disponível em:<http://www.sobiologia.com.br/figuras/Corpo/Pasteur.
png>. Acesso em: 16 set. 2010.
FIGURA 2 – REPRESENTAÇÃO DA SEQUÊNCIA DE ETAPAS DO 
CÉLEBRE EXPERIMENTO REALIZADO POR PASTEUR 
UNIDADE 1 TÓPICO 1 9
M
I
C
R
O
B
I
O
L
O
G
I
A
A experiência consistia em diversos caldos nutritivos que eram colocados em frascos 
de vidro. Em alguns deles, aquecia-se o gargalo até que se tornassem maleáveis a ponto de 
poderem ser curvados, obtendo frascos com o formato de um pescoço de cisne. Em outras 
bancadas, ele mantinha os frascos com o gargalo curto e reto. Após esse procedimento, ele 
fervia durante alguns minutos os caldos nutritivos. Em alguns dias, podia-se notar que nos 
frascos de pescoço reto havia uma rápida contaminação do caldo nutritivo, porém não constatou 
a contaminação no caldo nutritivo nos frascos de pescoço de cisne, mesmo depois de alguns 
meses. Essas experiências refutaram definitivamente a teoria da geração espontânea.
ATEN
ÇÃO!
Pasteur identificou os microrganismos causadores de doenças e 
também os que são utilizados na produção de vinho.
3.1 MICROSCÓPIO
Para Pelczar, Chan e Krieg (1997a), nem sempre as grandes descobertas são feitas 
por cientistas profissionais, e sim, por cientistas amadores. A Microbiologia, como qualquer 
outra ciência, envolve um processo de interação de ideias e instrumentos. Novos instrumentos 
nos permitem melhores observações, que, por sua vez, servem de base para difundir um 
maior número de grandes ideias. O século XVII foi marcado pelo desenvolvimento de uma 
atitude diferente perante a pesquisa livre. Com essa nova atitude, inúmeros instrumentos 
foram aperfeiçoados, entre os quais as lentes, que irão, sem dúvida, contribuir para facilitar 
as investigações científicas.
UNI
Prezado(a) acadêmico(a)! Vamos conhecer agora como foi a 
construção do microscópio para a visualização dos microrganismos, 
pois na época, sabia-se que existiam, mas nunca tinham sido 
observados.
Passados alguns anos após as experiências de Francesco Redi, Antony van Leeuwenhoek 
(1632-1723), um dos fundadores da Microbiologia, que viveu em Delft, Holanda, com pouca 
formação científica, porém muito familiarizado com o uso de lentes de aumento, aperfeiçoa o 
microscópio (PELCZAR; CHAN; KRIEG, 1997a). Através das lentes desse instrumento, passa 
a examinar uma grande variedade de microrganismos, cuja existência era, até então, ignorada. 
UNIDADE 1TÓPICO 110
M
I
C
R
O
B
I
O
L
O
G
I
A
É muito provável que tenha sido ele o primeiro a visualizar microrganismos individualmente.
ATEN
ÇÃO!
Na próxima figura, visualizaremos o microscópio construído por 
Leeuwenhoek. O interessante é que para cada espécime tinha que 
construir um novo microscópio, deixando junto ao microscópio o 
espécime anterior estudado.
FONTE: Disponível em: <http://www.feiradeciencias.com.br/sala09/
image09/09_26_02.gif>. Acesso em: 16 set. 2010.
Era o ano de 1674 quando Leeuwenhoek apresentou a sua invenção (PELCZAR; 
CHAN; KRIEG, 1997a). O microscópio construído era simples e dotado de apenas uma lente 
de vidro, com capacidade de aumento dos objetos de 100 a 300 vezes. Para Black (2002, p. 
46), “apesar de serem constituídos de uma única lente fina cuidadosamente assentada, eles 
tinham de fato lentes de aumento bastante poderosas”. A maior dificuldade nesses microscópios 
era a focalizaçãodos espécimes. Ainda hoje pouco se sabe sobre os métodos de iluminação 
utilizados por Leeuwenhoek. Para Black (2002, p. 46), “[...] é provável que ele tenha usado 
iluminação indireta, sendo a luz refletida pelo lado de fora dos espécimes, e não passando 
através deles”. Segundo Pelczar, Chan e Krieg (1997a), entre as várias observações feitas, 
sendo todas anotadas cuidadosamente por Leeuwenhoek, bem como as várias cartas que 
eram enviadas à Sociedade Real Inglesa, ele descreveu, numa dessas cartas enviadas, o que 
chamou de “pequeninos animálculos”, que hoje conhecemos como protozoários de vida livre. 
Em outra carta muito interessante, ele descreve, pela primeira vez, um grupo de microrganismos 
conhecidos hoje por nós como bactérias. É bom saber que essa visualização tinha poucos 
detalhes da estrutura das bactérias. Para uma melhor visualização, havia a necessidade do 
desenvolvimento de microscópios mais complexos.
FIGURA 3 – MICROSCÓPIO DE LEEUWENHOEK
UNIDADE 1 TÓPICO 1 11
M
I
C
R
O
B
I
O
L
O
G
I
A
ATEN
ÇÃO!
Na figura a seguir, visualizaremos os desenhos feitos por 
Leeuwenhoek das suas observações vistas naquele microscópio 
rudimentar.
FONTE: Disponível em:<http://www.scielo.br/img/revistas/hcsm/v5n2/
v5n2a7f3.jpg>. Acesso em: 16 set. 2010.
Todas essas descobertas trouxeram grandes estímulos para os cientistas da época. 
Entre eles está o físico Robert Hooke (1635-1703), encarregado pelos cientistas ingleses 
de compor um novo aparelho, bem mais poderoso do que o apresentado por Leeuwenhoek 
(PELCZAR; CHAN; KRIEG, 1997a). O modelo desenvolvido por Hooke era o de um microscópio 
de duas lentes ajustadas a um tubo de metal, semelhante ao inventado por Zacharias Jansen, 
que, segundo alguns autores, seria dele a invenção do microscópio por volta de 1590. Para 
Pelczar, Chan e Krieg (1997a), Leeuewenhoek foi quem primeiro empregou um microscópio 
na investigação da natureza. O microscópio apresentado por Hooke ficou conhecido como 
microscópio composto (Figura 5), pelo fato de ser constituído por duas lentes, enquanto 
que o microscópio de Leeuwenhoek, que era constituído por uma única lente, é considerado 
um microscópio simples.
FIGURA 4 – DESENHOS DE LEEUWENHOEK. BACTÉRIAS, ALGUMAS 
COM MOTILIDADE (C PARA D)
UNIDADE 1TÓPICO 112
M
I
C
R
O
B
I
O
L
O
G
I
A
FONTE: Disponível em: <http://2.bp.blogspot.com/_CXhfB_PPfWY/
SbregBpxGVI/AAAAAAAAADg/xuZIUDC02mE/s320/microscopio.
bmp>. Acesso em: 16 set. 2010.
