Buscar

Congruência e Semelhança de Triângulos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 9 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 9 páginas

Prévia do material em texto

Congruência e Semelhança de Triângulos
Congruência de triângulos 
Dois ou mais triângulos são congruentes somente se os seus lados e ângulos forem ordenados congruentes. 
 
O emprego da congruência de triângulos em demonstração 
Com o auxilio da congruência de triângulos é que se demonstra grande parte dos teoremas fundamentais da geometria.
Semelhança de triângulos 
Dois triângulos são semelhantes somente se, existe uma correspondência biunívoca que associa os três vértices de um dos triângulos aos três vértices do outro, de forma que:
lados opostos a vértices correspondentes são proporcionais. 
II) Ângulos com vértices correspondentes são congruentes. 
 
Casos de semelhança de triângulos 
Critérios utilizados para que haja semelhança de triângulos 
1) Caso AA (ângulo, ângulo)Dois triângulos são semelhantes somente se, têm dois ângulos respectivamente congruentes. 
 
2) Caso LAL (lado, ângulo, lado)Dois triângulos são semelhantes somente se, têm dois lados, respectivamente, proporcionais; e são congruentes os ângulos formados por esses lados. 
 
3) Caso LLL (lado, lado, lado) Dois triângulos são semelhantes somente se, têm os três lados, respectivamente, proporcionais. 
 
