Buscar

Aletas: transferência de calor e de massa

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 27 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 27 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 27 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

27/09/2016
1
Transferência de calor em superfícies 
aletadas
2º. semestre, 2016
Transferência de calor
2
Aletas
A taxa de transferência de calor à partir de uma superfície com 
temperatura Ts para um meio externo a temperatura T∞ é dada pela lei de 
Newton:
Quando as temperaturas Ts e T∞ são mantidas fixas (questões de projeto, 
etc.) há duas maneiras para aumentar a taxa de transferência de calor:
� Aumentar o coeficiente de transferência de calor, h;
� Aumentar a área de troca térmica, As.
O aumento de h implica em aumentar a velocidade de escoamento do 
fluido de troca térmica, através de uma bomba, ventilador, etc. Isso pode 
implicar em um aumento da potência necessária para isso e, 
consequentemente, aumento do consumo de energia.
27/09/2016
2
3
Uma alternativa é aumentar a superfície de troca térmica+, adicionando 
superfícies estendidas à superfície primária, que são chamadas de aletas. 
Essas aletas são fabricadas com materiais bons condutores de calor (cobre, 
alumínio, etc.) 
_______________________
+ Uma terceira possibilidade seria diminuir o valor de T∞, mas isso geralmente não é possível, ou 
não é econômico.
Aletas
4
Veja o exemplo de um radiador automotivo, como mostrado na figura abaixo. As 
várias folhas metálicas finas colocadas nos tubos de água quente aumentam a 
superfície de convecção, aumentando a taxa de transferência de calor do fluido que 
passa no interior dos tubos para o ar ambiente.
Aletas
Substituindo nessa expressão alguns valores típicos:
27/09/2016
3
5
A temperatura na aleta varia desde a temperatura Ts, na sua base, até a 
temperatura T∞, igual ao do fluido, na sua extremidade. 
Na condição idealizada, a condutividade térmica do material da aleta 
deveria ser infinita, de forma que toda a superfície da aleta estivesse na 
temperatura da base.
No entanto isso não é possível e por isso deve ser utilizado um material 
com condutividade térmica suficientemente elevada para minimizar a 
variação da temperatura ao longo de sua superfície. 
Exemplos de aplicação de aletas:
� Dispositivos para resfriar o cabeçote de motores e compressores;
� Resfriamento de transformadores elétricos;
� Trocadores de calor em geral (sistemas de refrigeração, ar 
condicionado, etc.);
� Resfriamento de dispositivos eletrônicos.
Aletas
6
As aletas podem ser internas ou externas, individuais (uma para cada tubo) ou 
contínuas (unindo todos os tubos):
Aletas: classificação
Aletas externas
27/09/2016
4
7
Aletas: classificação
Aletas externas
Aletas internas
8
Aletas: classificação
Aletas planas contínuas, 
externas, para tubos 
circulares, planos, elípticos, 
etc.
β = 500 – 2000 m²/m³
27/09/2016
5
9
Trocadores de calor tubo-aletas (tube-fin) com aletas planas individuais 
ou contínuas: 
Aletas: classificação
V
A
==
Volume
Áreaβ
A compacidade de um trocador de calor, isso é, sua relação entre 
área e volume, é dada por:
β = 100 – 500 m²/m³
10
Trocadores de calor aletados placa-tubo (plate-fin):
Aletas: classificação
27/09/2016
6
11
Exemplo de um trocador compacto: evaporador de um sistema de ar-
condicionado automotivo.
Aletas: classificação
12
Dissipadores de calor para aplicações eletrônicas:
Aletas: classificação
27/09/2016
7
13
Aletas
Onde são utilizadas as aletas?
� Em aplicações com restrição de volume, tais como aeroespaciais, 
automotivas, refrigeração para transporte, condicionamento de ar 
residencial, etc.
Porquê utilizar?
� Para produzir equipamentos de troca térmica mais eficientes, visando 
a redução de tamanho e, consequentemente, de custos.
14
Uso de aletas no lado do ar, em trocadores de calor
Analisando a expressão abaixo:
• O último termo dessa expressão pode ser analisado como uma condutância térmica 
em relação à área Ai: 
� Um maior número de aletas aumenta a relação Ae/Ai e, consequentemente, a 
condutância;
� O uso de aletas mais próximas aumenta he, devido a um menor diâmetro hidráulico, 
Dh;
� O uso de aletas especiais (onduladas, por exemplo) aumenta he;
� A eficiência da superfície, η, é influenciada pela espessura, pelo comprimento e pela 
condutividade térmica da aleta.