3.2 A DESCOBERTA DA CÉLULA
Robert Hooke fez a apresentação de seu microscópio à comunidade científica londrina 
em abril de 1663. Escolheu alguns materiais para essa demonstração, sendo que o que traria 
mais destaque seriam as fatias finas de cortiça. Ao observá-las no microscópio, reparou que 
eram constituídas por cavidades e as comparou aos quartos de um convento (Figura 6). Esses 
quartos eram como celas e, mais tarde, denominou-as células (sendo que em inglês seria 
cells – pequenas celas ou caixinhas). A derivação do termo “célula” vem do latim cellula, que 
nada mais é que o diminutivo de cella, cujo significado é “um pequeno compartimento”. Hoje 
temos o conhecimento que esses minúsculos espaços vazios eram ocupados anteriormente 
por células vivas. Na verdade, o que foi observado por Hooke eram as paredes celulares, cuja 
função é a de separar as células de uma planta. Com a morte da planta, essas paredes não 
se decompõem como o resto.
NO
TA! �
A parede celular só é encontrada em células vegetais. Você 
estudou na Unidade 2, Tópico 1, do Caderno de Estudos de 
Citologia, as características e funções da parede celular. Na figura 
a seguir, você verá apenas a parede celular das células de cortiça.
FIGURA 5 – MICROSCÓPIO COMPOSTO DE HOOKE
UNIDADE 1 TÓPICO 1 13
M
I
C
R
O
B
I
O
L
O
G
I
A
NO
TA! �
A cortiça utilizada para a fabricação das rolhas é a camada formada 
como um envoltório suberoso no tronco da árvore. Esse envoltório, 
que ganha grossura a cada ano, é retirado após 9-12 ou 15 anos, 
quando possui uma largura de aproximadamente 30 mm. Essa 
casca é secada e cortada em pedaços de aproximadamente 40-50 
mm, conforme o comprimento da futura rolha. 
FONTE: Disponível em: <http://www.enologia.org.br/conteudo.
asp?id_artigo=186&id_categoria=4&sTipo=artigo&sSecao=curi
osidades&sSubSecao=&bSubMenu=1&sParamMenu=>. Acesso 
em: 19 set. 2010.
FONTE: Disponível em: <http://3.bp.blogspot.com/_bXiAT6MOo8E/
SCdg2ZRAVrI/AAAAAAAAAtQ/EtdSzIcHJD0/s320/
HookeCorcho02.jpg>. Acesso em: 16 set. 2010.
Dando prosseguimento aos seus estudos na área de microscopia, Hooke obteve um 
vasto material microscópico, a ponto de poder lançar um livro voltado à área. Boa parte dos 
pesquisadores da época, além, é claro, do próprio Hooke, passaram a observar as partes vivas 
de plantas e notaram a existência de células muito semelhantes às da cortiça. A única diferença 
que foi observada pelos cientistas era que o espaço interno das células vivas era preenchido 
por uma substância gelatinosa. Inúmeras pesquisas foram realizadas e as observações feitas 
não ficavam somente nas células vegetais, eram observadas também células animais. Com 
isso, o termo célula passou a denominar o conteúdo dessas caixinhas microscópicas que 
formam o corpo das plantas e dos animais.
Passaram-se dois séculos desde as primeiras observações feitas por Hooke até a 
descoberta de que todos os seres vivos são constituídos por células, a chamada Teoria celular.
FIGURA 6 – CORTIÇA OBSERVADA POR HOOKE
UNIDADE 1TÓPICO 114
M
I
C
R
O
B
I
O
L
O
G
I
A
IMP
OR
TAN
TE! �
IMP
OR
TAN
TE! �
Caro(a) acadêmico(a)! Você reparou que muitos assuntos tratados 
neste Caderno já foram estudados na disciplina de Citologia? 
Pois bem, é importante relembrar alguns tópicos para darmos 
continuidade aos estudos.
Essas células tinham a aparência de minúsculos aglomerados 
com um material semitransparente, que era delimitado por uma 
membrana e todas elas com uma estrutura central.
Em 1839, dois cientistas alemães, Mathias Shleiden (1804-1881) e Theodor Schwann 
(1810-1882), após discutirem as suas ideias sobre a organização dos seres vivos, chegaram à 
conclusão de que “todos os seres vivos são compostos de células” (PELCZAR; CHAN; KRIEG, 
1997a). Essa conclusão aconteceu porque os dois cientistas, que trabalhavam em diferentes 
campos de pesquisa (Shleiden dedicava-se à fisiologia das plantas e Schwann à anatomia 
dos animais), compararam as suas observações e não tiveram dúvidas: todas as estruturas 
minúsculas que apareciam nas folhas, nos caules e nas flores das plantas, bem como no fígado, 
ossos e na pele dos animais, enfim, em todos os organismos vivos estudados, eram a mesma 
unidade minúscula que constituía a vida.
Algumas décadas mais tarde, outra hipótese foi apresentada com as observações feitas 
pelo cientista alemão Rudolpho Virchow (1821-1902). Ele demonstrou que as células do corpo 
não surgiam da matéria inanimada por geração espontânea, ou seja, cada célula nascia de 
outra célula que havia se reproduzido. A existência de uma célula só era possível porque já 
havia existido outra, a célula-mãe, que lhe dera origem. Assim, cada animal é gerado por outro 
animal ou uma planta por outra planta. Em 1855, Virchow, com uma célebre frase em latim, 
fez uma síntese de seu pensamento: “Omnis cellula ex cellula”, cujo significado é “toda célula 
se origina de outra célula”. (FERREIRA, 2003).
Através das observações microscópicas das divisões celulares, toda a ideia de que as 
células podiam ter a sua origem de forma espontânea foi perdendo credibilidade por completo. 
Várias observações e novas descobertas foram sendo feitas na área celular. Uma delas se deu 
em 1878, quando o alemão Walther Flemming (1843-1905) colocou um ponto final na ideia do 
surgimento espontâneo de células. Eledescreveu, de forma detalhada, o processo de divisão 
de uma célula em duas, processo que ele denominou mitose.
UNIDADE 1 TÓPICO 1 15
M
I
C
R
O
B
I
O
L
O
G
I
A
NO
TA! �
Caro(a) Acadêmico(a)! No Caderno de Estudos de Citologia, 
Unidade 3, Tópico 1, você estudou os processos de divisão celular 
conhecidos por mitose e meiose. Vale a pena voltar naqueles 
estudos e relembrar esses processos.
3.3 CARACTERÍSTICAS DAS CÉLULAS 
PROCARIÓTICAS E EUCARIÓTICAS
Segundo Black (2002, p. 68), “todas as células vivas podem ser classificadas como 
procarióticas, das palavras gregas pro (antes) e karyon (núcleo), ou eucarióticas, de eu 
(verdadeiro) e karyon (núcleo)”. Podemos dizer então que células procarióticas (os organismos 
que as possuem recebem o nome de seres procariontes) (Figura 7) são as que não possuem 
núcleo e nenhuma estrutura contida em membrana; e as células eucarióticas (os organismos 
que as possuem recebem o nome de seres eucariontes) (Figura 8) são as que possuem 
núcleo, bem como todas as outras estruturas membranosas, tais como: retículo endoplasmático 
liso e rugoso, complexo golgiense, lisossomos, mitocôndrias etc.
