Buscar

Fenômenos de Transporte III Vargas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 52 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Fenômenos de Transporte III 
 
 
 
 
 
 
 
Apostila 
 
 
 
 
 
 
Autor: Samuel Marczewski Gonçalves 
 E-mail: samuel_m_goncalves@hotmail.com 
 
Profº: Dr. Rubem Mário Figueiró Vargas 
 
 
Porto Alegre 
2009 
 
 
Conteúdo 
1. Conceitos Fundamentais ........................................................................................................................ 1 
2. Velocidade ............................................................................................................................................. 3 
2.1. Velocidade de Difusão ................................................................................................................. 3 
3. Fluxo Mássico ........................................................................................................................................ 4 
4. Coeficiente de Difusão (DAB) ................................................................................................................ 6 
4.1. DAB para Gases ............................................................................................................................. 6 
4.2. DAB para Líquidos ........................................................................................................................ 7 
4.1. DAB para Sólidos .......................................................................................................................... 8 
5. Equação Diferencial da Transferência de Massa ................................................................................... 9 
6. Difusão em Estado Estacionário .......................................................................................................... 12 
6.1. Difusão Através de um Gás Estagnado ...................................................................................... 12 
6.2. Contradifusão Equimolar ........................................................................................................... 16 
7. Modelos Pseudo-Estacionários ............................................................................................................ 18 
8. Difusão com Reação Química em Estado Estacionário ....................................................................... 19 
9. Difusão com Reação Química.............................................................................................................. 21 
10. Difusão em Estado Não-estacionário .............................................................................................. 23 
11. Difusão em Meio Semi-Infinito ...................................................................................................... 24 
12. Transferência de Massa por Convecção .......................................................................................... 27 
12.1. Parâmetros Adimensionais para a Convecção ............................................................................ 28 
12.2. Análise Dimensional .................................................................................................................. 29 
12.3. Correlações Para a Transferência de Massa ............................................................................... 31 
12.3.1. Convecção Forçada ......................................................................................................... 31 
12.3.2. Convecção Natural ......................................................................................................... 33 
13. Transferência de Massa Entre Fases ............................................................................................... 35 
13.1. Equilíbrio ................................................................................................................................... 35 
13.2. Teoria das Duas Resistências ..................................................................................................... 37 
1. APÊNDICE A ........................................................................................................................................ 1 
1.1. Coeficientes de Difusão Para Transferência de Massa em Sistemas Binários .............................. 1 
1.1.1. Em Gases ............................................................................................................................. 1 
1.1.2. Em Líquidos ........................................................................................................................ 3 
1.1.3. Em Sólidos .......................................................................................................................... 3 
1.2. Parâmetros de Lenard-Jones ......................................................................................................... 4 
1.2.1. Integrais de Colisão (ΩD) .................................................................................................... 4 
1.2.2. Potenciais de Lennard-Jones ............................................................................................... 5 
1.3. Tabela dos Volumes Molares ....................................................................................................... 6 
1.3.1. Para Alguns Compostos Comumente Encontrados ............................................................. 6 
1.3.2. Volume Atômico Para Volumes Moleculares Complexos .................................................. 6 
1.3.3. Correção Para Configurações Específicas de Ciclos ........................................................... 6 
1.3.4. Parâmetro de Associação Para o Solvente B (ΦB) ............................................................... 6 
1.4. Operadores Matemáticos .............................................................................................................. 7 
1.4.1. Coordenadas Cartesianas ..................................................................................................... 7 
1.4.2. Coordenadas Cilíndricas ...................................................................................................... 7 
1.4.3. Coordenadas Esféricas ........................................................................................................ 7 
1.5. Função Erro .................................................................................................................................. 8 
1.6. Densidade e viscosidade da água sob condições normais de pressão. .......................................... 9 
1.7. Tabela de Conversão de Unidades ............................................................................................. 10 
 