Relações Métricas no triângulo Retângulo 
Caso ABC seja um triângulo retângulo em A, traçando-se a altura AH, relativa à hipotenusa, ficam definidos os seguintes elementos.
Geometria Plana - Matemática - Brasil Escola
Congruência entre Triângulos
Dois triângulos (ou de forma geral, duas figuras planas) são congruentes quando têm a mesma forma e as mesmas dimensões, ou seja, o mesmo tamanho.
Já a semelhança entre triângulos, objeto do artigo, aborda o conceito mais amplo onde se tem triângulos com a mesma forma, mas não necessariamente com o mesmo tamanho. Em outras palavras, congruência é um caso particular de semelhança entre triângulos no sentido de que se dois triângulos são congruentes necessariamente eles são semelhantes, mas o contrário não é verdadeiro, como você observará daqui em diante.
Definição de Semelhança entre Triângulos
Dizemos que dois triângulos são semelhantes se, e somente se, possuem seus três ângulos ordenadamente congruentes e os lados homólogos (homo = mesmo, logos = lugar) proporcionais.
Traduzindo a definição em símbolos:
Observe que as três primeiras expressões entre os parêntesis indicam a congruência ordenada dos ângulos e a última a proporcionalidade dos lados homólogos.
Em bom português, podemos, ainda, definir a semelhança entre triângulos através da frase: dois triângulos são semelhantes se um pode ser obtido pela expansão uniforme do outro (caso deseje comprovar veja o programa em Java descrito abaixo).
Razão de Semelhança
Denominamos o número real k, que satisfaz as igualdades abaixo entre os lados homólogos, como a razão de semelhança dos triângulos:
Para uma idéia melhor dos conceitos acima sugiro uma visita ao programa em Java de Karlos Gomes. A imagem inicial da página é apresentada a seguir, onde temos dois triângulos entre um feixe de três retas com origem no ponto C. Ao arrastar o triângulo rosa para cima ou para baixo, o ponto em vermelho no segmento de reta indica o valor da razão de semelhança correspondente. Ao colocar o triângulo rosa exatamente sobre o verde você observará que a razão de semelhança é igual a 1, como era de se esperar (você sabe dizer o significado deste fato?).
O único problema é que o programa demora a carregar. Tenha um pouco de paciência, e espere, vale a pena. Após, por favor, retorne a este artigo :-).
Exemplo
Dados os triângulos ABC e DEF semelhantes com as medidas dos lados indicadas abaixo, calcule as medidas dos lados e e d do segundo triângulo.
Solução:
Como os triângulos são semelhantes por hipótese, vem, pela razão de semelhança, que:
c = kf => k = c/f => k = 4/8 = 1/2
De forma análoga:
a = kd => 8 = (1/2)d => d = 16
b = ke => 6 =(1/2)e => e = 12
Propriedades
a) Reflexiva: Todo triângulo é semelhante a si próprio.
b) Simétrica: Se um triângulo é semelhante a um outro, este é semelhante ao primeiro.
c) Transitiva: Se um triângulo é semelhante a um segundo e este é semelhante a um terceiro, então o primeiro é semelhante ao terceiro.
Teorema Fundamental
Se uma reta é paralela a um dos lados de um triângulo e intercepta os outros dois em pontos distintos, então o triângulo que ela determina é semelhante ao primeiro.
A demonstração do Teorema Fundamental é feita a partir do Teorema de Tales, que por sua vez pode ser demonstrado a partir dos critérios de semelhança definidos abaixo (fica como exercício).
Se um feixe de retas paralelas tem duas transversais, então a razão entre dois segmentos quaisquer de uma é igual à razão entre os segmentos correspondentes na outra.
Demonstração do Teorema Fundamental:
A demonstração da congruência dos ângulos dos triângulos ABC e ADE (figura abaixo) decorre do fato de que ângulos correspondentes determinados por duas paralelas são congruentes. Assim, o ângulo B é congruente ao D e o ângulo C é congruente ao E. Como o ângulo A é comum aos dois triângulos concluímos a primeira parte da demonstração.
Pelo Teorema de Tales temos que:
m(AD)/m(AB) = m(AE)/m(AC) [1]
Por E construímos a reta EF paralela a BD, conforme indicado na figura acima. Do paralelogramo BDEF temos que m(DE) = m(BF). E, novamente, pelo Teorema de Tales:
m(AE)/m(AC) = m(BF)/m(BC) => m(AE)/m(AC) = m(DE)/m(BC) [2]
De [1] e [2] vem que os lados homólogos são proporcionais, o que conclui a demonstração.
Observação: Nos termos do tipo m(AE), utlizados acima, imagine uma barra sobre AE para se ter a notação correta conforme indicado anteriormente.
Critérios de Semelhança de Triângulos
Critério AA => Ângulo-Ângulo: Se dois triângulos têm dois ângulos internos correspondentes congruentes, então os triângulos são semelhantes.
Demonstração:
No caso dos dois triângulos serem congruentes, nada há a demonstrar, pois por definição de congruência os triângulos são necessariamente semelhantes. Suponhamos, então, como indicado na figura, o triângulo ABC maior que o triângulo DEF e construamos o triângulo AGH tal que a medida do lado AG seja igual à medida do lado DE, o ângulo G congruente ao ângulo E e H sobre o lado AC.
Além disso, como o ângulo A é congruente ao ângulo D, por hipótese, o triângulo AGH é congruente ao triângulo DEF (critério ALA da congruência entre triângulos) e portanto semelhantes.
Por outro lado, pelo Teorema Fundamental, temos que o triângulo AGH é semelhante ao triângulo ABC, já que o lado GH é paralelo ao lado BC. E, finalmente, como o triângulo ABC é semelhante ao triângulo AGH, e AGH, por sua vez, é semelhante a DEF, concluímos, pela propriedade transitiva, que o triângulo ABC é semelhante ao triângulo DEF.
As demonstrações dos demais critérios ficam como exercício.
Critério AAA => Ângulo-Ângulo-Ângulo: Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes de outro triângulo, então os triângulos são semelhantes.
Critério LAL => Lado-Ângulo-Lado: Se as medidas de dois dos lados de um triângulo são proporcionais aos homólogos do outro triângulo e os ângulos determinados por estes lados são congruentes, então os triângulos são semelhantes.
Critério LLL => Lado-Lado-Lado: Se as medidas dos lados de um triângulo são respectivamente proporcionais às medidas dos lados correspondentes de outro triângulo, então os triângulos são semelhantes.
Teorema de Pitágoras
Um triângulo é denominado retângulo se um de seus ângulos é reto, ou seja, tem 90 graus. O lado de maior medida é denominado hipotenusa (a) e os outros dois lados de catetos (b e c).
Pitágoras estabeleceu, então, em seu mais famoso teorema que: O quadrado da hipotenusa é igual a soma dos quadrados dos catetos, i.e.:
a2 = b2 + c2
Para finalizar o artigo com chave de ouro vamos demonstrar o Teorema de Pitágoras com o uso dos critériosde semelhança.
Demonstração:
Observe que os triângulos ABH e ABC são semelhantes como decorrência do critério AA, uma vez que ambos possuem um ângulo reto e o ângulo B em comum. Daí tiramos a seguinte relação entre os lados homólogos:
c/a = m/c => c2 = a.m => c2 = a.(a - n) => c2 = a2 - an [1]
Pela mesma razão os triângulos AHC e ABC são semelhantes. Logo:
b/a = n/b => b2 = an [2]
Substituindo [2] em [1] vem que:
c2 = a2 - b2 => a2 = b2 + c2.

Continue navegando