FONTE: Disponível em: <http://www.cynara.com.br/citologia/img/procariotica.jpg>. Acesso 
em: 16 set. 2010.
FIGURA 7 – CÉLULA PROCARIÓTICA DE BACTÉRIA
UNIDADE 1TÓPICO 116
M
I
C
R
O
B
I
O
L
O
G
I
A
FONTE: Disponível em: <http://esmmbg.no.sapo.pt/celulanimal3.jpg>. Acesso em: 16 set. 2010.
No grupo dos seres procariontes estão as bactérias, que são seres unicelulares e 
que iremos estudar com mais profundidade. Já o representante dos grupos dos eucariontes 
são todos os vegetais, animais, fungos e protistas (Amoebas, Paramecium etc.). Podemos 
dizer que tanto as células procarióticas como as eucarióticas são semelhantes em vários 
aspectos e que compartilham, assim, de algumas características. Entre elas, está a presença 
da membrana plasmática, cuja função é a de isolar a célula do ambiente externo, bem como 
controlar a passagem de substâncias. A outra característica é a presença do citoplasma, que é 
constituído por um líquido gelatinoso também chamado de citosol, além de outras substâncias 
altamente necessárias às funções vitais (processos metabólicos) da célula. Por último, as 
células apresentam material genético (DNA), que codificam informações genéticas, ou seja, 
essas informações estão inscritas em código que controlam todo o funcionamento das células.
No que se refere à organização celular, as células procarióticas são extremamente 
simples, chegando a ser comparadas aos primeiros organismos vivos que habitaram a Terra há 
mais de três bilhões de anos. Existem muitas contradições quanto à classificação das bactérias, 
o que é muito normal na pesquisa científica. São os organismos mais abundantes do planeta, 
tanto em número como em espécies. Os tamanhos das células procarióticas estão entre os 
menores organismos, a maioria deles medindo de 0,2 a 2,0 μm de diâmetro, sendo que o seu 
comprimento vai de 2 a 8 μm.
FIGURA 8 – CÉLULA EUCARIÓTICA ANIMAL
UNIDADE 1 TÓPICO 1 17
M
I
C
R
O
B
I
O
L
O
G
I
A
NO
TA! �
Um micrômetro ou mícron, cujo símbolo é μm, é uma unidade 
do Sistema Internacional de Unidades de comprimento. Está 
definido como um milionésimo de metro (ou 1 × 10-6 m). Equivale 
à milésima parte do milímetro. A letra μ é a décima segunda letra 
do alfabeto grego. Para dimensões ainda menores, utiliza-se o 
nanômetro (nm) que corresponde a um milésimo do micrômetro 
(10-3cm, ou 10-6mm, ou 10-9m). O ângstrom (A) utilizado por 
físicos e químicos é 10 vezes menor que o nanômetro.
Com relação ao seu tamanho, as células bacterianas apresentam três formas básicas: 
forma esférica (cocos), bastonete (bacilos) e forma espiralada (espirilos) (Figura 9).
FONTE: Disponível em: <http://www.enq.ufsc.br/labs/probio/disc_eng_bioq/
trabalhos_pos2003/const_microorg/bact.gif>. Acesso em: 16 set. 2010.
Entretanto, podem ocorrer muitas variações. Segundo Black (2002, p. 70), “algumas 
bactérias, chamadas cocobacilos, são pequenos bastonetes com tamanho intermediário entre 
cocos e bacilos. As bactérias espirais têm uma variedade de formas curvas. Uma bactéria em 
forma de vírgula é chamada vibrião”. Outras bactérias com um formato em espiral são chamadas 
de espiroquetas. As formas bacterianas são muito variáveis, mesmo pertencendo à mesma 
categoria. Essas variações acontecem tanto na forma como no tamanho. Geralmente, quando 
há abundância de nutrientes no meio, as divisões celulares acontecem de forma muito rápida, 
fazendo com que o tamanho das bactérias seja maior do que aquelas que estão em meios com 
pouco nutriente. Existem algumas espécies de bactérias que apresentam flagelos bacterianos, 
que são filamentos longos da superfície celular, cuja função é gerar movimento à bactéria. Esse 
movimento acontece graças a uma estrutura semelhante a um “motor” microscópico situado 
na parede e na membrana plasmática.
Ao observarmos por meio de um microscópio as células bacterianas, iremos notá-las 
agrupadas com certa frequência, ou seja, ligadas umas às outras. Para Pelczar, Chan e Krieg 
(1997a), as células bacterianas com formatos espiralados aparecem como células únicas, 
sendo que muitas outras espécies de bactérias têm um arranjo e padrões característicos de 
crescimento. Isso pode ser utilizado para a identificação, pois cada um desses arranjos é típico 
para uma espécie particular.
FIGURA 9 – FORMAS MAIS COMUNS DE BACTÉRIAS
UNIDADE 1TÓPICO 118
M
I
C
R
O
B
I
O
L
O
G
I
A
Um exemplo citado por Pelczar, Chan e Krieg (1997a) é a divisão do coco (Figura 
10) dentro de um plano e que irá formar um diplococo, ou seja, duas células ligadas. Isso é 
interessante, pois caracteriza as espécies, bem como o seu agente etiológico (aquele que causa 
uma determinada moléstia). A divisão em planos pode produzir células aos pares, bem como 
em cadeias, arranjo chamado de estreptococos. Quando a célula se divide em dois planos, 
ela produz uma tétrade, que nada mais é do que quatro células dispostas em forma de um 
quadrado. Outro arranjo é a sarcina, que é produzida através da divisão em três planos, o que 
resulta em pacotes cúbicos de oito células. Outra forma muito interessante é quando ocorre 
uma divisão em três planos, porém em um plano irregular. O resultado é um agrupamento em 
forma de cachos de uva. Pelczar, Chan e Krieg (1997a) lembram que muito raramente todas 
as células de uma determinada espécie estão arranjadas exatamente no mesmo padrão. 
Para o estudo das bactérias, o que se deve levar em conta, ainda segundo os autores, o mais 
importante, sem dúvida, é o arranjo predominante.
FONTE: Disponível em: <http://html.rincondelvago.com/bacterias_6.html>. Acesso em: 16 set. 2010.
Bem diferente dos cocos são os bacilos (Figura 11). Eles se dividem em apenas um 
plano, formando arranjos em uma grande variedade de padrões característicos, porém com 
algumas exceções. Eles podem produzir células unidas pelas extremidades ou simplesmente 
lado a lado.
FONTE: Disponível em: < http://html.rincondelvago.com/bacterias_6.html>. Acesso em: 16 set. 2010.
As células bacterianas em forma de espirais (Figura 12) geralmente não estão 
agrupadas.
FIGURA 10 – COCOS
FIGURA 11 – BACILOS
UNIDADE 1 TÓPICO 1 19
M
I
C
R
O
B
I
O
L
O
G
I
A
FONTE: Disponível em: <http://html.rincondelvago.com/bacterias_6.html>. Acesso em: 
16 set. 2010.