1 
 
1. Conceitos Fundamentais 
A transferência de massa é um fenômeno de transporte que ocorre em sistemas onde não se 
verifica o chamado equilíbrio químico. 
O equilíbrio químico se refere à igualdade de potencial químico das diferentes espécies químicas 
que constituem os sistemas. 
Este potencial químico se traduz em termos da quantidade chamada concentração, sendo assim a 
transferência de massa só irá ocorrer mediante a existência de diferença de concentração no interior de 
um sistema. 
A transferência de massa é caracterizada por um fluxo de matéria e este fluxo pode ser expresso 
em termos de quantidades molares ou mássicas. 
Existem dois mecanismos para descrever a transferência de massa: 
1º Difusão molecular. 
2º Convecção mássica. 
A difusão molecular é a transporte de matéria que ocorre na presença de um gradiente de 
concentração sem a contribuição do meio que está em movimento e transporta matéria. 
Sendo assim, a difusão molecular é um fenômeno que ocorre em nível microscópico e está 
associado ao movimento aleatório das partículas. 
O outro mecanismo, chamamos convecção e tem associado a ele a necessidade do meio onde a 
matéria esta sendo transportada de estarem movimento. 
 Gera uma variação de concentração por difusão molecular 
ou convecção. 
Concentração molar: é a relação entre a quantidade de mols de uma espécie química “A” e o 
volume total. 
 
 
 
 
Concentração molar total de uma mistura: 
 
 
 
 
Para um gás ideal: 
 
 
 
 
 
 
 
 
 
 
 
Concentração mássica é a razão entre a massa (m) é o volume (V) de uma mistura. 
Para um componente particular dessa mistura sua concentração é expressa em termos da massa 
deste componente divida pelo volume total da mistura. 
 
 
 
 
Concentração mássica total: 
 
 
 
 
Fração molar de “A”: é a razão entre o nº de mols de “A” e o nº de mols total existente em uma 
mistura. 
 
 
 
 
 
 
 
Para um sistema gasoso: 
 
 
 
 
2 
 
Fração mássica de A: é a razão entre a massa de “A” presente numa mistura e a massa total desta 
mesma mistura. 
 
 
 
 
 
 
 
Correspondência entre as bases: 
 
 
 
 
 
 
 
Logo, para um sistema genérico, pode-se estabelecer as relações entre as bases molar e mássica 
ou vice-versa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exercício1: 
A composição do ar é freqüentemente dada em termos dos seus dois componentes principais na 
mistura gasosa. (21% de mols de O2 e 79% de mols de N2) 
Determine a fração mássica de O2 e do N2 assim como a massa molar média do ar sabendo que o 
peso molar do O2 é 32g/mol e do N2 é 28g/mol. 
 
Exercício2: 
Na manufatura de equipamentos de microeletrônica, um filme fino sólido de silício cresce 
uniformemente sobre a superfície de uma placa devido a decomposição química do silano (SiH4) gasoso 
em presença de hidrogênio (H2), também gasoso. 
Assuma que a composição do gás é mantida em 50% em mols de silano e 50% de hidrogênio. 
a) Qual é a composição em base mássica para esta mistura gasosa? 
b) Qual é a massa molar da mistura gasosa? 
c) O sistema é isotérmico e isobárico a 900 K e 60 torr. Determine nesta condição a 
concentração molar do silano no gás que alimenta o processo. 
 
3 
 
2. Velocidade 
Numa mistura onde existem vários componentes, cada componente possui uma velocidade com 
relação a um determinado referencial. No entanto, a mistura como um todo apresenta uma velocidade 
média que leva em conta a contribuição de cada constituinte. 
Podemos definir velocidade com relação a unidades molares ou mássicas, enquanto partículas 
em observação. 
Dessa maneira podemos escrever a velocidade molar média de uma mistura como; 
 
 
 
 
 
 
 
Onde: 
ci é a concentração molar do componente “i”. 
 é a velocidade da espécie química “i” medida com relação ao referencial fixo. 
De maneira semelhante podemos definir uma velocidade mássica média da mistura como sendo: 
 
 
 
 
 
 
 
 
2.1. Velocidade de Difusão 
 
 Em base molar 
 Em base mássica 
Sendo a velocidade de difusão do componente “i”, em observação, a diferença entre a velocidade 
do componente “i” e a velocidade média da mistura, tal velocidade será diferente de zero na presença de 
gradientes de concentração. 
É a partir do conceito de velocidade e concentração que se estabelece o entendimento do fluxo 
mássico ou molar. 
 