++==
eeii Ah
R
Ah
R
UA parede,condtot η
111
i
ee
A
AhK η=
27/09/2016
8
15
Uso de aletas no lado do ar, em trocadores de calor
• O desempenho térmico de trocadores de calor a ar é controlado pela resistência 
térmica no lado do ar (geralmente externa), que é tipicamente é em torno de 90%. Daí 
a necessidade do uso de aletas;
• Dessa forma, a eficiência das aletas é uma variável importante. Aletas de cobre ou 
de alumínio apresentam eficiências elevadas, entre 85 a 95%, devido à elevada 
condutividade térmica desses dois materiais. 
16
Tipos de aletas
Em nosso estudo, serão analisadas quatro tipos de aletas, apresentadas na figura a 
seguir:
� Aleta plana com seção reta uniforme (a);
� Aleta plana com seção reta variável, em função da distância da base (b);
� Aleta anular (c);
� Aletas piniformes (d).
27/09/2016
9
17
Tipos de aletas
A escolha do tipo de aleta depende de fatores como:
� Considerações de espaço;
� Considerações de peso;
� Fabricação e custo;
� Queda de pressão (perda de carga) e coeficiente de transferência de calor.
Formação de geada entre as aletas de um evaporador 
18
As hipóteses utilizadas para a realização dessa análise são:
� Regime permanente, sem geração de calor na aleta;
� Embora a condução de calor na aleta seja bidimensional, a hipótese utilizada 
considera condução unidimensional da direção x;
� A temperatura é uniforme na espessura na aleta;
� A condutividade térmica do material da aleta é constante;
� O coeficiente de transferência de calor, h, é uniforme ao longo da aleta;
� Os efeitos da radiação na superfície da aleta são desprezíveis.
Distribuição de temperatura na aleta
27/09/2016
10
19
Fazendo um balanço de energia no elemento diferencial mostrado em azul na figura 
abaixo:
Distribuição de temperatura na aleta
Taxa de condução 
de calor para o elemento em x





=
Taxa de condução
de calor do elemento em x + ∆x





+
Taxa de convecção de
calor do elemento






convxx,condx,cond dqqq += +∆
Da lei de Fourier:
onde A é a área da seção transversal da aleta, que pode 
variar com x. 
A taxa de condução de calor em x+∆x pode ser 
representada como:
dx
dtkAqx −=
(1)
(2)
dx
dx
dqqq xxxx +=+∆ (3)
20
Substituindo a eq. (2) em (3), resulta em:
ou pela consideração de k=const.:
A taxa de transferência de calor por convecção é dada por:
Substituindo as eq. (2), (4) e (5) na eq. (1):
Distribuição de temperatura na aleta
dx
dx
dTkA
dx
d
dx
dTkAq xx 





−−=+∆
(4)
(5)( )
∞
−= TThdAdq sconv
(6)
dx
dx
dTA
dx
dk
dx
dTkAq xx 





−−=+∆
( )
∞
−+





−−=− TThdAdx
dx
dTA
dx
dk
dx
dTkA
dx
dtkA s
27/09/2016
11
21
A eq. (6) pode ser reordenada como:
Dividindo a eq. (7) por (-k) e derivando:
Dividindo a eq. (8) por A:
Distribuição de temperatura na aleta
(7)
(8)
(9)
( )
∞
−+





−−=− TThdAdx
dx
dTA
dx
dk
dx
dTkA
dx
dtkA s
( )
∞
−+





−= TThdAdx
dx
dTA
dx
dk s0
( )
∞
−−+= TT
dx
dA
k
h
dx
dT
dx
dA
dx
TdA s2
2
0
( ) 0112
2
=−−