Para Pelczar, Chan e Krieg (1997, p. 103), “[...] o tamanho, a forma e o arranjo das 
bactérias constituem sua morfologia grosseira, sua aparência ‘externa’. Mas uma observação 
interna das estruturas celulares individuais dá-nos uma ideia de como uma bactéria funciona 
no seu ambiente”.
Técnicas microscópicas revelaram a existência na célula bacteriana de uma diversidade 
estrutural (interna e externa)que funciona de forma conjunta. Estruturalmente, a célula 
bacteriana está composta da seguinte forma:
Membrana celular (membrana plasmática), geralmente envolvida pela parede celular 
e por uma camada externa adicional. É bom lembrar que a membrana celular é comum a todas 
as células e é por isso que a estrutura das membranas celulares bacterianas é a mesma que 
as de outras células. Tem como principal função regular a entrada e a saída de materiais da 
célula bacteriana. Pode exercer outras funções como a síntese de alguns componentes da 
parede celular, secreção de enzimas e possuir áreas com apêndices – os flagelos – cuja ação 
dessas áreas irá induzir o movimento flagelar. A parede celular bacteriana é composta por um 
polímero chamado peptidoglicano, sendo que, às vezes, ela está envolvida por uma camada 
exterior (essa membrana externa está ligada por uma camada contínua lipoproteica – proteína 
+ lipídio).
NO
TA! �
Peptidoglicano, conhecido como mureína, é um polímero formado 
por açúcares e aminoácidos que forma uma camada do lado de 
fora da membrana plasmática da bactéria.
O citosol, um líquido viscoso e semitransparente, é composto por milhares de tipos de 
proteínas, além de aminoácidos, bases nitrogenadas, vitaminas, glicídios, lipídios e por 80% de 
água. Boa parte do metabolismo (reações químicas) ocorre no citoplasma. Quanto ao citoplasma 
dos eucariontes, Black (2002) afirma que existe uma diferença em relação ao citoplasma das 
células procarióticas. Segundo ele, as células procarióticas não realizam a ciclose – movimento 
de circulação promovido pelo citoplasma. Vamos encontrar também milhares de ribossomos 
FIGURA 12 – ESPIRILOS
UNIDADE 1TÓPICO 120
M
I
C
R
O
B
I
O
L
O
G
I
A
(menores em relação aos das células eucarióticas), cuja função é a de sintetizar proteínas. 
Sabemos que uma das principais diferenças entre uma célula procariótica e uma célula 
eucariótica é a ausência de uma membrana nuclear na célula procariótica. O que as bactérias 
possuem, na realidade, é uma região nuclear chamada de nucleoide, uma área do citoplasma 
que corresponde ao núcleo das células eucarióticas, porém desprovida de uma membrana. 
Essa região é constituída principalmente por DNA e por algum RNA, com proteínas associadas. 
O DNA está arranjado em um longo cromossomo (cromossomo bacteriano), dando-lhe um 
formato circular. A célula procariótica pode conter ainda pequenas moléculas de DNA circular 
– plasmídios (Figura 13), que têm informações genéticas que suplementam as informações 
no cromossomo.
FONTE: Disponível em: <http://www.vestibulandoweb.com.br/biologia/
monera-q11.jpg>. Acesso em: 18 set. 2010.
IMP
OR
TAN
TE! �
Os plasmídios são muito utilizados na biotecnologia como vetores 
de clonagem. “O sucesso da transgenia depende de que a inserção 
de um gene clonado em um embrião hospedeiro integre-se e se 
replique nas sucessivas divisões celulares e passe a ser reconhecido 
e regulado pelas células hospedeiras”. (GAIESKY, 2001, p. 28).
EST
UDO
S F
UTU
RO
S! �
Caro(a) acadêmico(a)! Biotecnologia e suas aplicações serão 
detalhadamente estudadas na Unidade 2, Tópico 3, deste Caderno 
de Estudos.
Constituídos de ácido ribonucleico e proteínas, os ribossomos são extremamente 
abundantes nas células procarióticas. Esses ribossomos são diferentes quando comparamos 
com os das células eucarióticas. Os ribossomos das células procarióticas são menores e 
FIGURA 13 – DESENHO ESQUEMÁTICO DE UMA CÉLULA 
BACTERIANA – PLASMÍDIO
UNIDADE 1 TÓPICO 1 21
M
I
C
R
O
B
I
O
L
O
G
I
A
apresentam proteínas diferentes em sua constituição. A função dos ribossomos é a de sintetizar 
as proteínas necessárias para a célula. Sua forma é quase esférica.
Existem outros sistemas de membranas internas que são, muitas vezes, citados como 
cromatóforos e encontrados nas bactérias fotossintetizantes e nas cianobactérias. Esses 
sistemas de membranas dos cromatóforos possuem sua origem nas membranas celulares. A 
função desses cromatóforos, para essas bactérias, é a de capturar energia luminosa, pois esses 
sistemas possuem, em seu interior, pigmentos para fotossíntese. No citoplasma das bactérias, 
vamos encontrar ainda uma diversidade de corpúsculos chamados de inclusões. Alguns 
desses são chamados de grânulos e outros de vesículas. Os grânulos não são limitados por 
membranas e possuem conteúdos variados. Esses conteúdos são densos e compactados e 
não se dissolvem no citoplasma. Não são todas as bactérias que apresentam vesículas, que 
são estruturas especializadas envoltas por membrana.
Os microrganismos procarióticos (bactérias) formam, quando o meio não lhes é favorável 
para a sua sobrevivência, geralmente pelo esgotamento de algum nutriente ou pela alteração 
de temperatura, perda de água para o meio, esporos ou endósporos (Figura14) e cistos. 
Essas formas são denominadas latência (latentes), na qual estão metabolicamente inativos, 
ou seja, não estão crescendo. Quando o meio ambiente estiver em condições propícias, eles 
se tornam metabolicamente ativos, podendo germinar (crescer e se multiplicar). O endósporo, 
segundo Black (2002), é formado dentro das células e com uma quantidade muito pequena de 
água, possui uma resistência grande ao calor, às soluções ácidas e alcalinas, à desidratação, 
bem como a certos desinfetantes e até mesmo às radiações.
FONTE: Disponível em: <http://curlygirl.no.sapo.pt/imagens/endosporo.jpg>. Acesso em: 
16 set. 2010.
FIGURA 14 – ENDÓSPORO
UNIDADE 1TÓPICO 122
M
I
C
R
O
B
I
O
L
O
G
I
A
ATEN
ÇÃO!
O álcool que compramos em supermercados é muito concentrado 
(92,8%) para realizar desinfecções. Por ele volatilizar muito 
rápido, não dá tempo para que ele penetre na parede celular dos 
microrganismos, dando tempo para eles modificarem sua parede 
celular e se tornarem resistentes. Para isso, recomenda-se diluir o 
álcool em água para que demore mais a volatilizar, dando tempo 
para penetrar na parede celular dos microrganismos, matando-os.
