Buscar

apostila fisexp1 v3

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 81 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Apostila de Física Experimental 1
Prof. Fernando Saliby de Simoni
Prof. Carlos Magno da Conceição
Prof. Robson Brito Rodrigues
Profa. Mariana Dutra
Técnicos: Viviane Amorim e Johnatan Pacheco
30 de Novembro de 2015
2
Conteúdo
1 Conceitos Básicos 7
1.1 O conceito de medida . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Tipos de erros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Erros de medidas diretas . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Medidas indiretas e propagação de erro . . . . . . . . . . . . 9
1.2.3 Erro relativo percentual . . . . . . . . . . . . . . . . . . . . 13
1.3 Algarismo Significativos . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Elaboração de gráficos 17
2.1 Gráficos cartesianos . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Construção de gráficos . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Escolha dos eixos: . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Determinação das escalas (O cálculo do passo): . . . . . . . 22
2.2.3 Marcação de referência nos eixos . . . . . . . . . . . . . . . 25
2.2.4 Marcação dos pontos no gráfico . . . . . . . . . . . . . . . . 26
3 Ajuste dos Parâmetros do Modelo 31
3.1 Relações lineares . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Linearização de gráficos . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Método dos mínimos quadrados . . . . . . . . . . . . . . . . . . . . 32
4 Elaboração de Relatórios 35
5 Tratamento de dados: Densidade do Alumínio 41
5.1 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Modelo Teórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Procedimento Experimental e Tomada de Dados . . . . . . . . . . . 42
5.4 Análise de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6 Movimento Retilíneo Uniforme - MRU 45
6.1 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3
4 CONTEÚDO
6.2 Modelo Teórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Procedimento Experimental . . . . . . . . . . . . . . . . . . . . . . 45
6.4 Tomada de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Análise de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 Plano Inclinado 49
7.1 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Modelo Teórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.3 Procedimento Experimental . . . . . . . . . . . . . . . . . . . . . . 49
7.4 Tomada de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.5 Análise de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8 Movimento Retilíneo Uniformemente Variado com Peso 53
8.1 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.2 Modelo Teórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3 Procedimento Experimental . . . . . . . . . . . . . . . . . . . . . . 54
8.4 Tomada de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.5 Análise de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9 Queda Livre 57
9.1 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.2 Modelo Teórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.3 Procedimento Experimental . . . . . . . . . . . . . . . . . . . . . . 59
9.4 Tomada de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.5 Análise de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10 Movimento Circular Uniforme - MCU 61
10.1 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.2 Modelo Teórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.3 Procedimento Experimental . . . . . . . . . . . . . . . . . . . . . . 62
10.4 Tomada de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.5 Análise de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
11 Trabalho e Energia 65
11.1 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.2 Modelo Teórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.3 Procedimento Experimental . . . . . . . . . . . . . . . . . . . . . . 66
11.4 Tomada de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.5 Análise de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
CONTEÚDO 5
12 Colisões Elástica e Inelástica 71
12.1 Objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.2 Modelo Teórico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.3 Procedimento Experimental . . . . . . . . . . . . . . . . . . . . . . 73
12.4 Tomada de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
12.5 Análise de Dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A Método dos mínimos quadrados - versão avançada 77
6 CONTEÚDO
Capítulo 1
Conceitos Básicos
A comprovação de um modelo Físico se faz necessariamente através de obser-
vações de fenômenos da natureza que estão previstos por esse modelo. O método
científico estipula que somente quando o modelo concordar com uma série (todas!)
de observações ele será elevado ao status de teoria. Desta forma, junto com todo
o ferramentário matemático desenvolvido nos cursos de Física teórica, é de funda-
mental importância também termos conhecimento de como devemos determinar
se esses modelos estão de acordo com a natureza de fato. Este tipo de análise é
feita através de experimentos.
Nesta apostila iremos introduzir o método científico para determinarmos se
um modelo teórico está de acordo ou não com a natureza. Desta forma iremos
determinar como as medidas de uma certa quantidade devem ser apresentadas, a
determinação do erro das medidas, algo tão importante quanto a medida em si.
A análise gráfica dos dados medidos e como escrever um relatório com todas as
informações relevantes do experimento realizado e com a conclusão principal: o
modelo teórico corresponde ou não a natureza?
1.1 O conceito de medida
O conceito de medida e sua apresentação são de fundamental importância para
qualquer ciência e para a Engenharia. Uma medida nunca é perfeita, ou seja, ela
estará sempre associada à uma incerteza (erro). O bom experimental, além de
criar ferramentas para medir uma certa quantidade da natureza, tem que levantar
todas as fontes de erros possíveis que afetem essa medida. Desta forma uma medida
experimental m de uma quantidade M esta obrigatoriamente associada a um erro
δm. Desta forma, uma medida deve ser apresentada como:
M = (m± δm) unidade de medida . (1.1)
7
8 CAPÍTULO 1. CONCEITOS BÁSICOS
A letra grega δ (delta minúsculo) na frente da quantidade medida denota o erro
associado.
Como exemplo, suponha que determinamos que a distância entre o Rio de
Janeiro e Rio das Ostras é de D = 178 km, mas como os dois municípios tem uma
certa dimensão, isto é, não são pontuais temos de associar um erro nesta distância,
que iremos assumir ser δD = 5 km. Num relatório de um experimento essa medida
deve ser apresentada como
D = (178± 5) km . (1.2)
1.2 Tipos de erros
1.2.1 Erros de medidas diretas
Uma medida direta de uma quantidade é feita normalmente por aparelhos
analógicos ou digitais. Um exemplo típico é uma medida de distância feita por
uma régua, ou a medida da massa de um corpo com uma balança. De uma forma
simples, podemos classificar os equipamentos analógicos como aqueles que possuem
uma graduação feita por uma escala de subdivisões impressa no aparelho.
Utilizando a régua graduada com um exemplo, vemos na figura 1.2.1 que a
mínima divisão da graduação desta régua é de 0, 1 centímetros (cm). Claramente,
não é possível fazermos uma medida com uma precisãoabaixo deste valor. Desta
forma o erro associado a régua, ou qualquer outro instrumento analógico será dado
por:
Erro analógico =
menor divisão da escala
2
. (1.3)
Figura 1.1: Régua graduada com mínima divisão de 0, 1 centímetros.
1.2. TIPOS DE ERROS 9
Para equipamentos digitais normalmente os próprios equipamentos já vêm in-
formando a sua incerteza nos manuais, mas quando não possuem essa informação,
podemos definir o seu erro como sendo:
Erro digital = menor divisão da escala . (1.4)
Na figura 1.2 mostramos uma balança digital com medida de até 1 grama. Caso o
manual não possua o erro associado à balança, devemos estipular o seu erro como
sendo 1 grama.
Figura 1.2: Balança digital com medição até 1 grama.
1.2.2 Medidas indiretas e propagação de erro
Na grande maioria das vezes quando efetuamos um experimento para verificar
alguma teoria física, as quantidades que realmente aparecem na teoria não são
diretamente medidas no experimento. Um bom exemplo do nosso dia-a-dia, que
abrange esta questão, seria a verificação da velocidade média v¯ de um carro. Nor-
malmente, para inferirmos v¯ de um certo veículo, não medimos essa quantidade
diretamente, ou seja, não possuímos um aparelho de medida que nos forneça dire-
tamente v¯. Na prática efetuamos a medida da posição do carro em pelo menos dois
instantes, x(t1) e x(t2), dessa forma utilizamos a definição de velocidade média,
dada por:
v¯ =
x(t2)− x(t1)
t2 − t1 =
x2 − x1
t2 − t1 . (1.5)
Outro exemplo de medida indireta é a estimativa da área de um tampo de uma
mesa. Para fazer essa estimativa temos de medir em separado dois comprimentos,
10 CAPÍTULO 1. CONCEITOS BÁSICOS
a sua largura y e o seu comprimento x, e assumindo que o tampo da mesa é um
retângulo perfeito, a área é encontrada através da relação
A = xy . (1.6)
Desta forma necessitamos propagar os erros das quantidades medidas para as
quantidades que realmente desejamos, ou seja, para os dois casos acima desejamos
encontrar uma relação do tipo:
δv¯ = F (x2, x1, t1, t2, δx1, δx2, δt2, δt1) (1.7)
δA = F (x, y, δx, δy) . (1.8)
Na duas equações acima apenas determinamos que o erro propagado só poderá
depender das quantidades medidas e de seus respectivos erros, algo intuitivo. Mas
qual será exatamente esta relação? Antes de apresentarmos a relação de erro
propagado, vamos tentar tirar algumas conclusões intuitivas: para o caso da ve-
locidade, assumindo que o erro da medida do tempo é desprezível com relação as
outras medidas, ou seja, δt1 = δt2 ≃ 0, um primeiro chute inocente poderia ser a
seguinte relação
δv¯chute =
δx2 − δx1
t2 − t1 , (1.9)
onde utilizamos que o erro das quantidades são muito pequenos com relação ao
seus valores medidos, desta forma associamos o erro a diferencial (δx ≃ dx). Sem
muita dificuldade podemos concluir que este chute não pode ser correto. Neste
caso em particular para a velocidade média, as medidas das posições x1 e x2 são
feitas com o mesmo aparelho. Logo, estão sujeitas ao mesmo erro de medida,
δx2 = δx1 = δx, desta forma o nosso chute nos forneceria um erro
δv¯chute =
δx− δx
t2 − t1 = 0 (1.10)
Ou seja, a partir de medidas com erro chegamos em um resultado sem nenhum
erro! Obviamente, uma conclusão completamente equivocada.
Da tentativa acima tiramos uma importante conclusão: Erros não podem
subtrair, somente se somam. Para este caso em particular, onde queremos
propagar o erro de uma subtração δf = δ(y − x), temos a seguinte regra:
δf 2 = δy2 + δx2 . (1.11)
Aplicando esta regra para v¯, ainda assumindo que a medida de tempo tem um
erro desprezível e as posições têm o mesmo erro, obtemos
δv¯ =
√
δx22 + δx
2
1
t2 − t1 =
√
2 δx
t2 − t1 . (1.12)
1.2. TIPOS DE ERROS 11
Note que o erro propagado não é apenas a soma dos erros, mas sim a sua soma
quadrática1.