+
∞
TT
dx
dA
k
h
Adx
dT
dx
dA
Adx
Td s
22
Para resolver a eq. (9) deve-se definir a geometria da aleta.
Caso da aleta plana retangular e aletas piniformes de seção transversal 
uniforme:
Cadaaleta está fixada a uma superfície base, onde a temperatura T(0)=Tb e se 
estende para o interior de um fluido na temperatura T∞.
Para esses dois tipos de aletas, A é constante e As =Px, onde P é o perímetro da aleta 
em contato com o fluido.
Distribuição de temperatura na aleta
27/09/2016
12
23
Dessa forma:
Introduzindo esses dois termos na eq. (9):
Para simplificar essa equação, define-se uma temperatura, chamada de 
temperatura de excesso, θ:
Resultando em:
Distribuição de temperatura na aleta
P
dx
dAPxA
dx
dA s
s =⇒== como e constante) al transvers(seção 0 (10)
( ) 02
2
=−−
∞
TT
kA
hP
dx
Td
(11)
( ) ( )
∞
−≡ TxTxθ (12)
02
2
=− θθ
kA
hP
dx
d
(13)
pois
.const
dx
dT
dx
d
==
∞
T que vezuma θ
24
Chamando
e substituindo na eq. (13):
A eq. (15) é uma equação diferencial de 2ª. ordem, linear e homogênea, cuja solução 
geral é dada por:
A temperatura da placa onde a aleta está fixada geralmente é conhecida. Então, na 
base da aleta temos uma condição de contorno especificada, expressa como:
Distribuição de temperatura na aleta
022
2
=− θm
dx
Td
(14)
(15)
( ) 021 =+= −mxmx eCeCxθ (16)
kA
hP
m =
2
( )
∞
−== TTbbθθ 0 (17)
27/09/2016
13
25
A segunda condição de contorno especificada na extremidade da aleta (x=L) pode 
corresponder a uma das quatro diferentes situações físicas:
a) Aleta infinitamente longa
Nesse caso, a temperatura na extremidade da aleta aproxima-se de T∞ e, portanto, a 
diferença de temperatura aproxima-se de zero, conforme a eq. (18):
A variação da temperatura ao longo da aleta pode ser representada como:
Isso é, a temperatura ao longo da aleta diminui exponencialmente desde Tb até T∞.
Distribuição de temperatura na aleta
( ) kAhpxmx
b
ee
TT
TxT −
−
∞
∞
==
−
−
(18)
(19)
( ) 0=−=
∞
TTL Lθ
26
Essa redução de temperatura é mostrada na fig. abaixo:
Distribuição de temperatura na aleta
(20)
A taxa de transferência de calor na aleta é 
dada por:
( )
∞
−= TThPkAq blonga,a&
27/09/2016
14
27
b) Perda de calor desprezível na extremidade da aleta (aleta isolada ou 
adiabática):
A transferência de calor da aleta é proporcional à área da superfície e a área da 
extremidade da aleta é uma fração desprezível em relação à área total da aleta. A 
ponta da aleta pode então ser assumida como adiabática. 
Nesse caso, a condição de contorno na ponta da aleta é dada pela eq. (21):
A condição na base da aleta continua igual à anterior (eq. 17). A aplicação dessas 
duas condições de contorno da equação geral (eq. 16) resulta na distribuição de 
temperatura:
A taxa de transferência de calor a partir da aleta é dada por:
Distribuição de temperatura na aleta
(21)0=
=Lxdx
dθ
( ) ( )
( )mLcosh
)xLmcosh
TT
TxT
b
−
=
−
−
∞
∞ (22)
( )mLtanhhPkAq badiab,a θ=& (23)
28
c) Convecção (ou convecção + radiação) na extremidade da aleta:
Na prática, as pontas das aletas estão expostas ao meio e a condição de contorno é a 
convecção (ou convecção + radiação combinadas). Essa 2ª. condição de contorno 
pode ser empregada na equação geral resultando, no entanto, em uma análise 
bastante complexa, não justificada pela relação entre a área da ponta da aleta e a 
área total, que é muito pequena. 
Na prática isso é resolvido substituindo o comprimento da aleta, L, por um 
comprimento corrigido, Lc, conforme mostrado na figura abaixo:
Distribuição de temperatura na aleta
(24)
(25)
P
ALLc +=
onde A é a área transversal da aleta e P o perímetro 
da aleta na ponta. Multiplicando a relação dada pelo 