4 
 
3. Fluxo Mássico 
A primeira definição de fluxo foi elaborada por Parrot e foi escrita da seguinte forma: 
 (1) 
A definição anterior representa o fluxo molar ( ) da espécie química “A” medida com relação a 
um referencial móvel que se desloca com uma velocidade molar média da mistura ( ). 
Nesta definição o fluxo é diretamente proporcional ao gradiente de concentração ( ) e também 
a uma constante de proporcionalidade denominada de difusividade molecular (DAB). Esta lei é apoiada em 
estudos realizados por Fick carregando, portanto, a denominação de 1ª lei de Fick. 
É importante lembrar que o fluxo molar representa a quantidade de mols por unidade de tempo 
que atravessa perpendicularmente uma área especificada. Sua dimensão é expressa como . 
Sendo assim, expresso em unidades como: 
 
 
 
 
 
 
 
 
 
A equação (1) representa o fluxo molar em condições isotérmica e isobárica. Uma representação 
mais genérica, onde tais condições não se verifiquem, pode ser expressa como: 
 (2) (referencial móvel) 
Outra maneira de expressar fluxo molar relativo a um referencial móvel é: 
 
 (3) 
 
 
 
 
 Fluxo molar de “i” medido em relação a um referencial fixo. 
Como (1) = (3) 
 
 A equação anterior representa o fluxo molar em condições isotérmica e isobárica. Uma 
representação mais genérica, onde tais condições não se verifiquem, pode ser expressa como: 
 (4) 
 
A equação (4) é uma expressão para o fluxo escrito em termos de dois componentes (T1 e T2). O 
termo T1 representa o componente de fluxo com origem nos gradientes de concentração da espécie 
química “A” e o segundo termo, T2, é o componente do fluxo para a espécie “A” cuja contribuição tem 
origem na possibilidade do meio apresentar movimento e assim sendo, carrega consigo a espécie química 
“A”. 
 
Sintetizando os resultados: 
 Referencial Móvel Referencial Fixo 
Base Molar 
 
 
 
Base Mássica 
 
 
 
T1 T2 
5 
 
Exercício1: 
Para uma mistura de composição molar de 5% CO, 20% H2O, 4% O2, e 71% N2; sabe-se que as 
velocidades absolutas das espécies químicas são: 
 
 
 
 
 
 
 
 
 
 
 
 
. Determine: 
a) A velocidade molar média da mistura. 
b) A velocidade mássica média da mistura. 
c) A velocidade de difusão de H2O na mistura, tem como referência a velocidade mássica 
molar média? 
d) O fluxo molar e molar para a água tanto no referencial móvel como no referencial fixo. 
e) O fluxo molar e mássico para a água tanto no referencial móvel como no referencial fixo. 
 
6 
 
4. Coeficiente de Difusão (DAB) 
É o fator de proporcionalidade da lei de Fick, também chamado de coeficiente de difusividade 
molecular. Este fator depende da natureza e das condições do sistema. 
 
 
 
 
 
 
 
Espera-se por sua vez que o . 
 