A fórmula genérica de propagação de erros faz uso da noção de derivada. Dada
uma grandeza f , que é obtida de outras grandezas medidas no experimento, x, y,
z, ...,
f = f(x, y, z, ...) (1.13)
e com erros associados δx, δy, δz, ..., assumindo que essas medidas são indepen-
dentes, o erro δf será
δf 2 =
(
∂f
∂x
)2
δx2 +
(
∂f
∂y
)2
δy2 +
(
∂f
∂z
)2
δz2 + ... (1.14)
Esta é a fórmula geral de propagação de erro quando as medidas são independentes.
Segue abaixo alguns exemplos de propagação de erros:
• Uma única variável:
Neste caso a equação (1.14) nos fornece
δf 2 =
(
df
dx
)2
δx2 =⇒ δf =
∣∣∣∣ dfdx
∣∣∣∣ δx . (1.15)
• Soma de variáveis, f = x+ y + z + ...:
∂f
∂x
= 1 ,
∂f
∂y
= 1 ,
∂f
∂z
= 1 , .... (1.16)
Substituindo os valores encontrados na equação (1.14), obtemos:
δf 2 = δx2 + δy2 + δz2 + ... (1.17)
• Diferença de variáveis, f = x− y − z − ...:
∂f
∂x
= 1 ,
∂f
∂y
= −1 , ∂f
∂z
= −1 , .... (1.18)
Substituindo os valores encontrados na equação (1.14), obtemos:
δf 2 = δx2 + δy2 + δz2 + ... (1.19)
Como era de se esperar o erro da soma é igual ao erro da diferença.
1Essa relação para o erro propagado é encontrada utilizando conceitos de probabilidade e
estatística, algo fora do escopo desta apostila. Para um leitor interessado em se aprofundar neste
assunto veja a referência [3].
12 CAPÍTULO 1. CONCEITOS BÁSICOS
• Erro da área do tampo da mesa, A = xy:
∂A
∂x
= y ,
∂A
∂y
= x . (1.20)
Substituindo os valores encontrados na equação (1.14), obtemos:
δA2 = y2δx2 + x2δy2 . (1.21)
Assumindo que o erro δx = δy = δL, pois medimos ambas as distâncias com
a mesma régua, obtemos:
δA = δL
√
x2 + y2 . (1.22)
• Velocidade média, desprezando o erro na medição do tempo t, dada
pela equação (1.5):
∂v¯
∂x2
= (t2 − t1)−1 , ∂v¯
∂x1
= −(t2 − t1)−1 . (1.23)
Substituindo os valores encontrados na equação (1.14), obtemos:
δv¯2 =
δx22
(t2 − t1)2 +
δx21
(t2 − t1)2 (1.24)
Colocando o termo do tempo em evidência e assumindo que δx2 = δx1 = δx
obtemos:
δv¯ =
√
2 δx
t2 − t1 , (1.25)
como encontrado anteriormente.
Abaixo apresentamos uma tabela com algumas propagações de erro mais uti-
lizadas no nosso curso de Física Experimental do PURO:
1.2. TIPOS DE ERROS 13
Função Erro
f = x+ y δf 2 = δx2 + δy2
f = x− y δf 2 = δx2 + δy2
f = Ax (A = cte) δf 2 = (Aδx)2
f = xy
(
δf
f
)2
=
(
δx
x
)2
+
(
δy
y
)2
f = x
y
(
δf
f
)2
=
(
δx
x
)2
+
(
δy
y
)2
f = x2 δf 2 = (2xδx)2
Exercícios
1. Encontre o erro na medida do volume de um cilindro, onde foram medidos
diretamente o comprimento L, com erro δL e o seu raio R com erro associado
δR.
2. Encontre o erro na medida da velocidade média, como feito anteriormente,
mas neste caso, além das posições terem o mesmo erro, não suponha que o
tempo tem erro desprezível, mas apenas que eles são iguais δt2 = δt1 = δt.
1.2.3 Erro relativo percentual
Uma outra forma de avaliar o resultado da medida de uma grandeza é comparar
esse resultado com um valor preestabelecido, ou um valor de referência. O erro
relativo de uma medida x, dado um valor de referência x¯ é definido por:
∆x =
x− x¯
x¯
× 100 . (1.26)
Como um exemplo, suponha que fizemos uma medição da aceleração da gra-
vidade, e encontramos o seguinte resultado g = 997 cm/s2, comparando com o
resultado teórico g¯ = 980 cm/s2, o erro relativo percentual será:
∆g =
997− 980
980
× 100 = 1, 7% , (1.27)
14 CAPÍTULO 1. CONCEITOS BÁSICOS
ou seja, uma diferença de ∼ 2% com o esperado teoricamente.
1.3 Algarismo Significativos
Na matemática aplicada, algarismos significativos são utilizados para monitorar
os erros ao se representar números reais na base 10. Por exemplo, 1/7 = 0, 14 com
dois algarismos significativos (já que o erro está na terceira casa decimal: 1/7 =
0, 1428571429). Analogamente, 1/30 = 0, 0333 com três algarismos significativos
(erro na quinta casa decimal).Como identificar os algarismos significativos:
• Os algarismos zero que correspondem às ordens maiores não são significati-
vos. Exemplos: em 001234, 56 os dois primeiros zeros não são significativos,
o número tem seis algarismos significativos; em 0, 000443 os quatro primeiros
zeros não são significativos, o número tem três algarismos significativos.
• Os algarismos zero que correspondem às menores ordens, se elas são fra-
cionárias, são significativos. Exemplo: em 12, 00 os dois últimos zeros são
significativos, o número tem quatro algarismos significativos.
• Os algarismos de 1 a 9 são sempre significativos. Exemplos: em 641 o número
tem três números significativos; em 38, 984 o número tem cinco algarismos
significativos.
• Zeros entre algarismos de 1 a 9 são significativos. Exemplo: em 1203, 4 todos
os cinco algarismos são significativos.
Especificamente para dados experimentais, os algarismos significativos estão
associados com os erros das medidas. Vamos fazer um exemplo para entendermos
melhor: suponha que medimos duas posições em dois instantes de tempos de um
carro numa estrada, dados por: x1 = 10, 5 m, x2 = 32, 1 m, com erros dados por
δx1 = δx2 = 0, 3m, os instantes têm erros desprezíveis e são t1 = 0 e t2 = 3.3
segundos. Desta forma podemos determinar a sua velocidade média e a respectiva
incerteza:
v¯ =
32, 1− 10, 5
3.3− 0 m/s = 6, 545454545454546...m/s (1.28)
δv¯ =
√
2× 0, 3
3, 3− 0 m/s = 0, 12856486930664501...m/s . (1.29)
Note que escrevemos os resultados sem fazer nenhum arredondamento. Se fôsse-
mos escrever o resultado desta forma estaríamos colocando valores sem sentido
físico para o nosso experimento, pois o erro nos fornece o grau que conseguimos
1.3. ALGARISMO SIGNIFICATIVOS 15
determinar a medida da velocidade. Neste caso específico o erro esta na primeira
casa decimal, e fornecer valores menores que a primeira casa decimal não gera
informações relevantes ou mesmo confiáveis. Em experimentos, é usual escrever-
mos os resultados com apenas 1 algarismo significativo no erro, neste exemplo, o
resultado deveria ser mostrado como:
v¯ = (6, 5± 0, 1)m/s . (1.30)
Observe que a medida v¯ tem 2 algarismo significativos. A obrigatoriedade é que o
erro da medida tenha apenas 1 algarismo significativo2.
Como um segundo exemplo, vamos escrever a distância até a Lua, que fica a
dlua = 384405.085711... km, com erro de δdlua = 1922.02598282... km. Escrevendo
com 1 algarismo significativo no erro, temos:
dlua = (384000± 2000) km = (384± 2)× 103 km . (1.31)
Na segunda igualdade utilizamos a notação científica para ficar mais evidente que
o erro realmente só tem 1 algarismo significativo. Quantos algarismos significativos
possuía a medida da distância da Lua?
2Na verdade não é obrigatório que o erro possua somente 1 algarismo significativo, mas no
curso de Física Experimental iremos usar esse critério.
16 CAPÍTULO 1. CONCEITOS BÁSICOS
Capítulo 2
Elaboração de gráficos
O uso de gráficos na física e nas engenharias é tão importante quanto o conceito
de função na Matemática. Sua utilização na representação de fenômenos permite
ilustrar propriedades importantes. Um gráfico serve, entre outras coisas, para
mostrar a conexão entre duas ou mais grandezas físicas, sendo uma representação
visual do modo como umas variam em relação às outras.
Em vez de olhar para uma tabela com um conjunto de medidas realizadas, os
cientistas e ou engenheiros, olham para o gráfico traçado a partir dessas medi-
das e percebem o comportamento geral das grandezas físicas envolvidas naquela
particular medição.
Neste curso, vamos trabalhar apenas com a relação entre duas grandezas físi-
cas, sendo uma independente e a outra dependente desta. Por exemplo, a grandeza
física velocidade é dependente da grandeza física tempo, que é independente. Ou
seja, o tempo flui independentemente de como a velocidade varia, porém, a ve-
locidade varia em função de como o tempo flui. Atualmente, é quase impossível
imaginar alguma área da ciência ou tecnologia em que a construção e o estudo de
gráficos não seja necessário.
Na disciplina de Física Experimental I é indispensável ao aluno um bom co-
nhecimento a respeito da elaboração de um gráfico. Existem inúmeros tipos de
gráficos. No entanto, aprenderemos a trabalhar apenas com gráficos que envolvam
duas variáveis e que podem ser traçados em papel milimetrado. Em particular,
iniciaremos com o estudo de gráficos cartesianos em papel milimetrado e seus fun-
damentos.
2.1 Gráficos cartesianos
Vamos considerar uma grandeza física dependente Y que varia como função de
uma grandeza independente X. Matematicamente, isto pode ser representado por
17
18 CAPÍTULO 2. ELABORAÇÃO DE GRÁFICOS
uma função:
Y = f(X) (2.1)
Se for conhecida de forma explícita a função Y = f(X), pode-se representá-
la graficamente em um sistema de coordenadas cartesianas, que consiste de duas
retas perpendiculares: o eixo x (eixo das abscissas), onde deve ser representada
a variável independente (X), e o eixo y (eixo das ordenadas), onde deve ser
representada a variável dependente (Y ).