perímetro, obtém-se:
Isso é, a área corrigida equivale à soma da área 
lateral da aleta com a área de sua ponta.
ponta)lateral(aletacorrigida AAA +=
27/09/2016
15
29
c) Convecção (ou convecção + radiação) na extremidade da aleta:
Assim, as aletas submetidas à convecção em suas pontas podem ser tratadas como 
aletas com pontas isoladas, substituindo o comprimento real da aleta pelo 
comprimento corrigido nas eq. (22) e (23), isso é:
Distribuição de temperatura na aleta
(26)
(27)
e
( ) ( )
( )c
c
b mLcosh
)xLmcosh
TT
TxT −
=
−
−
∞
∞
( )cbconv,a mLtanhhPkAq θ=&
Os comprimentos corrigidos para aletas retangulares e 
cilíndricas são dados por:
(29)
(28)
4
4
2
DL
D
D
LLc +=+= pi
pi
2222
tL
w
wtL
tw
wtLLc +=+=+
+=aletas retangulares
aletas cilíndricas
30
d) Temperatura especificada na ponta da aleta:
Nesse caso, a temperatura na ponta da aleta é fixa, isso é:
Esse caso é considerado uma generalização do caso da aleta longa, onde a 
temperatura na ponta é fixada em T
∞. A condição de contorno na base permanece a 
mesma que a eq. (17). Aplicando essas condições de contorno na solução geral, 
resulta em:
Distribuição de temperatura na aleta
(30)
(31)
( )
∞
−== TTL LLθθ
(32)
( ) ( ) ( )[ ] ( ) ( )
( )mLsinh
xLmsinhmxsinhTT/TT
TT
TxT bL
b
−+−−
=
−
−
∞∞
∞
∞
( ) ( ) ( )[ ]
( )mLsinh
TT/TTmLcoshhPkAq bLbesp_temp,a ∞∞
−−−
= θ&
27/09/2016
16
31
Resumindo os quatro casos mostrados
Caso Extremidade, x=L Distribuição T, θθθθ/θθθθb Taxa de TC aleta, qa
a Aleta longa:θ(L)=0
b Adiabática:dθ/dx =0
c Convecção:hθ(L)=-kdθ/dx
d Temperatura conhecida: θ(L)= θL
hPkAM bθ=
32’
Exemplo 1:
Uma aleta de alumínio de 10 mm de diâmetro e 300 mm de comprimento está fixada a uma 
superfície a 80 ºC. 
A superfície é exposta ao ar ambiente a 22 ºC com um coeficiente de transferência de calor 
convectivo de 11 W/m²K. 
a) Qual a taxa de transferência de calor da aleta?
b) Calcule a temperatura para cinco pontos ao longo da aleta e represente a distribuição de 
temperatura graficamente.
27/09/2016
17
33
Considere a figura abaixo. A superfície, a uma temperatura Tb, exposta a um meio a 
T
∞
perde calor por convecção para o meio circundante, com um coeficiente de 
transferência de calor h, conforme a eq. (33). Nessa equação Tb =Ts:
Eficiência da aleta
(33)
(34)
( )
∞
−= TThAq ss&
Considere agora uma aleta, com área transversal constante (A=Ab) e 
comprimento L, fixada na mesma superfície anterior. Assim, o calor 
é transferido da superfície para a aleta por condução e da aleta para 
o meio por convecção, com o mesmo h.
A temperatura da aleta diminui progressivamente desde a 
temperatura na base até a ponta.
No caso limite de resistência térmica ou de condutividade térmica 
infinita (k→∞), a temperatura na aleta será uniforme e igual ao seu 
valor na base, Tb. A transferência de calor será máxima, 
representada como:
( )
∞
−= TThAq balemax,a&
34
Na realidade, a temperatura diminui ao longo da aleta e, portanto, a transferência de 
calor será menor em função da diminuição da diferença de temperatura T(x)-T
∞
, 
conforme a representação na figura:
Para levar em conta esse efeito, define-se a eficiência da aleta, conforme a eq. (35):
ou
onde Aa é a superfície total da aleta. Ou seja, a eq. (36) permite determinar a taxa de 
transf. de calor a partir de uma aleta quando sua eficiência é conhecida.
Eficiência da aleta
(35)
( )
∞
−== TThAqq baamax,aaa ηη
max,a
a
b
a q
q
T
==
 a estivesse aleta a todase ideal t.c.de Taxa
aleta dapartir a real t.c.de Taxaη
(36)
27/09/2016
18
35
Para o caso de aletas de seção transversal constante muito longa, aleta com ponta 
adiabática ou com convecção, suas eficiências podem ser calculadas como:
pois, para aletas de seção transversal constante, a área da superfície da aleta, Aa e 
igual ao produto do seu perímetro pelo seu comprimento, ou seja:
Eficiência da aleta
(38)
( )
( )
( ) ( ) ( )
mLhP
kA
LLPhkA
LPPhh
kA
hPL
hPkA
hPL
hPkA
TThA
TThPkA
q
q /
ba
b
max,a
a
longa,a
11
2
1
2
1
2
1
2
1
2
1
2
121
======
−
−
==
−−
∞
∞η
(39)
(37)
( )
( ) mL
mLtanh
TThA
mLtanhTThPkA
q
q
ba
b
max,a
a
adiab,a =
−
−
==
∞
∞η
( )
( ) mL
mLtanh
TThA
mLtanhTThPkA
q
q c
ba
cb
max,a
a
conv,a =
−
−
==
∞
∞η
PLAa = (40)
36
Relações para a eficiência da aleta são desenvolvidas para vários perfis. Observar as relações para 
as aletas de seção não uniforme:
Eficiência da aleta
(41)
(42)
(43)
kt
h
m
2
=
a b
kD
h
m
4
=
27/09/2016
19
37
Relações para a eficiência da aleta são desenvolvidas para vários perfis:
Eficiência da aleta
(44)
(45)
(46)
kt
h
m
2
=
a b
kD
h
m
4
=
38
Aletas com perfil triangular ou parabólico contém menos material e são mais eficientes que as de 
perfil retangular e são mais adequadas para aplicações que exigem mínimo peso (como em 
aplicações espaciais, por exemplo)
Observação quanto ao comprimento da aleta:
Quanto mais longa for a aleta, maior será a área de transferência de calor e, portanto, maior
será a taxa de transferência de calor a partir da aleta.
Da mesma forma, quanto mais longa, maior será sua massa, maior seu preço e maior será o 
atrito com o fluido de transferência de calor. Ou seja, aumentar o comprimento além de um dado 
valor, pode não ser interessante, a menos que os benefícios adicionais superem os custos 
adicionais.
�A eficiência da aleta diminui com o aumento do seu comprimento devido ao decréscimo na 
temperatura da aleta. Comprimentos de aleta que causem uma queda na eficiência abaixo de 60% 
não são justificados economicamente e devem ser evitados.
A eficiência das maior parte das utilizadas aletas na prática está acima de 90%.
Eficiência da aleta
27/09/2016
20
39
Eficiência de aletas de perfis retangular, triangular e parabólico
40
Eficiência de aletas anulares de perfil retangular 
27/09/2016
21
41
Conjunto de aletas
A eficiência global de superfície, ηo, caracteriza o desempenho de um conjunto de aletas e a 
superfície base na qual esse conjunto está fixado, de acordo com a eq. (47):
Nessa equação, qt é a taxa total de transferência de calor, At é a área superficial associada à área 
das aletas e a fração exposta da base, também chamada de área primária. Se existirem N aletas no 
conjunto, cada uma com área superficial Aa, e a área da superfície primária for designada de Ab, a 
área superficial total será dada por:
Usando a conservação da energia, tem-se que a taxa total de transferência de calor do sistema 
aletado, qt, é dada por:
onde qa é a taxa de t.c. pelas aletas e qb e a taxa de t.c. através da base sem aletas.
(47)
bt
t
max
t
o hA
q
q
q
θ
η ==
bat ANAA +=
(48)
bat qqq += (49)
42
Conjunto de aletas
Exemplos de conjuntos de aletas: (a) retangulares e (b) circulares. Nessa figura, S é o passo das 
aletas.
A eq. (49) pode ser reescrita substituindo cada termo pela equação correspondente. Da eq. (36), 
qa é dado por:
e qb é dado por:
(50a)baamax,aaa hAqq θηη ==
bbb hAq θ= (50b)
27/09/2016
22
43
Conjunto de aletas
Substituindo as eq. (36) e (50a) na eq. (49):
onde h, o coef. de t.c. por convecção é considerado equivalente para as superfícies das aletas e 
para a superfície primária (da base). A área da base é calculada como:
E substituindo a eq. (52) na (51):
resulta em:
(51)bbbaat hAhANq θθη +=
atb NAAA −= (52)
( ) batbaat NAAhhANq θθη −+= (53)
( )[ ] b
t
a
t
t
t
a
atbataat A
AN
A
A
A
ANhANAAANhq θηθη