4.1. DAB para Gases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Onde: 
 
 
 
 A 
 
 
 
Os parâmetros de Lenard-Jones não tabelados são estimados por: 
 
 
 
 
 
 
 e 
 
 
 
 ; 
Para um sistema binário não polar: 
 
 
 
 e 
 
 
 
 
 
 
 
 
 
 
 ; onde 
 
 
 
 obtido pela tabela ou pela equação: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prevemos o DAB para qualquertemperatura e pressão abaixo de 25 atm, pela equação: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wilke mostrou que para uma mistura: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Onde é a fração molar do componente “n” na mistura gasosa avaliada em uma base livre do 
componente “1”, como por exemplo: 
 
 
 
 
 
 
 
7 
 
4.2. DAB para Líquidos 
As teorias de difusão em líquidos estabelecem que os coeficientes de difusão estejam 
relacionados à mobilidade das moléculas dos solutos em meio aos solventes. 
Wilke e Chang propuseram a seguinte correlação para não eletrólitos numa solução infinitamente 
diluída: 
 
 
 
 
 
 
 
 
Onde: 
 
 
 
 
 
 
 
 
 
 
Se levarmos em consideração a composição da mistura devemos calcular: 
 
Onde: 
 
 
 
Para corrigir o desvio da idealidade da solução usa-se um parâmetro vinculado ao gradiente de 
atividade. 
 
 
Onde: 
 
 
 
 
 
 Para considerar os efeitos da polaridade usa-se a relação: 
 
 
Onde: 
A e B são polares  p=1,0 
A e B são apolares  p=0,4 
Um é apolar e outro polar  p=0,6 
 
Exercício: 
Para uma solução de tetracloreto de carbono e hexano a 25°C no qual a fração molar de hexano é 
25%, deseja-se determinar a difusividade do tetracloreto através da solução. Nesta temperatura a 
viscosidade do tetracloreto é 0,86cP e do hexano é 0,30cP. O gradiente de atividade para este sistema, 
onde “A” é hexano e “ ” é o tetracloreto é descrito como: . 
 
8 
 
4.1. DAB para Sólidos 
Difusão do tipo Knudsen(poros estreitos), pode ser descrita pela teoria cinética dos gases. 
 
 
 
 
Onde: 
 é a velocidade da molécula de gás e d é o diâmetro do poro. 
 
Para poros circulares e retos temos: 
 
 
 
 
 
 
 
Onde: 
 
 . 
O raio médio do poro pode ser calculado por: 
 
 
 
 
 
 
 
Onde: 
 
 
 
 
 
 
 . 
 
Para levar em conta a tortuosidade do caminho se expressa: 
 
 
 
 
Onde é a difusividade efetiva de Knudsen e é a tortuosidade relacionada com o caminho 
da molécula. 
 
A difusão global para o transporte molecular aparece em menor escala, mas pode ser descrita em 
termos do coeficiente de difusão ordinária pela equação: 
 
 
 
 
Embora os coeficientes de difusão ordinária para gases sejam significativamente influenciados 
pela pressão, os coeficientes de difusão de Knudsen são independentes da pressão. 
 
Modelo difusivo do tipo lei de Arrhenius. 
 
 
 
DAB em 
 
 
; R = 1,987 
 
 
; Q em 
 
 
 e T em K. 
 
9 
 
5. Equação Diferencial da Transferência de Massa 
A expressão para o princípio da conservação da massa para um sistema é expresso na forma de 
uma equação diferencial parcial que será apresentada a seguir. 
Para tanto vamos supor um sistema infinitesimal de volume dV. Através dele massa do 
componente “A” flui junto a sua fronteira assim como, afim de generalidade, massa de “A” é gerada no 
interior deste volume com uma intensidade conhecida. Vamos denotar como a taxa de massa de “A” 
por unidade de volume gerada no interior do sistema. 
O balanço de massa em termos da espécie química “A” pode ser escrito como: 
 
 
 
 
 
 
 
 
 
 
Para um elemento de volume ΔV que não sofre variações com o passar do tempo, dividindo a 
equação anterior por encontramos: 
 
 
 
 
 
 
 
 
 
 
 
 
Tomando 
 
 
 
 : 
 
 
 
 
 
 
 
 
 
 
 
 
Então em termos de uma notação vetorial: 
 
 
 