Vamos considerar um determinado valor da grandeza X, por exemplo, seja Xn
tal valor, da relação dada pela equação (2.1), temos que associado a esse valor
existe um outro valor Yn = f(Xn), portanto, fazendo uso de um par ordenado,
podemos introduzir um ponto Pn = (Xn, Yn), cuja representação gráfica é dada
por:
X
Y
Xn
Yn Pn = (Xn, Yn)
Se considerarmos agora o conjunto dos vários pontos (P1, P2, . . . , Pi, . . . ), ob-
teremos o seguinte gráfico
X
Y
Xn
Yn Pi = (Xn, Yn)
P1
P2
O conjunto de todos os pontos Pn é denominado de curva da função Y = f(X),
e os gráficos construídos através de relações desse tipo são chamados de gráficos
cartesianos.
2.2. CONSTRUÇÃO DE GRÁFICOS 19
2.2 Construção de gráficos
Na observação de um fenômeno físico medidas são feitas, logo faz-se necessário
a coleta de dados, os quais geralmente são apresentados em tabelas de valores.
Por exemplo, vamos considerar a queda de tensão elétrica (voltagem) em função
da corrente elétrica que atravessa um resistor, vejamos como se constrói o gráfico
a partir desta tabela, usando o papel milimetrado.
i Corrente (mA) Voltagem (V)
1 10, 0 1, 402
2 20, 0 1, 428
3 30, 0 1, 450
4 40, 0 1, 470
5 50, 0 1, 492
6 60, 0 1, 511
7 70, 0 1, 530
8 80, 0 1, 549
Cada par de valores (in, Vn), onde o subscrito n é o índice que indica a ordem
da medida (n = 1, 2, 3, ..., 9), deve ser representado por um ponto em um gráfico
cartesiano de V × i, onde esta ordem significa (variável dependente versus variável
independente1), pois a queda de voltagem é dependente da corrente elétrica que
atravessa um resistor. Nota-se na própria tabela, que à medida que a corrente
aumenta, a voltagem também aumenta, como consequência.
1Por exemplo, quando um experimentador mede a distância (d) que um corpo móvel percorre
em um certo intervalo de tempo (t), verifica que essa distância varia de acordo com o tempo
medido, e não o contrário. Assim, o gráfico y×x deve ser de d× t, e nunca de t×d, pois d = d(t).
20 CAPÍTULO 2. ELABORAÇÃO DE GRÁFICOS
Para construir o gráfico, a partir da tabela acima, é necessário que algumas
instruções sejam seguidas.
2.2.1 Escolha dos eixos:
No eixo das abcissas (eixo horizontal) deve ser registrada a variável indepen-
dente associada à grandeza física que, ao variar, assume valores que não dependem
dos valores da outra grandeza física. No eixo das ordenadas (eixo vertical) deve ser
registrada a variável dependente associada à grandeza física cuja variação depende
de como varia a outra grandeza física. Para a tabela em questão devemos ter um
gráfico V × i.
i× V
V
i
Vn
in Pn = (Vn, in)
ER
RA
DO
V × i
i
V
in
Vn Pn = (in, Vn)
CO
RR
ET
O
Na parte inferior do eixo das abcissas,à direita, e preferencialmente fora da
região quadriculada do papel milimetrado, deve ser registrada a variável indepen-
dente, com sua unidade entre parênteses. Na parte superior do eixo das ordenadas,
à esquerda, e preferencialmente fora da região quadriculada do papel milimetrado,
deve ser registrada a variável dependente, com sua unidade entre parênteses.
2.2. CONSTRUÇÃO DE GRÁFICOS 21
i (mA)
V (V)
No caso da unidade de uma grandeza física incluir uma eventual potência de
10, que pode ter expoente positivo ou negativo, deve-se explicitar essa potência no
eixo em questão, no nosso exemplo, ao invés de expressarmos a corrente em (mA)
podemos expressá-la em (A). Assim temos:
22 CAPÍTULO 2. ELABORAÇÃO DE GRÁFICOS
i (10−3 (A))
V (V)
2.2.2 Determinação das escalas (O cálculo do passo):
Geralmente, uma folha de papel milimetrado tem 280 mm no eixo vertical, e
180mm no eixo horizontal, então podemos escolher usá-la nesta posição (“retrato”)
ou em outra posição, invertendo os eixos (“paisagem”). A escolha é feita de modo
a otimizar a construção do gráfico visando ocupar o melhor possível a folha. En-
tretanto, “ocupar o melhor possível a folha” não significa que se deve usar a
escala que preencha todo o papel. Na prática, deve-se escolher uma escala que
facilite a leitura dos pontos experimentais, ou qualquer outro ponto representado
no gráfico.
No que segue vamos fazer o cálculo do passo2 da escala para representar as
variáveis i e V , separadamente, ou seja, façamos o cálculo do passo primeiramente
para a variável dependente e em seguida para a variável independente.
Variável independente: a corrente elétrica (i)
Da tabela, vemos que a grandeza física varia entre os valores 10 mA e 80 mA.
Vamos considerar um papel milimetrado com 150 mm na vertical e 120 mm na
horizontal.
2O passo corresponde ao valor referencial de marcação do eixo e é ele que define a escala.
2.2. CONSTRUÇÃO DE GRÁFICOS 23
Vamos considerar o papel na posição retrato, o eixo vertical é maior do que o
horizontal. Teremos duas possibilidades:
(a) Começando do zero:
Se começarmos o gráfico a partir do zero, o cálculo do passo para a corrente
é:
pi =
Valor máximo da medida
Comprimento do papel
(2.2)
Para os valores de corrente elétrica da tabela, temos o passo:
pi =
(80− 0)mA
(120− 0)mm = 0, 666... (mA/mm) ≈ 0, 7 (mA/mm) (2.3)
Este resultado significa que para cada 0, 7 unidade de mA corresponde 1
unidade de mm do papel milimetrado. Note que, se usarmos qualquer escala
diferente cujo passo seja menor do que esse, isto é, se ao invés de arredon-
darmos tivéssemos truncado em 0, 6, não teríamos como marcar o último
ponto que é 80mA, pois teríamos o último ponto do gráfico marcável em
(120mm×0, 6mA/mm = 72mA), ou seja, o gráfico não iria caber no papel.
No entanto nada nos impede de considerar valores maiores para o passo, po-
rém é necessário que alguns aspectos estéticos sejam levados em conta, pois
quanto mais nos afastamos do valor do passo mais diminuímos a ocupação
do papel: por exemplo, podíamos escolher um passo igual a pi = 2mA/mm,
porém essa escolha nos levaria a fazer uso de menos da metade do papel.
Para a marcação adequada da escala, tanto no eixo horizontal, quanto no
vertical, devem ser indicados os valores dos passos que sejam, preferencial-
mente, múltiplos de 2, 5, 10, 20, 50, 100 etc. Nunca use múltiplos ou
submúltiplos de números primos ou fracionários, tais como 3, 7, 9, 11, 13,
15, 17, ou 2, 5; 3, 3; 7, 5; 8, 25; 12, 5; 16, 21 etc.
Quando o passo for menor do que um e maior do que meio, ou seja, se valer
a desigualdade 0, 5 < pi < 1 podemos sempre arredondar o valor do passo
para um, sem alterar muito a ocupabilidade da folha do papel, ou seja, para
facilitar, tanto para quem faz o gráfico quanto para quem vai lê-lo, adota-se
a escala mais próxima desta que seja bem clara para todo mundo. Mesmo
que isso signifique não ocupar todo o papel milimetrado.
Portanto, para o passo da corrente elétrica começando a partir do zero, po-
demos considerar o valor do passo igual a:
pi = 1, 0 (mA/mm) (2.4)
Deve-se adotar uma “escala limpa e fácil de ser lida” de modo que não seja
necessário fazer cálculos para achar a localização dos pontos no gráfico. Aliás,
se se precisar fazer muitos cálculos, algo está inadequado.
24 CAPÍTULO 2. ELABORAÇÃO DE GRÁFICOS
(b) Não começando do zero:
Se não começarmos o gráfico a partir do valor zero, o cálculo do passo é feito
da seguinte forma:
pi =
(Valor máximo − Valor mínimo)
comprimento do papel
(2.5)
Iniciamos a partir do valor mínimo da medida desde que esse seja um número
múltiplo de 10, caso contrário escolhemos o número mais próximo que seja
múltiplo de 10.
Para o nosso exemplo da corrente elétrica, teremos:
pi =
(80− 10)mA
(120− 0)mm = 0, 5833... (mA/mm) (2.6)
portanto, seguindo as considerações anteriores, o passo deve ser arredondado
para:
pi = 1, 0 (mA/mm) (2.7)
O primeiro ponto da escala a ser marcado passa a ser agora o valor mínimo, ou
seja, a origem da nossa escala não é mais o zero (0) e sim o valor 10mA
Variável dependente: a voltagem elétrica (V )
Da tabela, vemos que a grandeza física varia entre os valores 1, 402 V e 1, 549 V.
Novamente vamos considerar um papel milimetrado com 150 mm na vertical e
120 mm na horizontal. Vamos então calcular o passo em duas situações
(a) Começando do zero:
Seguindo os mesmos procedimentos feitos anteriormente temos para o cálculo
do passo, com a origem da marcação partindo do zero:
pV =
Valor máximo medido
comprimento do papel
(2.8)
o que nos fornece
pV =
1, 549V
150mm
= 0, 0103266... (V/mm) (2.9)
Das considerações referentes a escolha dos valores do passo, temos que um possível
valor seria arrendondar para pV = 0, 015 (V/mm), que é um múltiplo de 5, no
2.2. CONSTRUÇÃO DE GRÁFICOS 25
entanto, também é um múltiplo de 3, logo não é adequado. O valor mais adequado
seria
pV = 0, 016 (V/mm) (Múltiplo de 2) (2.10)
Este valor nos diz que para cada 0, 016 V corresponde a 1 mm da escala do papel
milimetrado.
(a) Não começando do zero:
Neste caso a origem da nossa marcação não é mais o zero e sim o valor mínimo
da medida. O valor mínimo é 1, 402 V que não é um múltiplo de 10, logo,
podemos escolher o número 1, 400 V que é o número redondo mais próximo
de 1, 402 V. Seguindo os procedimentos anteriores temos para o cálculo do
passo:
pV =
(Valor máximo medido − Valor mínimo medido)
comprimento do papel
(2.11)
Para a tabela em questão
pV =
(1, 549− 1, 400)V
150mm
= 0, 0009933... (V/mm) (2.12)
Logo, o valor mais adequado para o passo é fazer o arredondamento para o
valor
pV = 0, 001 (V/mm) (Múltiplo de 10) (2.13)
Este valor significa que para cada 0, 001 V corresponde 1 mm da escala do
papel milimetrado.