−+=−+= (54)
( ) ba
t
a
tb
t
a
a
t
a
tb
t
a
t
a
att A
ANhA
A
AN
A
ANhA
A
AN
A
ANhAq θηθηθη 





−−=





+−=














−+= 1111 (55)
44
Conjunto de aletas
Substituindo a eq. (55) na eq. que define a eficiência global da aleta, eq. (47):
e reorganizando, essa eq. fica:
Pela análise da eq. (56) fica óbvio que a taxa de t.c. total é função da área total (aletas + base) e da 
eficiência do conjunto de aletas, podendo ser escrita como:
(56)
(57)
(58)
( )
bt
ba
t
a
t
max
t
o hA
A
ANhA
q
q
θ
θη
η






−−
==
11
( )a
t
a
o A
AN ηη −−= 11
bott hAq θη=
27/09/2016
23
45
Efetividade da aleta
Aletas são usadas para aumentar a transferência de calor e sua utilização não deve ser 
recomendada a menos que o aumento da transferência e calor justifique o aumento de custo e de 
complexidade associado com as aletas. 
Assim, o desempenho das aletas deve ser avaliado com base na eficácia da aleta, εa, definida pela 
eq. (59):
Nessa equação, Ab é a área da seção transversal da aleta na base, igual a área A definida 
anteriormente. O termo representa a taxa de t.c. dessa área se não houvesse uma aleta 
fixada na sua superfície.
aletasemq 
(59)
bb
a
aletasem
a
b
b
a hA
q
q
q
A
A
θ
ε ===
 
 área com superfície da t.c.de Taxa
 base da área com aleta da t.c.de Taxa
46
Efetividade da aleta
A eficiência da aleta e sua eficácia estão relacionadas conforme a eq. (60):
Ou seja, a eficácia da aleta pode ser facilmente determinada a partir de sua eficiência ou vice-
versa.
� Um valor de εa = 1 significa que a adição de aletas na superfície não afeta a t.c.
� Valores de εa < 1 indicam, na verdade, que a aleta funciona como isolamento, diminuindo a 
t.c. a partir da superfície. Por exemplo, material da aleta com baixa condutividade térmica.
� Valores de εa > 1 indicam que as aletas estão aumentando a t.c. da superfície mas, por si só, 
não justifica sua utilização, salvo se εa >> 1.
(60)( ) ab
a
bb
baa
bb
a
aletasem
a
a A
A
hA
hA
TThA
q
q
q η
θ
θη
ε ==
−
==
∞ 
27/09/2016
24
47
Efetividade da aleta
Considerando uma aleta longa, de seção transversal constante, em condições de regime 
permanente, a taxa de transferência de calor é dada pela eq. (20). Substituindo essa equação na 
eq. (59), o resultado é:
uma vez que A=Ab para esse caso. Analisando essa eq. pode-se observar que:
� A condutividade térmica, k, do material da aleta deve ser a mais elevada possível. O material 
mais usado é o alumínio devido ao baixo custo, baixo peso e sua resistência à corrosão;
� A razão entre o perímetro da aleta e sua área transversal, P/A, deve ser a mais elevada 
possível. Esse critério é satisfeito quando se utilizam aletas de chapas finas e aletas delgadas, na 
forma de pinos;
� As aletas são mais eficazes quanto menor for o valor do coef. de t.c. por convecção, h, como é o 
caso do escoamento com gases e, principalmente, em convecção natural.
(61)
hA
kP
hA
hPkA
hA
q
q
q
bb
b
bb
a
aletasem
a
a ==== θ
θ
θ
ε
 