O 1º termo da equação anterior está associado à variação de massa no interior do volume 
analisado em função do tempo. 
O 2º termo executa a contabilidade da massa de “A” por unidade de tempo que passa através da 
fronteira do sistema. 
O 3º termo está vinculado a geração de massa de “A” no interior do volume, tendo em vista 
efeitos de reação química. 
Da mesma forma que para a conservação da massa de “A” em base mássica, segue a partir do 
balanço em base molar de “A” a seguinte expressão: 
 
 
 
10 
 
Onde: é o divergente do fluxo molar de “A” e a taxa de mols de “A” por unidade de 
volume gerada no interior do sistema. 
Ambas as equações anteriores classificam-se como EDPs, portanto para que sua solução seja 
estabelecida é necessária a determinação das condições de contorno e uma condição inicial vinculadas ao 
sistema em análise. 
Considerando uma equação análoga para uma espécie química “ ”, se o sistema em análise for 
binário teremos: 
 
 
 
 
 
 
 
 
 
 
Como pela distribuição de velocidade média mássica: 
 
 
 
 
E para preservar a lei de Lavoisier (princípio de conservação de massa): 
 
Pode-se, então, reescrever-se a equação acima, resultando: 
 
 
 
Formas especiais da equação da transferência de massa: 
Como : 
 
 
 
Se e são constantes: 
 
 
 
 
 
Se e são constantes e o sistema não possui geração interna de massa: 
 
 
 
 
 
Se e são constantes, o sistema não possui geração interna de massa e onde a 
transferência de massa não sofre efeitos significativos da velocidade do sistema: 
 
 
 
 
 
Obtém-se a 2ª lei de Fick ou lei da difusão: 
 
 
 
 
 
 
 
 
11 
 
Exercício1: 
Em um processo, oxigênio produz a combustão do carvão. Deseja-se descrever o processo 
difusivo do O2 ao longo de uma camada de espessura “Δ” formada em torno da partícula sólida. Sabe-se 
que a fração molar do O2 fora da camada de gás contaminado significativamente pelos produtos da 
combustão é 21% em mols. 
Admita que a transferência de O2 ocorra unidimensionalmente e ocorre em estado estacionário. 
Assuma que a reação química associada à combustão ocorre instantaneamente junto a partícula 
de carvão. 
a) Suponha que a partícula seja uma placa. 
b) Suponha que a partícula seja uma esfera. 
 Nas duas situações descritas (a e b) a reação de combustão é: 
 
Obtenha a forma simplificada para a equação diferencial da transferência de massa e para a 1ª lei 
de Fick. Indique as condições de contorno vinculadas à descrição feita acima. 
 
 Exercício2: 
Uma área emergente da biotecnologia, chamada de engenharia de tecidos, desenvolve novos 
processos para o crescimento organizado de tecidos tanto de origem humana como animal. Tais processos 
possuem diversas aplicaçõesbiomédicas incluindo a produção de tecido humano para transplante, tal 
como pele e osso, entre outros. 
Tecidos vivos necessitam de oxigênio para manter a vida. Transporte de oxigênio para o tecido é 
uma importante consideração do projeto. 
Um dispositivo esquemático para este processo consiste em finos tubos que servem de suporte e 
ao mesmo tempo suprem a demanda de O2 do tecido. O O2 puro flui através do interior do tubo, sendo 
este, permeável ao O2. 
O O2 é considerado o único componente que se solubiliza no tecido, que é substancialmente 
água. A concentração de O2 desenvolvido em um raio “r” é 
 
 
, onde h é a constante da lei de 
Henry para o O2 dissolvido no tecido junto à temperatura do processo e é a pressão parcial de O2 no 
tubo. O O2 dissolvido difunde através do tecido e é metabolicamente consumido. O consumo metabólico 
de O2 dissolvido é descrito por uma equação para a taxa de cinética: 
 
 
 
 
Pode ser assumido que junto ao final do tecido o fluxo de O2 é nulo. 
Determine, em estado estacionário, as formas simplificadas para a equação geral e para a lei de 
Fick. 
 
12 
 
6. Difusão em Estado Estacionário 
Nesta unidade vamos abordar o estudo da transferência de massa pelo mecanismo da difusão 
molecular em estado estacionário. Inicialmente vamos abordar sistemas não reativos. Algumas situações 
serão estudadas dentro desta classe de sistema. 
 