Note que os valores dos passos devem ter a mesma quantidade de algarismos
significativos das medidas.
2.2.3 Marcação de referência nos eixos
O próximo passo consiste na marcação de referência, que nada mais é do que
marcar nos eixos os valores mais adequados para a leitura do gráfico. Uma forma
rápida e organizada de fazer a marcação de referência é considerar os valores
espaçados de 10mm na escala, mas nada impede de considerarmos valores maiores.
Por exemplo, no caso de escolhermos a marcação, considerando um espaço de
10 mm, basta multiplicar esse valor pelo passo em questão, de tal maneira que a
cada 10 mm do papel milimetrado corresponde a um valor (10× punidade) para a
marcação de referência.
É importante ter em mente que a escala usada em um eixo é totalmente
independente da escala usada no outro. Isto significa que, para representar
26 CAPÍTULO 2. ELABORAÇÃO DE GRÁFICOS
graficamente as medidas de voltagem, podemos adotar uma escala diferente da-
quela que determinamos para apresentar as medidas de corrente elétrica no gráfico.
Portanto, existem quatroformas distintas para fazermos os gráficos:
i) o eixo horizontal e vertical têm suas origens partindo do zero;
ii) o eixo horizontal tem sua origem no zero e o eixo vertical tem sua origem
diferente de zero;
iii) o eixo horizontal tem uma origem diferente de zero e o vertical tem sua
origem a partir de zero;
iv) tanto o eixo vertical quanto o eixo horizontal tem origens diferentes de zero.
No que segue vamos estabelecer um gráfico considerando duas das possibilidades.
2.2.4 Marcação dos pontos no gráfico
Possibilidade (i): (pi = 1 (mA/mm)) e (pV = 0, 016 (mA/mm))
Uma maneira mais adequada de colocar os pontos no gráfico é criar uma tabela
de marcação, onde podemos obter diretamente a que valor da medida corresponde
em mm na escala do papel milimetrado, ou seja, vamos construir a tabela da
seguinte maneira:
2.2. CONSTRUÇÃO DE GRÁFICOS 27
n i (mA) i/pi (mm) V (V) V/pV (mm)
1 10, 0 10, 0 1, 402 87, 6
2 20, 0 20, 0 1, 428 89, 2
3 30, 0 30, 0 1, 450 90, 6
4 40, 0 40, 0 1, 470 91, 9
5 50, 0 50, 0 1, 492 93, 3
6 60, 0 60, 0 1, 511 94, 4
7 70, 0 70, 0 1, 530 95, 6
8 80, 0 80, 0 1, 549 96, 8
Jamais indique nos eixos os valores dos pontos experimentais. Os valores in-
dicados nos eixos devem ter a mesma quantidade de algarismos significativos das
medidas.
28 CAPÍTULO 2. ELABORAÇÃO DE GRÁFICOS
i (mA)
V (V)
0 10 20 30 40 50 60 70 80 90 100
0.00
0.16
0.32
0.48
0.64
50
0.96
1.12
1.28
1.44
100
//0.80
///1.60
2.2. CONSTRUÇÃO DE GRÁFICOS 29
O gráfico acima está correto, no entanto, perceba que uma vez que os valores
das medidas da voltagem estão muito próximos uns dos outros, a inclinação da reta
é muito pequena e a ocupação do gráfico não é feita da melhor maneira, pois muito
espaço vazio existe abaixo dos pontos. Portanto, todas as vezes que os valores das
medidas forem muito próximos uns dos outros, é mais adequado mudar a origem
dos eixos.
Possibilidade (ii): (pi = 1 (mA/mm)) e (pV = 0, 001 (mA/mm))
Do gráfico anterior podemos concluir que é mais adequado e esteticamente
melhor, mudar a origem da marcação, ao invés de partir do zero, podemos partir
do menor valor medido.
Novamente vamos fazer uma tabela de marcação:
n i (mA) i/pi (mm) V (V) V/pV (mm)
1 10, 0 10, 0 1, 402 1402
2 20, 0 20, 0 1, 428 1428
3 30, 0 30, 0 1, 450 1450
4 40, 0 40, 0 1, 470 1470
5 50, 0 50, 0 1, 492 1492
6 60, 0 60, 0 1, 511 1511
7 70, 0 70, 0 1, 530 1530
8 80, 0 80, 0 1, 549 1549
30 CAPÍTULO 2. ELABORAÇÃO DE GRÁFICOS
i (mA)
V (V)
0 10 20 30 40 50 60 70 80 90 100
1.400
1.410
1.420
1.430
1.440
50
1.460
1.470
1.480
1.490
100
1.510
1.520
1.530
1.540
//1.450
///1.500
Este gráfico, além de ocupar o papel mais adequadamente, permite uma leitura
melhor do que o gráfico anterior.
Depois de marcados os pontos experimentais, é importante que não se faça
nenhuma marcação adicional, tal como fazer tracejados desde o ponto até os ei-
xos, isto sobrecarrega o gráfico e não adiciona nenhuma informação importante.
Portanto, identifique apenas os pontos experimentais, e indique os cálculos dos
passos.
Capítulo 3
Ajuste dos Parâmetros do Modelo
Um experimental deve determinar os parâmetros de um modelo teórico dado
um conjunto de dados medidos. No curso de Física Experimental 1 iremos tratar
de modelos teóricos que seguem uma relação linear, ou quadrática. No caso de uma
movimento retilíneo e uniforme (MRU), temos que o modelo teórico da posição da
partícula com o tempo é dado por:
x(t) = x0 + vt . (3.1)
Mas nem sempre o modelo segue uma relação linear. No caso de um movimento
retilíneo uniformemente variado (MRUV), com a partícula saindo do repouso v0 =
0, a relação entre a posição da partícula e o tempo é dado por:
x(t) = x0 +
1
2
at2 (3.2)
No primeiro caso o experimental quer encontrar quais são os valores de x0 e v do
modelo teórico que se ajustam aos dados medidos no experimento. E no caso do
MRUV, quais são os melhores valores da aceleração e da posição inicial. Desta
forma, antes de introduzir um método para encontrar esses valores, vamos re-
lembrar as propriedades básicas de uma reta e como manipulamos relações não-
lineares.
3.1 Relações lineares
Quando a relação matemática entre duas grandezas físicas x e y é linear, é
representada por uma equação do primeiro grau do tipo:
y = Ax+B , (3.3)
31
32 CAPÍTULO 3. AJUSTE DOS PARÂMETROS DO MODELO
onde B é o coeficiente linear e A o coeficiente angular da reta. O coeficiente linear
fornece o valor de y quando x é nulo, o que caracteriza uma condição inicial. No
caso do MRU seria a posição da partícula no tempo zero x0. O coeficiente angular
representa a taxa de variação de y com x. Dados dois pares de pontos (x1, y1) e
(x2, y2) que satisfazem a equação da reta, o coeficiente angular é obtido por:
A =
y2 − y1
x2 − x1 . (3.4)
Deve-se ter cuidado para não confundir o coeficiente angular A com a inclina-
ção geométrica (angular) da representação gráfica da equação da reta. Enquanto
o coeficiente angular A independe da escala atribuída a cada eixo, a tangente
geométrica depende.
3.2 Linearização de gráficos
Muitas vezes, as relações estudadas não são descritas por equações lineares.
Entretanto, em alguns casos é possível transformar gráficos não-lineares em gráficos
que seguem uma relação linear, ou seja, é possível linearizar a curva.
O processo de linearização consiste em se aplicar uma transformação nas esca-
las, para que a curva representada assuma uma forma de uma reta. No caso da
relação entre posição e tempo para um MRUV, como mostrado acima, se fizemos
o gráfico de x × t teria a forma de uma parábola, mas se fizemos um gráfico de
x × t2, esta assume a forma de uma reta com coeficientes B → x0 e A→ a/2 1.
3.3 Método dos mínimos quadrados
A ideia básica no processo de ajuste analítico de uma função f(x), a partir de
um conjunto de dados experimentais {(x1, y1), (x2, y2), ..., (xN , yN)}, é o de se obter
a curva que melhor represente o conjunto de pontos. Para isso deve-se minimizar
as distâncias de cada ponto experimental a curva teórica do modelo físico (veja a
figura 3.1).
Definindo as distâncias di = f(xi)−yi, como mostrado na figura 3.1, temos que
criar uma forma de achar o mínimo para todas as distâncias ao mesmo tempo. O
método dos mínimos quadrados, como o próprio nome sugere, faz uso do quadrado
das distâncias, d2i = [f(xi)− yi]2, e desta forma temos de encontrar o mínimo da
função
χ2 =
N∑
i=1
d2i , (3.5)
1Essa forma de linearização será a única aplicada no curso de Física Experimental 1. Nos
próximos curso de Física Experimental serão apresentadas as outras formas.
3.3. MÉTODO DOS MÍNIMOS QUADRADOS 33
x
y
Reta qualquer
d1
d2
d3
d4
d5
Figura 3.1: Esquema das distâncias entre os pontos experimentais e os pontos de
uma reta qualquer utilizado no método do mínimos quadrados para encontrar o
melhor ajustes para os parâmetros de uma reta.
onde a soma em todos os pontos se deve ao fato de querermos minimizar todas as
distâncias ao mesmo tempo. Para achar o mínimo devemos derivar a função χ2
com relação a cada um dos parâmetros a serem ajustados da função f(x) e igualar
estas derivadas a zero.
Para o curso de Física Experimental 1 iremos ajustar somente os pontos ex-
perimentais à uma reta, f(x) = Ax+ B, desta forma vamos desenvolver todos os
cálculos para este caso particular. Neste caso a função a ser minimizada é:
χ2(A,B) =
N∑
i=1
[Axi +B − yi]2 (3.6)
onde os parâmetros que queremos encontrar são os coeficientes linear B e angular
A, logo devemos tomar duas derivadas com respeito a estes parâmetros e igualar
34 CAPÍTULO 3. AJUSTE DOS PARÂMETROS DO MODELO
a zero (condição de mínimo):
∂χ2
∂A
=
N∑
i=1
∂[Axi +B − yi]2
∂A
= 0 (3.7)
∂χ2
∂B=
N∑
i=1
∂[Axi +B − yi]2
∂B
= 0 (3.8)
Desenvolvendo as duas equações e eliminando os termos constantes temos, final-
mente, duas equações para as duas incógnitas A e B:
A
N∑
i=1
x2i +B
N∑
i=1
xi −
N∑
i=1
xiyi = 0 (3.9)
A
N∑
i=1
xi +NB −
N∑
i=1
yi = 0 (3.10)
onde N é o número total de medidas, no caso da figura 3.1 N = 5. Resolvendo
para A e B encontramos os melhores ajustes para os dados observados. Nos dias
de hoje, com os computadores cada vez com mais capacidades de processamento,
a resolução das equações acima é muito rápida e simples. Para uma análise mais
completa e que leva em conta o erro nas medidas e com a demonstração dos erros
no parâmetros A e B veja o apêndice A.