DIC
AS!
Podemos transformar o álcool comprado em supermercados em 
um excelente desinfetante. Para produzirmos 1 litro de álcool 70%, 
que é o ideal para a eliminação dos microrganismos, basta retirar 
250 ml de álcool do frasco e completá-lo com água. Pronto, você 
já pode começar a sua limpeza!
Externamente, muitas bactérias (cerca de metade delas) apresentam estruturas móveis, 
os flagelos. A função principal dos flagelos é a locomoção das bactérias. Essa locomoção, 
muitas vezes, se dá por um processo não aleatório chamado de quimiotaxia (movimento que 
as bactérias fazem em direção a favor ou em direção contrária a substâncias em seu meio). Os 
flagelos são apêndices longos, delgados e helicoidais de composição proteica (subunidades 
de proteínas chamadas flagelina), que estão ligados à parede e às membranas celulares. Eles 
são estruturalmente diferentes dos flagelos eucarióticos. As bactérias podem apresentar apenas 
um, dois ou mais flagelos. De acordo com o número de flagelos, elas recebem denominações 
diferentes (Figura 15). Bactérias com apenas um flagelo polar em uma extremidade ou polo – 
monotríquias; com dois flagelos, um em cada extremidade – anfitríquias; com dois ou mais 
flagelos em uma ou ambas as extremidades – lofotríquias; bactérias com flagelos em toda a 
superfície são denominadas peritríquias.
UNIDADE 1 TÓPICO 1 23
M
I
C
R
O
B
I
O
L
O
G
I
A
FONTE: Disponível em: <http://upload.wikimedia.org/wikipedia/
commons/0/08/Flagella.png>. Acesso em: 16 set. 2010.
Como vimos anteriormente, as bactérias apresentam apêndices locomotores, porém 
algumas, em especial as Gram-negativas, possuem outros tipos de apêndices - os pili (pelos) 
(Figura 16), que não estão relacionados com o movimento. Tais estruturas são prolongamentos 
ocos, pequenos e bem mais numerosos queos flagelos, cuja função é a de fixar as bactérias 
às superfícies. É constituído por subunidades (pillus) de uma proteína denominada pilina. 
Segundo Black (2002, p.82), “as bactérias podem ter dois tipos de pili: (1) pili de conjugação, 
longos, ou pili F, também chamados pili sexuais e (2) pili de ligação, curtos, ou fímbrias”.
FONTE: Disponível em: <http://recursos.cnice.mec.es/biosfera/
alumno/2bachillerato/micro/imagenes/flagelopili.jpg>. Acesso em: 16 set. 
2010.
FIGURA 15 – CLASSIFICAÇÃO QUANTO AO NÚMERO DE FLAGELOS. 
A – MONOTRÍQUIA. B – LOFOTRÍQUIA. C – ANFITRÍQUIA. 
D – PERITRÍQUIA
FIGURA16 – MICROGRAFIA ELETRÔNICA ONDE APARECE O PILI E O 
FLAGELO
UNIDADE 1TÓPICO 124
M
I
C
R
O
B
I
O
L
O
G
I
A
De uma forma geral, as células eucarióticas são bem maiores e com uma grande 
complexidade em relação às células procarióticas. Boa parte das células eucarióticas possui 
um diâmetro maior que 10 μm, sendo que algumas podem atingir diâmetros ainda maiores. 
Outra particularidade das células eucarióticas é a sua grande variedade de estruturas 
altamente diferenciadas. Para Carneiro e Junqueira (2000), uma das grandes características 
das células eucarióticas está na sua riqueza de membranas, que formam compartimentos 
que separam os diversos processos metabólicos. Tudo isso graças às diferenças enzimáticas 
entre as membranas dos vários compartimentos, bem como ao direcionamento das moléculas 
absorvidas. Essas e tantas outras características conferem às células eucarióticas um aumento 
na eficiência e, além disso, promovem uma separação das atividades, que permite um aumento 
no seu tamanho, sem qualquer prejuízo de suas funções.
ATEN
ÇÃO!
ATEN
ÇÃO!
Na Unidade 2 do Caderno de Estudos de Citologia, você estudou 
as organelas que compõem a célula e suas funções. Vale a pena 
relembrar para darmos continuidade aos nossos estudos.
Caro(a) acadêmico(a)! Na leitura que segue encontram-se algumas 
palavras que são usadas na linguagem de Portugal. Procuramos 
ser fiéis às fontes consultadas.
As células eucarióticas são as unidades estruturais básicas de todos os organismos dos 
reinos Protista (protozoários), Fungi (fungos), Plantae (Vegetais) e Animallia (Animais). Vale 
lembrar que os protozoários, fungos microscópicos e as algas microscópicas estão incluídos 
como seres eucariontes e, por isso, são estudados em Microbiologia.
LEITURA COMPLEMENTAR
EVOLUÇÃO DOS PROCARIONTES EM EUCARIONTES
Actualmente, a maioria dos biólogos considera que todos os seres vivos conhecidos 
na Terra podem ser divididos em dois grandes grupos: os seres procariontes e os seres 
eucariontes. O principal critério de distinção entre estes grupos é a sua organização celular.
Ao longo de vários milhões de anos, os seres procariontes habitaram ambientes 
aquáticos e foram-se diversificando. Alguns desses seres unicelulares desenvolveram 
UNIDADE 1 TÓPICO 1 25
M
I
C
R
O
B
I
O
L
O
G
I
A
um processo metabólico que 
conduzia à libertação de oxigênio 
– a fotossíntese. 
O surgimento do oxigênio 
na atmosfera teve um grande 
impacto na vida dos procariontes. 
Desta forma, muitos grupos de 
procar iontes foram ext intos, 
envenenados pelo oxigênio. 
Contudo, alguns conseguiram 
sobreviver em ambientes que 
permaneciam anaeróbios. 
Entre os sobreviventes, houve um grupo, que à semelhança das actuais mitocôndrias, 
era capaz de aproveitar este gás para oxidar os compostos orgânicos, obtendo assim uma 
grande quantidade de energia. 
Alguns grupos de procariontes evoluíram e aumentaram a sua complexidade, tendo, 
muito provavelmente, estado na origem dos organismos eucariontes.
Fundamentalmente, existem duas hipóteses que tentam explicar a origem dos seres 
eucariontes a partir dos procariontes: 
Hipótese Autogênica, os seres eucariontes são o resultado de uma evolução gradual 
dos seres procariontes. Numa fase inicial, as células desenvolveram sistemas endomembranares 
resultantes de invaginações da membrana plasmática.
Algumas dessas invaginações armazenavam o DNA, formando um núcleo. Outras 
membranas evoluíram no sentido de produzir organelas semelhantes ao retículo endoplasmático. 
Posteriormente, algumas porções do material genético abandonaram o núcleo e 
evoluíram sozinhas no interior de estruturas membranares. Desta forma, formaram-se organelas 
como as mitocôndrias e os cloroplastos.