48
Também pode ser definida uma efetividade total para uma superfície aletada, como a razão entre a 
transferência de calor a partir da superfície aletada e a transferência de calor para a mesma 
superfície, na ausência de aletas:
As áreas utilizadas na eq. (65) são mostradas na figura:
Note que a efetividade total depende do número de aletas por unidade de comprimento e da 
eficiência individual das aletas. 
A efetividade total é a melhor medida do desempenho de uma superfície aletada.
(62)
Efetividade da aleta
( )
baletassem
baalenão
aletasem,t
t
total,a hA
AAh
q
q
θ
θη
ε
 
 
 
+
==
( )
LwA
wtNwHA
wHA
a
aletassem
aletadanão
2
 
 
=
−== (63)
(64)
(65)
27/09/2016
25
49
Exemplo de aletas anulares com perfil retangular:
Sem aleta Com aletas
Qual será o aumento na transferência de calor?
Efetividade da aleta
50
O desempenho de aletas pode também ser quantificado em termos de resistência térmica. 
Considerando que a força motriz do processo seja a diferença entre as temperaturas (Tb-T∞) = θb, a 
resistência de uma aleta é definida como:
A resistência térmica pela convecção da base exposta da aleta, Ab, é dada por:
Dividindo a eq. (70) pela eq. (69) e utilizando a eq. (60):
De forma similar, utilizando a eq. (56)
Análise de sistemas aletados com uso de resistências térmicas
a
b
a,t q
R θ= (66)
b
b,t hA
R 1= (67)
bb
a
a
a
b
b
hA
q
q
hA
θ
εθ = como e 
1
a,t
b,t
a R
R
=ε (68)
tot
b
o,t hAq
R
η
θ 1
== (69)
27/09/2016
26
51
Assim, Rt,o é uma resistência efetiva que leva em conta as trajetórias do calor paralelas por 
condução/convecção nas aletas e por convecção na superfície primária, como mostrado na figura 
abaixo.
Análise de sistemas aletados com uso de resistências térmicas
qa
qa
Nqa
Resistência da aleta
Resistência da base
Resistência de contato
Resistência da aleta
Resistência da base
Obs.: nas figuras, ηηηηf é igual a ηηηηa no texto, assim como Af e Aa. 
52
No caso onde for considerada uma resistência de contato:
E a eficiência global correspondente será dada por:
O parâmetro C1 é dado por:
onde R”t,c é a resistência térmica de contato entre aleta e base. No projeto, deverá ser garantido 
que essa resistência seja muito menor que a resistência térmica da aleta. 
Análise de sistemas aletados com uso de resistências térmicas
(70)
(71)
(72)
tc,ot
b
c,t hAq
R
η
θ 1
==












−−=
1
11
CA
NA a
t
a
c,o
ηη








+=
b,c
c,t
aa A
"R
hAC η11
27/09/2016
27
53
Passagens aletadas são frequentemente formadas entre placas paralelas para melhorar a transferência de calor por 
convecção. Uma importante aplicação é no resfriamento de equipamentos eletrônicos, onde as aletas, resfriadas a 
ar, são colocadas entre componentes eletrônicos que dissipam calor.
Um chip de silício isotérmico, com lados de 20 mm, encontra-se soldado a um dissipador de calor de alumínio com 
um comprimento equivalente.
O dissipador tem uma base com espessura 3 mm e 11 aletas retangulares, cada uma com comprimento de 15 mm, 
como indicado na figura abaixo.
Um escoamento de ar a 20 ºC é mantido através dos canais formados pelas aletas (coeficiente convectivo de 100 
W/m²K) com um espaçamento mínimo de 1,8 mm em função das limitações na perda de pressão no escoamento. 
A junta soldada tem uma resistência térmica de R”t,c=2x10-6 m²K/W.
Considere a espessura das aletas de t=0,182 mm e o passo de S=1,982 mm.
Se a máxima temperatura permitida do chip for Tc=85 ºC, qual é o valor correspondente da potência do chip?
Exemplo:

Continue navegando