Capítulo 4
Elaboração de Relatórios
Um relatório consiste na apresentação organizada de informações provenientes
da atividade experimental. Em um experimento todos o resultados parciais ou
totais devem estar organizados de modo a facilitar a leitura. Um relatório para
transmitir algo e ser apresentável, é necessário que ele satisfaça certos requisitos:
deve ter clareza e exatidão, ser objetivo e conciso e acima de tudo deve destacar
todos os aspectos importantes.
Ao escrever um relatório é apropriado usar a 3a pessoa do plural ou fazer uso
de expressões que indetermine o sujeito, por exemplo: “Nesse experimento foram
feitas as medidas x de uma grandeza Y "ou “Fizemos uma tabela com os valores
x de uma grandeza Y ".
Uma dica ao escrever um relatório é estruturar melhor o que se pretende es-
crever, para isso siga o esquema abaixo:
0 A capa:
É comum ouvirmos falar que a primeira impressão é a que fica, pois bem, o
mesmo pode-se dizer de um relatório. A organização de um relatório começa
pela capa. É necessário escrever um título para o relatório, onde deve constar
o nome da experiência realizada e o número do relatório e as especificações
referentes a pessoa que escreve o relatório, por exemplo: o nome e a turma
a qual pertence. Abaixo segue uma sugestão:
Relatório I
“Medida do volume de um objeto"
José Fulano de Tal
Turma: A
1 Objetivo:
Nesta parte deve constar quais os principais objetivos para a realização de
35
36 CAPÍTULO 4. ELABORAÇÃO DE RELATÓRIOS
um determinado experimento, ou seja, devem ser colocados a finalidade e as
metas a serem atingidas, por exemplo:
“Neste experimento faremos medidas a respeito das dimensões espaciais de
um determinado objeto, largura, comprimento e altura e de posse dessas
medidas obteremos o volume e analisaremos qual o papel da incerteza nessas
medidas."
2 Introdução teórica:
Esta parte deve consistir de uma breve introdução teórica, onde hipóteses
são feitas e um modelo teórico é introduzido, por exemplo:
“Todo processo de medição consiste de fazer comparações entre grandezas
físicas que possuem a mesma natureza, por exemplo, não existe forma de se
comparar a grandeza tempo com a grandeza densidade dada suas diferentes
naturezas. Para se medir uma grandeza é necessário antes de tudo fixar
um padrão previamente escolhido com o qual comparações devem ser feitas.
Vamos tomar um metro (1 m) como sendo a distância percorrida pela luz em
um tempo de um segundo (1 s). Se medirmos o comprimento de um objeto
e dizermos, por exemplo, que ele tem c = 1, 5 m significa que ele é 1, 5 vezes
maior que o comprimento padrão adotado. No que se refere às dimensões
de um determinado objeto, vamos considerar o seu volume, que consiste do
produto das medidas de seu comprimento (c), da sua largura (l) e da sua
altura (h), isto é, temos que o seu volume (V ) é por definição:
cl
h
V = c× l × h (4.1)
Uma vez que estamos tratando com grandezas de mesma natureza podemos
fazer comparações entre elas usando o mesmo padrão, o metro, logo a equação
para o volume leva a uma nova unidade de medida, no caso o metro cúbico
(m3)".
3 Material Utilizado:
Todo relatório deve conter uma listagem dos materiais que foram utilizados
para a elaboração da experiência. Por exemplo:
37
“Neste experimento, fez-se uso do seguinte material:
– Régua;
– Uma caixa de papelão de formato retangular;"
4 Procedimento experimental e coleta de dados:
Nesta parte do relatório deve estar contido todos os detalhes de como a
experiência foi montada e de como os dados foram coletados. Dependendo
da experiência, podemos apresentar os dados em uma tabela, por exemplo:
“Com o uso de uma régua graduada em centímetros (cm) foram feitas medi-
das do comprimento, da largura e da altura da caixa de papelão. As medidas
foram feitas separadamente por cada uma das pessoas do grupo, sendo que
cada um dos integrantes do grupo não conhecia o valor das medidas feitas
pelo outro, de tal forma que foi obtido os seguintes resultados dispostos na
tabela:
Integrante comprimento c (cm) largura l (cm) altura h (cm)
Chico 25, 12 13, 05 16, 50
Maria 25, 15 13, 00 16, 51
João 25, 11 13, 01 16, 50
José 25, 10 13, 09 16, 58
Olga 25, 15 13, 00 16, 55
Na tomada das medidas, devido a dificuldade de se posicionar a régua, não
foi possível obter um valor uniforme e homogêneo, os resultados sofreram
uma ligeira flutuação."
5 Análise de dados:
Esta parte do relatório é a mais importante, ela deve conter os cálculos
necessários para constatar a veracidade ou não das hipóteses sugeridas na
introdução teórica e verificar a validade do modelo teórico proposto. Toda
38 CAPÍTULO 4. ELABORAÇÃO DE RELATÓRIOS
a análise referentes aos erros devem ser tratados nessa parte. Caso seja
necessário, gráficos devem ser anexados. Por exemplo:
“Como houve variações nas medidas feitas por cada um dos integrantes, uma
maneira adequada de obter um valor mais próximo ao valor mais provável
da grandeza é fazer uso dos valores médios, ou seja,
c¯ =
∑5
i=1 ci
5
=
25, 12 + 25, 15 + 25, 11 + 25, 10 + 25, 15
5
= 25, 13 (4.2)
igualmente temos,
l¯ =
∑5
i=1 li
5
=
13, 05 + 13, 00 + 13, 01 + 13, 09 + 13, 00
5
= 13, 03 (4.3)
e
h¯ =
∑5
i=1 hi
5
=
16, 50 + 16, 51 + 16, 50 + 16, 58 + 16, 55
5
= 16, 53 (4.4)
Analisando os dados coletados da tabela, vemos que existe uma incerteza no
último algarismos1, podemos estimar que a cada uma das medidas existe
uma imprecisão de cerca de δx = 0, 05cm. Então podemos reescrever os
dados a serem utilizados no cálculo do volume da seguinte forma:
l = (l¯ ± δx) = (25, 13± 0, 05) cm
c = (c¯± δx) = (13, 03± 0, 05) cm (4.5)
h = (h¯± δx) = (16, 53± 0, 05) cm
Portanto, calculando o volume, temos
V = 5413 cm3 (4.6)
Para calcularmos o erro associado à medida indireta2 do volume, seria razoá-
vel pensar que bastaria multiplicar os erros de cada uma das medidas, o que
nos daria um valor insignificantemente menor do que o erro δx = 0, 05cm
associado a cada uma das medidas, o que não é fisicamente razoável, no en-
tanto, veremos que a fórmula abaixo nos fornece o valor adequado ao erro
da medida indireta do volume3
δV = δx
√
(c× h)2 + (l × h)2 + (c× l)2 (4.7)
1No capítulo de introdução a teoria de erros é discutido em detalhe o papel da incerteza desse
último algarismo que provém diretamente da precisão da escala utilizada.
2Medidas diretas, são obtidas diretamente através do uso de um dispositivo de medida, já
medidas indiretas são aquelas provenientes de relações matemáticas.
3Na introdução a teoria dos erros é discutidos como é feita a propagação de erros e como esta
fórmula é deduzida.
39
Portanto, obtemos para a incerteza na medida indireta do volume
δV = 29 cm3 (4.8)
Neste resultado foi considerado somente valores naturais, ou seja, desconsiderou-
se casas decimais."
6 Resultados principais e conclusões:
Esta parte do relatório consiste de uma síntese de tudo que foi feito no expe-
rimento; nesta parte deve constar de forma organizada os resultados obtidos
e ou calculados e quais as principais conclusões que esses resultados levaram.
Geralmente,deve-se perguntar se os resultados confirmam ou não as hipóte-
ses sugeridas, ou seja, se o modelo teórico proposto está de acordo ou não.
Em alguns experimentos para obter um determinado resultado é comum fa-
zer uso de duas formas de medidas, uma diretamente e outra indiretamente,
quando isto se faz necessário comparações podem e devem ser feitas o que
enriquece muito muito mais a confiabilidade no modelo teórico. Caso o mo-
delo esteja de acordo com os resultados experimentais dizemos que o mesmo
representa uma visão de mundo adequada. Por exemplo:
“Como resultado do nosso processo de medida, obtemos para o volume do
objeto o valor V = (5413± 29) cm. Isto significa que o valor mais provável
do volume do objeto está dentro de intervalo I = [5384 cm; 5442 cm]."
Um erro que não se deve cometer ao escrever um relatório é fazer uso de gírias
ou linguagem muito técnica, deve-se procurar transmitir o que interessa de forma
coerente.
40 CAPÍTULO 4. ELABORAÇÃO DE RELATÓRIOS
Capítulo 5
Tratamento de dados: Densidade do
Alumínio
5.1 Objetivo
Este experimento tem como objetivo a aprendizagem e manuseio do paquíme-
tro, assim como a aplicação do cálculo da propagação de erros para determinar as
incertezas associadas as medidas.
5.2 Modelo Teórico
Pode-se utilizar diversos instrumentos para medir a altura e o diâmetro de um
cilindro. Nesse experimento utilizaremos a régua e o paquímetro para efetuar tais
medidas e calcular de densidade do material que o constitui. Para determinar tal
densidade, deve-se usar a relação:
ρ =
m
V
,
onde m e V representam a massa e o volume do sólido respectivamente. Note que
essa medida é indireta e portanto deve-se propagar a incerteza associada.
A seguir será descrito o funcionamento do paquímetro, uma vez que a régua já
foi vista nas aulas anteriores.
• Paquímetro:
O paquímetro é um instrumento de medida muito utilizado em laboratórios e
também é conhecido como calibre. A Fig. 1 mostra o esquema desse instrumento.