UNIDADE 1TÓPICO 126
M
I
C
R
O
B
I
O
L
O
G
I
A
Hipótese Endossimbiótica: Esta hipótese defende que os seres eucariontes terão 
resultado da evolução conjunta de vários organismos procariontes, os quais foram estabelecendo 
associações simbióticas entre si. O termo endossimbiótica resulta do facto de algumas células 
viverem no interior de outras, numa relação de simbiose. 
Embora este modelo admita que os sistemas endomembranares e o núcleo tenham 
resultado de invaginações da membrana plasmática, as mitocôndrias e os cloroplastos seriam 
organismos autônomos. Nessa altura, algumas células de maiores dimensões (células 
hospedeiras) terão capturado células menores, como as ancestrais das mitocôndrias e dos 
cloroplastos. Alguns destes ancestrais conseguiam sobreviver no interior da célula procariótica 
de maiores dimensões, estabelecendo-se relações de simbiose.
A íntima cooperação entre estas células conduziu ao estabelecimento de uma relação 
simbiótica estável e permanente. A evolução conjunta destes organismos terá levado ao 
surgimento das células eucarióticas constituídas por várias organelas, algumas das quais 
foram, em tempos, organismos autônomos.
Assim, as primeiras relações endossimbióticas terão sido estabelecidas com os 
ancestrais das mitocôndrias. Os ancestrais das mitocôndrias seriam organismos que tinham 
desenvolvido a capacidade de produzir energia, de forma muito rentável, utilizando o oxigênio 
no processo de degradação de compostos orgânicos.
Por outro lado, outro grupo de procariontes, semelhante às actuais cianobactérias, tinha 
desenvolvido a capacidade de produzir compostos orgânicos utilizando a energia luminosa. A 
associação das células procarióticas de maiores dimensões com estes seres, ancestrais dos 
cloroplastos, conferia-lhe vantagens evidentes.
Mas nem todas as células eucarióticas possuem cloroplastos. Este facto é explicado, 
segundo a Hipótese Endossimbiótica, pelo estabelecimento de relações simbióticas de forma 
sequencial. Isto é, as primeiras relações endossimbióticas terão sido estabelecidas com os 
ancestrais das mitocôndrias e, só posteriormente, algumas dessas células terão estabelecido 
relações de simbiose com os ancestrais dos cloroplastos.
FONTE: Disponível em:<http://bio-portefolio.blogspot.com/2008/12/evoluo-dos-procariontes-em-
eucariontes.html>. Acesso: em 18 set. 2010.
UNIDADE 1 TÓPICO 1 27
M
I
C
R
O
B
I
O
L
O
G
I
A
RESUMO DO TÓPICO 1
Neste tópico você estudou que:
● Os microrganismos fazem parte do nosso meio ambiente, sendo então, muito importantes 
para a saúde e para as nossas atividades.
● Estudar os microrganismos nos dá uma visão dos processos vitais em praticamente todas 
as formas de vida.
● Durante as últimas décadas, os microrganismos surgiram como parte principal das ciências 
biológicas, devido à sua relativa simplicidade na realização de experimentos.
● Os microrganismos emergiram como uma nova fonte de produtos e processos para o benefício 
do homem.
● Para que a microbiologia pudesse progredir, várias teorias tiveram que ser refutadas, entre 
elas a da geração espontânea (abiogênese).
● Redi e Spallanzani (biogenistas) demonstraram que os organismos não cresciam da matéria 
morta.
● A derrubada da geração espontânea (abiogênese) se deu por intermédio de Pasteur, com 
seus frascos com “pescoço de cisne”.
● Leeuwenhoek desenvolveu o microscópio, que tornou possível a visualização domundo 
microscópico.
● Robert Hooke, com o seu microscópio composto, visualiza fatias finas de cortiça, com 
pequenos compartimentos - celas - que denominou células. 
● As células procarióticas, bem como as eucarióticas, possuem membranas que definem as 
fronteiras da célula viva. Ambas com informações genéticas que estão armazenadas no 
DNA.
● Células procarióticas diferenciam-se das eucarióticas por não possuírem núcleo definido e 
muito menos organelas.
UNIDADE 1TÓPICO 128
M
I
C
R
O
B
I
O
L
O
G
I
A
● Os seres procariontes (bactérias) são os menores organismos vivos.
● As bactérias podem apresentar forma de cocos, bacilos, espirilos, espiroquetas, incluindo 
arranjos aos pares, tétrades em forma de cacho de uvas e em cadeias longas.
● As células bacterianas possuem uma membrana celular, citoplasma, ribossomos, região 
nuclear, bem como estruturas externas.
● Células eucarióticas são bem maiores e muito mais complexas do que as células procarióticas, 
sendo as unidades básicas tanto de seres microscópicos como dos macroscópicos (Protista, 
Fungi, Plantae e Animallia).
UNIDADE 1 TÓPICO 1 29
M
I
C
R
O
B
I
O
L
O
G
I
A
AUT
OAT
IVID
ADE �
1 Qual pesquisador demonstrou, pela primeira vez, que os seres vermiformes presentes 
na carne podre se originavam de ovos depositados por moscas?
2 O desfecho da controvérsia relativa à origem dos seres vivos (teoria da biogênese x 
teoria da abiogênese) deve-se:
a) ( ) A Abbey Lazzaro Spallanzani, que realizou experimentos e mostrou 
que,aquecendo prolongadamente substâncias orgânicas acondicionadas 
em recipientes fechados e providos de válvula de escape, não ocorria o 
desenvolvimento de microrganismos.
b) ( ) Aos experimentos de Louis Pasteur com os seus balões do tipo “pescoço de 
cisne”.
c) ( ) À descoberta da “força vital”, por John T. Needhan.
d) ( ) Aos experimentos de Francesco Redi, que mostraram que, ao se colocar 
pedaços de carne pura em frascos, deixando alguns abertos e outros fechados 
com gaze, observa-se a presença de larvas, ovos e moscas após alguns dias, 
somente nos frascos abertos.
e) ( ) À descoberta do microscópio.
FONTE: Disponível em: <http://www.cnsg-pi.com.br/simulado/provas/ano1_3_3_07.pdf>. 
Acesso em: 27 nov. 2010. 
3 Relacione os itens, utilizando o seguinte código:
I- Antony van Leeuwenhoek.
II- Robert Hooke.
III- Theodor Schwann.
( ) Quem foi um dos formuladores da Teoria Celular?
( ) Quem introduziu o termo célula na Biologia?
( ) A quem se atribuiu a descoberta do mundo microscópico?
4 A chamada “estrutura procariótica”, apresentada pelas bactérias, indica-nos que 
esses seres vivos são:
a) ( ) Destituídos de membrana plasmática.
b) ( ) Formadores de minúsculos esporos.
UNIDADE 1TÓPICO 130
M
I
C
R
O
B
I
O
L
O
G
I
A
c) ( ) Dotados de organelas membranosas.
d) ( ) Constituídos por parasitas obrigatórios.
e) ( ) Desprovidos de membrana nuclear.
FONTE: Disponível em: <http://www.scribd.com/doc/4034329/Biologia-PPT-Maxi-Reino-
Monera>. Acesso em: 27 nov. 2010. 