6.1. Difusão Através de um Gás Estagnado 
Algumas operações unitárias da engenharia química são representadas fisicamente pelo que se 
chama de difusão através de um gás estagnado. Dentre estas operações pode-se citar os processos de 
secagem. 
Com o objetivo de definirmos um modelo vamos estudar o processo de evaporação de um 
líquido “A” volátil depositado no interior de um tubo. Acima deste líquido existe uma camada de gás “B” 
sendo este gás solúvel e inerte frente ao líquido “A”. Junto ao topo do tubo, uma corrente com velocidade 
bastante baixa deste gás “B” circula constantemente. 
É conhecido na literatura este tipo de dispositivo como célula de Arnold. 
 Gás “B” 
 z = z2 ; yA = yA2 
 
 z = z1 ; yA = yA1 
 
 Líquido “A” 
 
A célula de Arnold está posicionada num ambiente com temperatura e pressão constantes. Como 
o gás “B” circula junto à boca do tubo a concentração nesta posição em termos do componente “A” é 
mantida constante. 
Na interface entre o líquido e o gás, como a temperatura e a pressão do sistema são constantes, 
uma relação de equilíbrio líquido-vapor descreverá adequadamente a fração molar de “A” nesta posição, 
pelo lado do gás. Vamos admitir que uma alimentação conveniente mantida junto ao fundo da célula faz 
com que o nível do líquido “A” permaneça constante durante o processo de transferência de massa. 
Nestas condições desejamos estabelecer o fluxo molar do componente “A” transferido sob condições de 
operação em estado estacionário. 
 
 
 
 
 
Sendo que o gás B insolúvel e inerte frente ao líquido “A”, ao se avaliar o valor do fluxo molar 
de “B” na interface entre o líquido e o gás, chega-se ao resultado que . 
Este resultado vale para qualquer posição z ao longo do caminho difusivo. 
 não implica o gás B permanecer estático no interior do tubo, mas representa o fato de as 
quantidades molares de “B” em cada posição do caminho difusivo serem iguais em intensidade, mas com 
sentidos (ascendente e descendente) contrários. Isto é o que caracteriza a nomeação de gás estagnado. 
 
 
 
0 0 
13 
 
Da 1ª lei de Fick: 
 
Onde , ou seja, . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Alguns livros de transferência de massa apresentam a equação anterior expressa em termos da 
chamada fração molar média logarítmica de “B” denotada como: 
 
 
 
 
 
 
 
 
Então: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Com isso: 
 
 
 
 
 
 
 
Freqüentemente, para completar a descrição de uma operação física na qual a mesma esta sendo 
transportada. É necessário expressar o perfil de concentração. Para o nosso exemplo de difusão estacionária num 
volume de gás estagnado: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Como são constantes sob condições isotérmicas e isobáricas, temos: 
 
 
 
 
 
 
 
 
 
 
Então temos: 
 
 
 
 
 
 
 
14 
 
 
 
 
 
 
 
 
 
Então a equação geral fica: 
 
 
 
 
 
 
 
 
 
Ou como : 
 
 
 
 
 
 
 
 
 
 
 
15 
 
Exemplo: 
Considere que o CO2 difunde através de uma película estagnada de ar com 1 cm de profundidade 
na pressão de 1 atm e 25°C. Esta película está num capilar que contém H2SO4. O CO2 é absorvido 
instantaneamente ao atingir o líquido. A concentração molar de CO2 na boca do capilar é expressa em 
termos de fração molar e vale 1% em mols. Calcule o fluxo molar de CO2 transferido através do capilar. 
 CO2 
 z2 = 0 cm ; yA1 = 0,01 
 
 z1 = 1 cm ; yA1 = 0 
 
 H2SO4 
 
16 
 
6.2. Contradifusão Equimolar 
A contradifusão equimolar é um fenômeno de transferência de massa que em um sistema binário 
se caracteriza pela seguinte situação: 
 