41
42CAPÍTULO 5. TRATAMENTO DE DADOS: DENSIDADE DO ALUMÍNIO
Figura 5.1: Esquema com as partes de um paquímetro.
A leitura de uma medida no paquímetro é feita da seguinte maneira: o pri-
meiro traço à esquerda do nônio serve de referência para se contar os milímetros
e o próximo traço no nônio que coincidir com qualquer traço da escala principal
determinará a fração de milímetro. É importante ressaltar que o erro associado a
medida feita por um paquímetro é definido pela divisão do nônio. Logo, na figura
acima, a menor divisão da escala principal é de 1 mm e o nônio está divido em 50
traços, portanto o erro associado é de 1/50 = 0, 02 mm.
5.3 Procedimento Experimental e Tomada de Da-
dos
• Parte I – Medida com a régua
- Faça 5 medidas com a régua milimetrada do diâmetro (d) e da altura (h) do
cilindro de alumínio que se encontra na bancada e preencha a tabela abaixo.
5.3. PROCEDIMENTO EXPERIMENTAL E TOMADA DE DADOS 43
Medidas d (cm) h (cm)
1
2
3
4
5
x¯± δx (cm)
• Parte II – Medida com o paquímetro
- Faça 5 medidas com o paquímetro do diâmetro (d) e da altura (h) do mesmo
cilindro de alumínio usado anteriormente e preencha a tabela abaixo.
Medidas d (cm) h (cm)
1
2
3
4
5
x¯± δx (cm)
Obs.: Não esqueça de medir a massa do cilindro de alumínio.
44CAPÍTULO 5. TRATAMENTO DE DADOS: DENSIDADE DO ALUMÍNIO
5.4 Análise de Dados
Com base nos dados coletados na seção anterior responda as perguntas abaixo.
1. Calcule o volume do cilindro com o seu respectivo erro.
2. Calcule a densidade do cilindro com o seu respectivo erro para ambos os
casos. Apresente todos os cálculos.
3. O valor encontrado para a densidade está de acordo com o esperado (ρAl =
2, 697 g/cm3). Para essa análise considere uma tolerância de 5%. Compare
e discuta os resultados obtidos nos dois os casos. Qual foi o mais preciso?
Justifique.
Capítulo 6
Movimento Retilíneo Uniforme -
MRU
6.1 Objetivo
Este experimento tem como objetivo estudar o movimento de um corpo sem a
ação de forças e verificar que este movimento é retilíneo e uniforme (MRU), e por
fim, determinar a sua velocidade durante este movimento.
6.2 Modelo Teórico
Pela primeira Lei de Newton, um corpo com força resultante nula deve ficar
parado ou seguir um movimento retilíneo e uniforme, ou seja, para intervalos de
tempos iguais o corpo percorre distâncias iguais. Desta forma a velocidade média
do corpo é igual a velocidade instantânea:
v =
dx
dt
=
∆x
∆t
. (6.1)
Desta relação encontramos a dependência da posição com o tempo,
x = x0 + vt (6.2)
onde, x0 é a posição no instante t = 0 do carrinho, v é a sua velocidade e t é o
tempo.
6.3 Procedimento Experimental
Neste experimento será utilizado o trilho de ar, de tal forma que poderemos
desprezar o atrito do carrinho. Por se tratar de um MRU devemos colocar o
45
46 CAPÍTULO 6. MOVIMENTO RETILÍNEO UNIFORME - MRU
cronômetro na função MRU ou F1, dependendo do aparelho que se encontra na
sua bancada.
Para darmos uma velocidade inicial ao carrinho será utilizado um peso ligado
ao carrinho por um fio ideal. Esse peso não poderá atuar no carrinho quando ele
passar pelo primeiro sensor, ou seja, o peso deverá tocar no chão antes do carrinho
passar no primeiro sensor. Utilize uma massa de aproximadamente 30 g, já com o
porta pesos incluído.
1. Posicione os cinco sensores de tal forma que fiquem a uma distância relativa
de aproximadamente 10 cm entre eles. O primeiro sensor deve estar a uma
distância de 20 cm do carrinho.
2. Verifique se os sensores estão conectados corretamente.
3. Com o eletroímã ligado, prenda o carrinho na sua posição inicial.
4. Faça algumas tomadas de dados testes e verifique se todos os sensores estão
funcionando adequadamente e se o cronômetro está fornecendo resultados
estáveis.
6.4 Tomada de Dados
1. Registre o movimento do carrinho com os sensores e o cronômetro.
2. Construa uma tabela de medidas de tempo e posição como mostrado abaixo.
P t (s) x (cm) δx (cm)
1 0,000
2
3
4
5
6.5. ANÁLISE DE DADOS 47
6.5 Análise de Dados
Para esta análise de dados vamos assumir que as medidas dos tempos são
desprezíveis, ou seja, δt = 0.
1. Encontre a velocidade média para cada um dos intervalos e a sua incerteza
(erro) associada. Coloque todos os passos necessários para encontrar a fór-
mula do erro da velocidade. Construa uma tabela com os resultados, como
mostrado abaixo:
v(cm/s) δv(cm/s)
2. Construa um gráfico no papel milimetrado da posição em função do tempo
(x × t). Não se esqueça de colocar as barras de erro se for possível na sua
escala adotada. Qual a forma funcional esperada pelo modelo teórico para
esse gráfico?
3. Os pontos experimentais podem ser considerados como pontos de uma mesma
reta? Obtenha, a partir da reta encontrada o seu coeficiente angular α.
4. No computador, utilize o programa de regressão linear para fazer o ajuste dos
seus pontos experimentais a uma reta. O resultado esta compatível com o do
gráfico feito no papel milimetrado? Pelo seu modelo teórico, os coeficientes
angular e linear correspondem a quais quantidades físicas? O coeficiente
linear encontrado está de acordo com o esperado pelo seu experimento?
5. As velocidades médias calculadas no primeiro item estão compatíveis com os
resultados obtidos pelo método do gráfico?
48 CAPÍTULO 6. MOVIMENTO RETILÍNEO UNIFORME - MRU
Capítulo 7
Plano Inclinado
7.1 Objetivo
O objetivo deste experimento é observar e estudar um movimento retilíneo
uniformemente variado (MRUV) de um corpo descendo um plano inclinado. Este
experimento tem como objetivo principal a determinação da aceleração da gravi-
dade g, além de comparar o resultado encontrado a partir do experimento com o
valor
g = 9, 8m/s2 , (7.1)
utilizado na literatura.
7.2 Modelo TeóricoAplicando as Leis de Newton numa partícula de massa m que se encontra num
plano com inclinação θ em relação a horizontal (veja figura 7.1), encontramos que
a partícula sofrerá uma aceleração constante, dada por (encontre essa igualdade):
a = g sen θ . (7.2)
Desta forma se conseguirmos medir a aceleração da partícula e a inclinação θ do
plano inclinado, podemos estimar a aceleração da gravidade g.
7.3 Procedimento Experimental
este experimento será utilizado o trilho de ar, de tal forma que poderemos
desprezar o atrito do carrinho. Por se tratar de um MRUV devemos colocar o
cronometro na função MRUV ou F2, dependendo do aparelho que se encontra na
sua bancada.
49
50 CAPÍTULO 7. PLANO INCLINADO
Figura 7.1: Diagramas de forças para um corpo num plano inclinado. Os pontos A
e B simbolizam as bases dos pés do trilho de ar. A altura h representa a elevação
sofrida pelo trilho de ar devido ao calço de madeira utilizado. L é medida da
distância entre os dois pés do trilho após sua inclinação, ou seja, a hipotenusa do
triângulo.
1. Nivele o trilho de ar antes de incliná-lo.
2. Incline ligeiramente o trilho de ar, levantando o ponto de apoio com duas
bases a uma altura h.
3. Verifique se os sensores estão conectadas corretamente.
4. Posicione os sensores com distâncias relativamente constantes de aproxima-
damente 10 cm entre eles e inclusive com a posição inicial do carrinho. Per-
ceba que o último sensor não será utilizado no experimento.
5. Com o eletroímã ligado coloque o carrinho na sua posição inicial.
6. Faça uma tomada de dados teste e verifique se todos os sensores estão fun-
cionando adequadamente.
7.4 Tomada de Dados
1. Determine o valor do seno do ângulo θ de inclinação do trilho de ar. Veja
figura 7.1.
2. Registre o movimento do carrinho com os sensores e o cronômetro.
3. Construa uma tabela de medidas de tempo e posição como mostrado abaixo.
7.5. ANÁLISE DE DADOS 51
P t (s) x (cm) δx (cm)
1 0,000
2
3
4
5
Como foi medida a posição inicial do carrinho? O erro associado a esta medida
será o mesmo que o erro associado as medidas das posições dos sensores? Discuta
sobre essa questão com os integrantes da sua bancada e o professor.
7.5 Análise de Dados
Para esta análise de dados vamos assumir que as medidas dos tempos tem erro
desprezível, ou seja δt = 0.
1. Encontre a velocidade média para cada um dos intervalos e a sua incerteza
associada. Monte uma tabela com esses resultados.
2. Calcule a incerteza para a quantidade sen θ. Utilize a tabela de propagação
de erro fornecida nesta apostila. Você mediu diretamente a altura h que foi
levantado o trilho de ar e a distância entre os seus pés L, logo, o ângulo θ
será dado por:
sen θ =
h
L
(7.3)
Qual será a fórmula de propagação de erro associado a esta medida? Faça
essa demonstração com todos os passos necessários. Discuta qual será o erro
associado as medidas de h e L. Eles serão os mesmos que para a posição x
dos sensores?
3. Construa um gráfico no papel milimetrado da posição em função do tempo ao
quadrado (x× t2). Não se esqueça de colocar as barras de erro se for possível
52 CAPÍTULO 7. PLANO INCLINADO
na sua escala adotada. Qual a forma funcional esperada pelo modelo teórico
para esse gráfico?
4. Os pontos experimentais podem ser considerados como pontos de uma mesma
reta? Obtenha, a partir desta reta, a aceleração do carrinho. Qual é a relação
entre o coeficiente angular deste gráfico e a aceleração do carrinho?
5. No computador, utilize o programa de regressão linear para fazer o ajuste
dos seus pontos experimentais a uma reta. O resultado esta compatível com
o do gráfico feito no papel milimetrado? O coeficiente linear esta de acordo
com os seus dados experimentais?