5 O que são endósporos bacterianos?
6 Pela leitura que você fez do texto “Evolução dos Procariontes em Eucariontes”, 
pôde-se notar que é uma proposta pela qual as células eucarióticas têm evoluído. 
Retorne ao texto e procure destacar as diferenças entre as duas hipóteses 
apresentadas no texto.
7 Microbiologia é:
a) ( ) A ciência que estuda os seres vivos e as leis gerais que os governam.
b) ( ) A denominação comum a organismos microscópicos.
c) ( ) A associação entre raízes de uma planta.
d) ( ) O ramo da Biologia que estuda os microrganismos, incluindo eucariontes 
unicelulares e procariontes, como as bactérias, protozoários, fungos e vírus.
8 A respeito dos microrganismos, classifique as seguintes sentenças em V (verdadeiras) 
ou F (falsas):
( ) São muito pequenos, visualizados somente com o auxílio de um microscópio.
( ) Muitos são utilizados em benefício da natureza e do homem. 
( ) São seres que podem viver isolados ou em colônias.
( ) Todos são inofensivos ao homem.
( ) Eles podem se reproduzir por divisão mitótica.
M
I
C
R
O
B
I
O
L
O
G
I
A
PRINCIPAIS GRUPOS DE 
MICRORGANISMOS
1 INTRODUÇÃO
2 TAXONOMIA
TÓPICO 2
UNIDADE 1
Sabemos que há uma enorme diversidade de formas de organismos vivos. Essas 
formas de vida possuem uma dinâmica muito grande e estão sujeitas a contínuas alterações 
evolutivas, resultado de sucessivas mutações e seleção natural nos ambientes em constante 
transformação. De todos os organismos biológicos que conhecemos, os microrganismos 
estão entre os mais antigos. Consequentemente, eles tiveram muito mais tempo de evolução. 
Neste tópico, iremos conhecer os principais grupos de microrganismos, bem como as suas 
sistematizações e taxonomia.
Podemos dizer que a Microbiologia se encarrega de estudar os organismos 
microscópicos. Esses organismos possuem em comum somente o tamanho, porém muitos 
são unicelulares, sendo que alguns possuem a capacidade de viverem associados, formando 
colônias ou estruturas pluricelulares, como as algas e os fungos. Antes de a genética molecular 
possuir todo o desenvolvimento que possui hoje, os organismos eram classificados segundo 
os seus caracteres morfológicos, a sua fisiologia e também pelo seu comportamento. Dessa 
forma, podiam-se obter informações sobre o grau de evolução do organismo que se queria 
classificar. Com isso, houve classificações do tipo filogenético, que analisavam as relações 
evolutivas dos organismos vivos. Ocorreram muitas falhas de classificação nos estudos dos 
seres unicelulares e, com o desenvolvimento de novas técnicas de classificações, as antigas 
foram sendo substituídas. Para Roitman, Travassos e Azevedo (1991, p. 107), “[...] a ciência 
que tem como objetivo tentar ordenar o caos aparente da diversidade biológica é a taxonomia”. 
Segundo os mesmos autores, é muito comum a utilização da palavra sistemática como um 
sinônimo de taxonomia, porém ela está mais voltada para a parte de classificação e pode 
UNIDADE 1TÓPICO 232
M
I
C
R
O
B
I
O
L
O
G
I
A
também significar a ordenação de outras entidades fora do âmbito da taxonomia. Para Black 
(2002, p. 208), “[...] a taxonomia é a ciência da classificação. Ela fornece uma base ordenada 
para a denominação dos organismos em uma categoria, ou táxon”.
UNI
Caro(a) acadêmico(a)! É importante saber a diferença entre 
Taxonomia e Sistemática. Pois bem, Taxonomia é o ramo 
da Biologia que se ocupa da classificação dos seres vivos e 
da nomenclatura dos grupos formados. Sistemática inclui a 
taxonomia e a biologia evolutiva. É uma ciência que utiliza todos 
os conhecimentos dos seres vivos para entender as suas relações 
de parentesco e sua história evolutiva, desenvolvendo, assim, 
um sistema de classificação.
Com a publicação do livro Systema Naturae (Sistema Natural) pelo sueco Karl 
von Lineu, em 1735, durante muitos anos só se tinha o conhecimento de dois reinos na 
sistemática: o vegetal e o animal. Em 1866, o evolucionista alemão Ernst Haeckel propôs um 
terceiro reino: Protistas, constituído por microrganismos. Mais tarde, Haeckel observou que 
alguns desses microrganismos não possuíam núcleo e acabou denominando-os Monera. Na 
década de 60, as bactérias foram reconhecidas por Herbert F. Copeland como pertencentes 
ao reino Monera, independente dos Protistas. Os Fungos foram os últimos organismos a 
receberem um reino e coube a Robert H. Whittaker o mérito de criá-lo. Em 1969, resolveu-
se aceitar a proposta de Copeland e se propôs uma classificação geral dos seres vivos que 
continha cinco reinos: Monera (bactérias), Protistas (protozoários), Fungi (fungos), Animallia 
(animais) e Plantae (vegetais). Passados alguns anos, já na década de 80, Lynn Margulise Karlene Schwartz reconhecem os cinco reinos propostos por Whittaker, mas resolvem 
estudar mais a fundo o reino Protista, para melhor caracterizá-lo com propostas de fazer 
algumas modificações. A proposta era a de conservar o número de reinos e incluir as algas 
dentro do antigo grupo Protista. Este novo reino foi denominado Protoctista. Boa parte da 
literatura científica ainda utiliza a denominação Protista. Portanto, a nova classificação de 
cinco reinos consiste em Procariota (Moneras – bactérias), Protoctista ou Protista (algas, 
protozoários etc.), Fungi (liquens e fungos), Animallia (animais vertebrados e invertebrados) 
e Plantae (musgos (briófitas), samambaias (pteridófitas), coníferas (gimnospermas) e plantas 
com flor (angiospermas)).
FONTE: Disponível em: <http://www.scrib.com/doc/35499457/A-DIVERSIDADE-BIOLOGICA>. 
Acesso em: 27 nov. 2010.
UNIDADE 1 TÓPICO 2 33
M
I
C
R
O
B
I
O
L
O
G
I
A
FONTE: Disponível em: <http://maisbiogeologia.blogspot.com/2009/01/sistemtica-
dos-seres-vivos.html>. Acesso em: 25 set. 2010.
FONTE: Disponível em: <http://maisbiogeologia.blogspot.com/2009/01/sistemtica-
dos-seres-vivos.html>. Acesso em: 25 set. 2010.
IMP
OR
TAN
TE! �
Encontramos diferentes modos de escrever o nome desse notável 
cientista: 
• Carl von Linné
• Karl von Lineu
• Carolus Linnaeus
Mas, para este Caderno, adotamos a segunda maneira, a mais 
popular, Karl von Lineu.