6. Utilizando a equação (7.2), determine g a partir da aceleração encontrada
na regressão linear e do valor de sen θ obtido anteriormente. O seu valor
experimental esta de acordo com o resultado esperado? Por que? Qual é a
fórmula do erro associado a esta medida?
Capítulo 8
Movimento Retilíneo
Uniformemente Variado com Peso
8.1 Objetivo
Este experimento tem como objetivo estudar o movimento retilíneo uniforme-
mente variado (MRUV) e determinar a aceleração da gravidade g, e comparar o
resultado experimental obtido com o valor:
g = 9, 8m/s2 . (8.1)
8.2 Modelo Teórico
Aplicando as leis de Newton no sistema mostrado na figura, obtemos a se-
guinte relação entre a aceleração das massas mA e mB e a aceleração da gravidade
(encontre essa relação!):
a =
mA
mA +mB
g . (8.2)
53
54CAPÍTULO 8. MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO COM PESO
Desta forma, se medirmos a aceleração das partículas e as suas respectivas massas,
podemos fazer uma estimativa da aceleração da gravidade.
8.3 Procedimento Experimental
Neste experimento será utilizado o trilho de ar, de tal forma que poderemos
desprezar o atrito do carrinho. Por se tratar de um MRUV devemos colocar o
cronometro na função MRUV ou F2, dependendo do aparelho que se encontra na
sua bancada.
1. Verifique se os sensores estão conectados corretamente.
2. Posicione os sensores com distâncias relativamente constantes com aproxi-
madamente 10 centímetros entre eles e inclusive com a posição inicial do
carrinho. O último sensor não é utilizado no experimento.
3. Com o eletroimã ligado coloque o carrinho na sua posição inicial.
4. Faça uma tomada de dados teste e verifique se todos os sensores estão fun-
cionando adequadamente.
Neste experimento devem ser analisados 5 movimentos diferentes com 5 massas
diferentes para massa mA, em passos de 10 gramas, ou seja, será medido o movi-
mento do carrinho para mA ≃ 20, 30, 40, 50 e 60 gramas (as massas não precisam
ser exatamente essas, só aproximadamente).
8.4 Tomada de Dados
1. Registre o movimento para as 5 massas diferentes com os sensores e o cronô-
metro.
2. Construa uma tabela de medidas de tempo para as cinco massas e posição
como mostrado abaixo.
8.5. ANÁLISE DE DADOS 55
P t1 (s) t2 (s) t3 (s) t4 (s) t5 (s) x (cm)
1 0,000 0,000 0,000 0,000 0,000
2
3
4
5
Como foi medida a posição inicial do carrinho? O erro associado a esta medida
será o mesmo que o erro associado as medidas das posições dos sensores? Discuta
sobre essa questão com os integrantes da sua bancada e o professor.
8.5 Análise de Dados
Para esta análise de dados vamos assumir que a medida do tempo tem erro
desprezível, ou seja δt = 0 s.
1. Para cada um dos sistemas com massas diferentes estime a aceleração do
carrinho. Para tal, utilize o programa de regressão linear para ajustar a
melhor reta a cada um dos gráficos x× t2. Pelo seu modelo teórico, o que são
os coeficientes angular e linear deste ajuste? (Não precisa fazer esses gráficos
no papel milimetrado).
2. Os coeficientes lineares dos 5 ajustes são iguais dentro da barra de erro? Por
que eles deveriam ser iguais de acordo com o nosso modelo teórico?
3. Da relação do modelo teórico entre o coeficiente angular e a aceleração do
carrinho, construa uma tabela com os resultados, como mostrado abaixo
(demonstre a fórmula para o cálculo da incerteza do fator das massas):
56CAPÍTULO 8. MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO COM PESO
mA
mA+mB
± δ
(
mA
mA+mB
)
a± δa (cm/s2)
4. Construa um gráfico no papel milimetrado da aceleração em função de mA
mA+mB
.
Não se esqueça de colocar as barras de erro se for possível na sua escala
adotada. Qual a forma funcional esperada para esse gráfico? Você saberia
explicar o porquê desta forma funcional?
5. Os pontos experimentais podem ser considerados como pontos de uma mesma
reta? Obtenha, a partir da reta encontrada o seu coeficiente angular α. Pelo
seu modelo teórico, o coeficiente angular corresponde a que quantidade física?
6. No computador, utilize o programa de regressão linear para fazer o ajustedos seus pontos experimentais a uma reta. O resultado esta compatível com
o do gráfico feito no papel milimetrado?
7. Compare o seu resultado com o modelo teórico. O seu resultado esta con-
sistente com este modelo, ou seja, você encontrou g compatível com o valor
esperado? O modelo teórico também fornece o valor esperado do coeficiente
linear? No seu experimento, qual é o valor esperado do coeficiente linear?
Capítulo 9
Queda Livre
9.1 Objetivo
Este experimento é uma reprodução do clássico e polêmico experimento supos-
tamente realizado por Galileu na Torre de Pisa. O objetivo deste experimento é
observar e estudar o movimento de um corpo em queda livre. Este experimento
tem como objetivo principal verificar a independência do movimento de queda li-
vre com a massa do corpo e também a determinação da aceleração da gravidade
g, e comparar o resultado experimental com o valor
g = 9, 8m/s2 . (9.1)
Antes de Galileu era esperado que a queda de um corpo sob ação pura da
força da gravidade dependia da sua massa, corpos mais pesados cairiam mais
rapidamente ao chão do que corpos mais leves (com menor massas). Galileu foi o
primeiro a perceber que a queda livre não depende da massa do corpo, verificando
primeiramente a igualdade entre massa inercial (que aparece na segunda lei de
Newton) e massa gravitacional (o quanto um corpo sente o campo gravitacional).
Essa propriedade da natureza foi um dos pontos de partida para a formulação da
Relatividade Geral por Albert Einstein em 1915.
57
58 CAPÍTULO 9. QUEDA LIVRE
9.2 Modelo Teórico
Aplicando as leis de Newton numa partícula de massam que se encontra apenas
sob a ação da sua força gravitacional, isto é, o seu peso, assumindo que a massa
gravitacional (mg) é diferente da sua massa inercial (mi), a segunda lei nos fornece
a seguinte relação (colocando o referencial na vertical para baixo):
~F = mi~a =⇒ mgg = mia (9.2)
Dessa forma a aceleração que a partícula irá sofrer de acordo com as leis de Newton
é
a =
mg
mi
g (9.3)
Concluímos que somente se a massa inercial for igual a massa gravitacional, obte-
mos o resultado
a = g . (9.4)
Desta forma teremos 2 objetivos no experimento de queda livre:
1. Verificar a igualdade entre massa inercial e massa gravitacional, verificando
que a aceleração de queda é igual para dois corpos com massas distintas;
2. encontrar a aceleração da gravidade g, dado que as massas inerciais e gravi-
tacionais são iguais.
9.3. PROCEDIMENTO EXPERIMENTAL 59
9.3 Procedimento Experimental
Neste experimento será utilizado o equipamento de queda livre, desprezando
o arrasto do ar com o corpo. Por se tratar de um MRUV devemos colocar o
cronômetro na função MRUV ou F2, dependendo do aparelho que se encontra na
sua bancada.
1. Posicione os sensores de tal forma a ficarem a uma distância relativa de
aproximadamente 10cm.
2. Verifique se os sensores estão conectadas corretamente.
3. Com o eletroimã ligado coloque uma bola de metal na sua posição inicial.
4. Faça uma tomada de dados teste e verifique se todos os sensores estão fun-
cionando adequadamente.
9.4 Tomada de Dados
1. Registre o movimento de duas bolas de metal com massas diferentes com os
sensores e o cronômetro.
2. Construa duas tabelas de medidas de tempo e posição como mostrado abaixo,
para cada uma das massas.
P t (s) x (cm) δx (cm)
1 0,000
2
3
4
5
60 CAPÍTULO 9. QUEDA LIVRE
Como foi medida a posição inicial da bola de metal? O erro associado a esta
medida será o mesmo que o erro associado as medidas das posições dos sensores?
Discuta sobre essa questão com os integrantes da sua bancada e o professor.
9.5 Análise de Dados
Para esta análise de dados vamos assumir que as medidas dos tempos tem erro
desprezível, ou seja δt = 0.
1. Construa dois gráficos no papel milimetrado da posição em função do tempo
ao quadrado (x × t2). Não se esqueça de colocar as barras de erro se for
possível na sua escala adotada. Qual a forma funcional esperada para esse
gráfico? Você saberia explicar o porque desta forma funcional?
2. Os pontos experimentais podem ser considerados como pontos de uma mesma
reta? Obtenha, a partir das retas encontradas nos dois gráficos, as acelera-
ções das bolas de metal.
3. No computador, utilize o programa de regressão linear para fazer o ajuste
dos seus pontos experimentais a uma reta. O resultado esta compatível com
o do gráfico feito no papel milimetrado?
4. Compare o seu resultado com o modelo teórico. O seu resultado esta con-
sistente com este modelo, ou seja, você encontrou g compatível com o valor
esperado? Justifique a sua resposta.
5. Podemos dizer que a massa inercial é igual a massa gravitacional pelos seus
resultados? Justifique a sua resposta.
Capítulo 10
Movimento Circular Uniforme -
MCU
10.1 Objetivo
Este experimento tem como objetivo a análise da dependência da força centrí-
peta e a massa de uma partícula, que descreve um Movimento Circular Uniforme
(MCU), mantendo a frequência do movimento e o raio da trajetória constantes.
10.2 Modelo Teórico
OMovimento Circular Uniforme é caracterizado por uma partícula que percorre
uma trajetória circular possuindo o módulo da velocidade (v) constante. Nesse
movimento, o vetor velocidade (~v) é sempre tangente ao círculo descrito, porém o
seu tamanho ao longo da trajetória não varia. Logo, a velocidade tangencial pode
ser calculado como
v =
2πr
T
, (10.1)
onde o período T é o tempo necessário para dar uma volta completa na circunfe-
rência de raio r.
Nesse tipo de movimento é conveniente usar as coordenadas em função da
posição angular da partícula que está relacionada com o ângulo θ que a partícula
descreve em sua trajetória.
θ ≡ s
r
, (10.2)
com s sendo o arco percorrido pela partícula. Portanto,
s = rθ. (10.3)
61
62 CAPÍTULO 10. MOVIMENTO CIRCULAR UNIFORME - MCU
Através do deslocamento angular pode-se encontrar a velocidade angular do
movimento ω que deve ser constante no MCU. Essa velocidade pode ser escrita,
tanto em função do período como da velocidade tangencial, da seguinte maneira:
ω =
2π
T
= rv. (10.4)
Uma das característica do MCU é que a partícula nesse movimento possui
aceleração de módulo constante apontando para o centro da trajetória circular.