FIGURA 17 – CLASSIFICAÇÃO DOS SERES VIVOS EM REINOS PROPOSTA 
POR LINEU EM 1735 E HAECKEL EM 1866
FIGURA 18 – CLASSIFICAÇÃO DOS SERES VIVOS EM REINOS PROPOSTA 
POR COPELAND EM 1960 E WHITTAKER EM 1969
UNIDADE 1TÓPICO 234
M
I
C
R
O
B
I
O
L
O
G
I
A
Atualmente existem duas formas de classificação que seguem propostas diferentes: a 
classificação de Lynn Margulis (Quadro 1) e a classificação de Woese (Figura 19).
Domínios ou Super-reinos Reinos Sub-reinos
Prokarya (Procariontes) Monera (Bactéria) Archea (Arqueobactérias)
Eubacteria (Eubactérias)
Eukarya (Eucariontes) Protoctista (Protista)
Fungi (Fungos)
Plantae (Plantas)
Animallia (Animais)
FONTE: Disponível em: <http://portfbio-chinita.webnode.com/products/sistematica-dos-seres-
vivos/>. Acesso em: 25 set. 2010.
Portanto, os microrganismos estariam colocados entre os três reinos: Moneras 
(bactérias), Protoctistas (protozoários e algas microscópicas) e Fungi (os fungos microscópicos). 
Até fins da década de 70, o Reino era considerado a categoria sistemática que mais incluía. 
Porém, o sequenciamento de moléculas universais – RNAr – levou Carl Woese e colaboradores 
à construção de uma árvore filogenética única, na qual há uma diferenciação de três linhagens 
evolutivas principais (Figura 19).
FONTE: Disponível em: <http://iescarin.educa.aragon.es/estatica/depart/biogeo/
varios/BiologiaCurtis/Seccion%205/5%20-%20Capitulo%2026.htm>. 
Acesso em: 25 set. 2010.
QUADRO 1– SISTEMA DE CLASSIFICAÇÃO DE MARGULIS
FIGURA 19 – ESTRUTURA FILOGENÉTICA MAIS PROFUNDA DA 
DIVERSIDADE BIOLÓGICA OBTIDA POR WOESE A PARTIR DO 
SEQUENCIAMENTO DO RNAr
UNIDADE 1 TÓPICO 2 35
M
I
C
R
O
B
I
O
L
O
G
I
A
Na Figura 19, podemos observar três grupos monofiléticos bem distintos, que 
correspondem aos domínios Bacteria, Archaea e Eucarya. A proposta de Woese foi agrupar em 
uma nova categoria, denominada domínio, cada uma das linhagens ou grupos monofiléticos, 
denominando-os: Archaea (evolutivamente seriam os microrganismos mais antigos (PELCZAR; 
CHAN; KRIEG, 1997a). Estão incluídos aqui os organismos Procarióticos com capacidade de 
sobreviverem em condições muito extremas, tais como, viver em locais de altas temperaturas 
ou em ambientes altamente salinos), Bacteria (evolutivamente estão incluídas aqui as bactérias 
mais modernas que do domínio anterior), e Eucarya (aqui estão incluídos todos os seres 
formados por células eucarióticas). Essa troca ressalta muito bem as diferenças que até então 
estavam escondidas entre organismos procariontes. Para Pelczar, Chan e Krieg (1997a, p. 
59), “Woese propôs que arqueobactérias, eubactérias e eucariotos representam os três reinos 
primários da vida, um conceito que está ganhando adeptos entre os cientistas”. Não importa 
qual seja o sistema de classificação adotado, o que importa é ter conhecimento das principais 
categorias de organismos vivos e das suas características, que levam a sua inserção em um 
ou outro reino. 
A classificação nada mais é do que um arranjo ordenado dos organismos com caracteres 
semelhantes para separar daqueles com caracteres diferentes em grupos chamados de taxa 
- singular de táxon.
UNI
Para entender melhor a importância da classificação dos seres 
vivos, vamos fazer uma analogia. Imagine você entrando 
numa biblioteca para fazer uma pesquisa sobre bactérias e se 
depara com 2 mil livros, de diversas áreas, todos espalhados 
e misturados. Sua pesquisa irá se tornar bem complicada, não 
acha? Agora, imagine entrar nessa mesma biblioteca com todos 
os livros organizados por área de conhecimento. Com certeza 
sua pesquisa será bem mais fácil. Com os seres vivos acontece 
o mesmo. São milhares de espécies classificadas para facilitar 
o estudo.
O objetivo central da classificação é agrupar os microrganismos seguindo critérios, 
cujo objetivo é a obtenção de uma sistemática descritiva ou artificial ou simplesmente agrupar 
os microrganismos com aplicações de métodos que refletem a sistemática filogenética. 
Existe um problema para os microrganismos quanto ao sistema natural de classificação. A 
dificuldade toda está na ausência de fósseis. Por isso, fica muito difícil o estabelecimento 
de uma classificação natural. Para sanar essa dificuldade, os taxonomistas utilizam técnicas 
de biologia molecular (estudos de macromoléculas – ácidos nucleicos e proteínas). Por isso, 
para fazer uma classificação dos organismos, exige-se um conhecimento profundo de suas 
características. Em uma descrição completa e adequada de um táxon microbiano são aplicados 
dados morfológicos, bioquímicos, fisiológicos, genéticos e ecológicos.
UNIDADE 1TÓPICO 236
M
I
C
R
O
B
I
O
L
O
G
I
A
EST
UDO
S F
UTU
RO
S! �
No próximo tópico, veremos os principais grupos de microrganismos. 
Fique atento às principais características que cada grupo apresenta. 
Bons estudos!
3 CLASSIFICAÇÃO
A classificação dos organismos macroscópicos pode ser feita, em um primeiro momento, 
baseando-se nas características estruturais visíveis, porém, é muito complicado fazer uma 
classificação dessa forma para os organismos microscópicos, em especial para as bactérias, 
que possuem na sua grande maioria estruturas semelhantes. Não adiantaria em nada tentar 
fazer uma separação de acordo com a sua forma, tamanho e muito menos pelo arranjo da 
célula, pois não seria muito útil como forma de classificação sistêmica. Nem mesmo se fosse 
avaliar a presença de estruturas específicas – flagelos, endósporos ou cápsulas – iria ajudar 
na identificação de espécies particulares. Por tudo isso, há a necessidade de outros critérios 
para serem usados em uma classificação. 
Sabemos que o sistema de classificação biológica se baseia na hierarquia taxonômica, 
que permite um melhor ordenamento dos grupos de organismos em categorias. Sendo assim, 
teremos o Reino, no qual estão reunidos todos os filos. O termo Filo é utilizado para animais 
e Divisão é aplicado para plantas. Essa categoria reunirá todas as classes semelhantes. A 
Classe reunirá todas as Ordens. A Ordem inclui todas as Famílias. A Família está constituída 
de Gêneros relacionados ou semelhantes entre si. O Gênero irá agrupar as espécies similares, 
ou seja, ele é mais abrangente que a espécie, incluindo diferentes espécies que apresentam 
grandes semelhanças estruturais. A Espécie é um grupo de indivíduos que estão dotados de 
algumas

Continue navegando