Essa aceleração é chamada de aceleração centrípeta e é dada por
ac =
v2
r
. (10.5)
Pela 2a lei de Newton, pode-se encontrar a força resultante necessária para
gerar essa aceleração,
~Fc = m~ac, (10.6)
onde m é a massa da partícula.
10.3 Procedimento Experimental
Nesse experimento será utilizado o equipamento da Cidepe para dinâmica das
rotações. Esse equipamento é composto de uma base com comandos elétricos,
plataforma rotacional com escala, corpos de prova e dinamômetro.
1. Meça a massa dos três corpos de prova mA, mB e mC . Esse experimento
será feito considerando o primeiro corpo como sendo m(A+B+C), o segundo
m(A+B) e mA o terceiro.
2. Suspenda o corpo de prova de maior massa no pilar lateral móvel, encaixando
o fio sem anel na fenda de apoio do parafuso, passando-o por cima do pilar
e o prendendo ao pequeno parafuso preto existente no lado oposto.
3. O raio da trajetória pode ser medido através da escala milimetrada. Para
isso, anote o valor da projeção vertical (marcada no pilar lateral) sobre a
escala milimetrada da base. Esse valor é o raio r (distância entre o centro
de massa do corpo de prova e o eixo de rotação do sistema).
4. Para aplicar uma força ao sistema segure o dinamômetro e solte o parafuso
fixador. Segure a massa pendular de modo a manter o fio de suspensão
alinhado com a reta marcada no pilar. Suba o dinamômetro de modo a
aplicar uma força conhecida sobre a massa.
10.4. TOMADA DE DADOS 63
5. Torne a fixar o dinamômetro e solte a massa. Perceba que a massa se deslo-
cará para a esquerda.
6. Ligue o sistemaem baixa rotação e ajuste a sua frequencia (através do poten-
ciômetro) de modo a garantir que a massa pendular fique posicionada sobre
a marca r. Observe que o corpo de prova está sujeito a uma força centrípeta.
7. Após os dados serem coletados, de acordo com o que é pedido na seção 10.4,
desligue o sistema (sem alterar a frequencia) e altere o valor da massa pen-
dular, ou seja, repita o procedimento para as outras massas. Observe o que
aconteceu com o raio e a força centrípeta atuante no sistema.
8. Lembre-se que nesse experimento o raio da trajetória deve permanecer cons-
tante. Para isso após a análise feita no item anterior eleve a frequencia até
garantir que o novo corpo de prova esteja na mesma distância r anteriormente
obtida.
10.4 Tomada de Dados
1. Anote o valor da massa pendular utilizada e o do raio da trajetória do sis-
tema.
2. Meça com o dinamômetro o valor de Fc que atua no corpo de prova.
3. Calcule o período para cada massa pendular. Para isso meça o tempo de 10
voltas completas.
4. Com os dados coletados preencha a Tabela abaixo.
(m± δm) ( ) (r ± δr) ( ) (Fc ± δFc) ( ) (T ± δT ) ( )
64 CAPÍTULO 10. MOVIMENTO CIRCULAR UNIFORME - MCU
10.5 Análise de Dados
1. O que foi observado com o raio e a força centrípeta quando os corpos de
prova foram trocados. Faça uma comparação entre eles.
2. Construa o gráfico de Fc ×m. Não esqueça de colocar as barras de erro se
for possível na escala adotada. Qual a forma funcional esperada para esse
gráfico? Qual o significado do seu coeficiente angular?
3. Os pontos experimentais podem ser considerados como pontos de uma mesma
reta? Obtenha, a partir desta reta, a aceleração centrípeta do sistema.
4. No computador, utilize o programa de regressão linear para fazer o ajuste
dos seus pontos experimentais a uma reta. O resultado esta compatível com
o do gráfico feito no papel milimetrado?
5. Calcule a velocidade angular para cada caso com o seu respectivo erro. O
valor encontrado está compatível com o experimento? Justifique.
Capítulo 11
Trabalho e Energia
11.1 Objetivo
Este experimento tem como objetivo verificar o teorema Trabalho-Energia para
uma força constante e estudar o balanço da energia de um sistema sob a ação da
gravidade como mostrado na figura.
11.2 Modelo Teórico
Aplicando as leis de Newton no sistema mostrado na figura, obtemos a seguinte
relação para a tensão do fio sobre o bloco B (encontre essa relação!):
T =
mAmB g
mA +mB
. (11.1)
Desta forma, se medirmos as massas do carrinho e do porta pesos, e dada a ace-
leração da gravidade g = 9, 8m/s2, podemos fazer uma estimativa da Tensão.
Utilizando a definição de trabalho para o caso de uma força constante, podemos
65
66 CAPÍTULO 11. TRABALHO E ENERGIA
encontrar o trabalho realizado pela tensão sobre o carrinho WT num certo deslo-
camento ∆x:
WT = T∆x =
mAmB g
mA +mB
∆x (11.2)
O teorema trabalho-energia nos fornece que a variação da energia cinética ∆K
é igual ao trabalho realizado por todas as forças sobre a partícula em questão.
Para o caso da massa B (carrinho no trilho de ar), e assumindo que o sistema
parte do repouso, temos
KB =
1
2
mBv
2
B = WT +WN +Wg = WT . (11.3)
Para verificarmos o balanço de energia do sistema temos de definir o ponto zero
da energia potencial gravitacional do bloco pendurado (por que não precisamos
medir a energia potencial gravitacional do carrinho?). Neste experimento vamos
definir o ponto zero da energia como sendo a posição inicial do bloco pendurado,
desta forma, com o sistema saindo do repouso, a energia inicial será nula
Ei = 0 . (11.4)
A energia do sistema em qualquer instante será dada por:
E = KB +KA + UA . (11.5)
Onde KA e KB são as energias cinéticas do peso e do carrinho respectivamente e
UA é a energia potencial gravitacional do peso, que pela nossa escolha de ponto
zero será dada por
UA = −mA g∆x , (11.6)
onde utilizamos que o fio que liga os blocos é ideal, nos permitindo igualar o
deslocamento ∆x do carrinho com a altura que o peso desce (você saberia explicar
o sinal?).
11.3 Procedimento Experimental
Neste experimento será utilizado o trilho de ar, de tal forma que poderemos
desprezar o atrito do carrinho. Por se tratar de um MRUV devemos colocar o
cronometro na função MRUV ou F2, dependendo do aparelho que se encontra na
sua bancada.
1. Nivele o trilho de ar.
2. Posicione os sensores de tal forma a ficarem a uma distância relativa de
aproximadamente 10 cm, incluindo a posição inicial do carrinho.
11.4. TOMADA DE DADOS 67
3. Verifique se os sensores estão conectadas corretamente. O último sensor não
é utilizado no experimento.
4. Com o eletroimã ligado coloque o carrinho na sua posição inicial.
5. Faça pelo menos 4 tomadas de dados testes de posição e tempo e verifique
se todos os sensores estão funcionando adequadamente.
Para a massa pendurada utilize uma massa entre os valores 30 < mA < 50 gramas
já incluso o porta-pesos.
11.4 Tomada de Dados
1. Registre o movimento do carrinho com os sensores e o cronômetro.
2. Construa uma tabela de medidas de tempo e posição como mostrado abaixo.
P t (s) x (cm) δx (cm) v (cm/s) δv (cm/s)
1 0,000
2
3
4
5
As colunas com a velocidade e o seu erro serão explicadas mais adiante.
11.5 Análise de Dados
Para esta análise de dados vamos assumir que as medidas dos tempos e das
massas tem erro desprezível, ou seja δm = 0 e δt = 0.
68 CAPÍTULO 11. TRABALHO E ENERGIA
1. Construa um gráfico no papel milimetrado da posição em função do tempo
ao quadrado (x × t2). Não se esqueça de colocar as barras de erro se for
possível na sua escala adotada. Qual a forma funcional esperada para esse
gráfico?
2. Os pontos experimentais podem ser considerados como pontos de uma mesma
reta? Obtenha, a partir desta reta, a aceleração do carrinho.
3. No computador, utilize o programa de regressão linear para fazer o ajuste
dos seus pontos experimentais a uma reta. O resultado esta compatível com
o do gráfico feito no papel milimetrado?
4. Para estimar as velocidades instantâneas do carrinho e do peso utilize a
relação v = v0 + at, com a aceleração obtida do programa de regressão
linear. Lembre-se que a aceleração possui erro.
5. Faça a estimativa do trabalho da tensão para os intervalos entre cada sensor
e a posição inicial utilizando a equação (11.2). Qual será o erro associado?
Ele vai variar?
6. Faça a estimativa da energia cinética para o carrinho e o peso, KB e KA,
utilizando a sua definição e a estimativa da aceleração encontrada.
7. Encontre a energia potencial gravitacional do peso UA para quando o carrinho
passa pelos sensores.
8. Encontre a energia total quando o carrinho passa em cada um dos sensores?
9. Não esqueça de colocar o erro associado de todas as quantidades para cada
instante. Utilize a unidade cm2kg/s2 para as energias e o trabalho.
10. Construa uma tabela com os resultados, como mostrado abaixo:
11.5. ANÁLISE DE DADOS 69
WT ± δWT KB ± δKB KA ± δKA UA ± δUA E ± δE
11. Compare o seu resultado com o modelo teórico. O seu resultado está consis-
tente com este modelo? Justifique a sua resposta.
12. A energia foi conservada? O teorema trabalho-energia foi confirmado?
13. Quais são os possíveis fatores que explicariam a não conservação da energia,
se esse fato ocorreu?
70 CAPÍTULO 11. TRABALHO E ENERGIA
Capítulo 12
Colisões Elástica e Inelástica
12.1 Objetivo
Este experimento tem como objetivo verificar a conservação do momento linear
de um sistema de duas partículas em um processo de colisão elástica e inelástica
em uma dimensão.
12.2 Modelo Teórico
Colisão Elástica: Para uma colisão elástica, como mostrada na figura 12.2,
tanto o momento linear quanto a energia cinética total do sistema irão se conservar,
logo,
Pi = p1i + p2i = p1f + p2f = Pf (12.1)
Ki =
p21i
2m1

Continue navegando