A situação se verifica em processos de destilação de substâncias cujos calores latentes sejam 
aproximadamente iguais. Outra situação descrita pelo modelo de contradifusão equimolar está associada 
ao processo de transferência de massa entre gases confinados. 
Nosso objetivo será estabelecer as equações matemáticas simplificadas e a partir delas 
determinar do fluxo e o perfil de concentração para um sistema regulado pela contradifusão equimolar. 
Vamos considerar o processo unidimensional, descrito por coordenadas retangulares e o sistema 
em condição isotérmica e isobárica. Sendo assim, em estado estacionário a equação geral é escrita como: 
 
 
 
E a 1ª lei de Fick: 
 , onde 
 
 
 
 
Determinação do Fluxo: 
 
 
 
 
 
Perfil de concentração: 
 
 
 
 
 
 
 
 
 
Perfil Linear: 
 
Equação da Reta: 
 
 
 
 
 
 
Valor médio de fração molar de “A” ao longo do caminho difusivo: 
 
 
 
 
 
 
 
 
Valor médio de fração molar de “A” ao longo do caminho difusivo na contradifusão: 
 
 
 
 
 
 
 
 
17 
 
Exercício1: 
Uma torre de destilação é alimentada na parte inferior com uma mistura binária de vapores de 
tolueno e benzeno. Os vapores condensados retornam parcialmente na forma de um filme líquido que 
escoa na parede interna da coluna. Junto a um plano da coluna de separação o vapor contém 85,3% em 
mols de benzeno, enquanto o líquido adjacente contém 70% em mols de benzeno. A temperatura neste 
ponto da coluna é 86,8°C. A resistência difusiva paraa transferência de massa entre a interface líquido-
vapor e as condições globais da corrente gasosa é assumida como sendo equivalente a resistência 
difusividade uma camada de gás com 0,1 polegadas de espessura. Como a coluna é bastante larga este 
filme gasoso não é afetado pela curvatura do tubo. Os calores latentes do benzeno e do tolueno são 
essencialmente iguais. Deseja-se calcular o fluxo transferido de benzeno e tolueno entre as fazes vapor e 
líquido se a torre é operada a pressão atmosférica. Considere a pressão de vapor do tolueno a 359,8 K 
como . A difusividade molecular dos gases envolvidos é 
 
 
. 
 
Exercício2: 
Dois reservatórios contêm uma mistura gasosa de ar e amônia. O reservatório 1 possui 60% em 
mols de amônia e o reservatório 2 contem 20% em mols de amônia o sistema se encontra na pressão 
atmosférica e na temperatura de 273 K. A conexão entre os reservatórios é feita por um tronco de cone 
que possui diâmetros de 0,2 m junto ao tanque 1 e 0,1 m junto ao tanque 2. A distância entre os tanques é 
de 3 m. Deseja-se determinar a taxa inicial de amônia transferida entre os tanques. 
 
 
 
 
 
 
 
18 
 
7. Modelos Pseudo-Estacionários 
Os modelos pseudo-estacionários são uma estratégia de abordar fenômenos de transferência de 
massa onde variações bastante lentas ocorrem no sistema físico. A construção do modelo pseudo-
estacionário é realizada a partir de um balanço de massa na parte do sistema onde ocorre variação. 
Associado a este balanço estão as equações obtidas previamente em condições estacionárias 
submetidas a pequenas alterações. Com objetivo de exemplificarmos uma aplicação deste tipo de modelo 
vamos considerar um problema de evaporação em uma célula de Arnold onde um dos contornos pode 
mover-se com o tempo. Sendo assim, o comprimento do caminho difusivo, se variar pouco ao longo de 
um grande período de tempo, tal situação poderá ser descrita via modelo pseudo-estacionário. 
 Gás “ ” 
 z = z2 ; 
 
 z = z0 ; T0 
 z = z1 ; T1 
 Líquido “A” 
No Modelo Estacionário: 
 
 
 
 
 
 
 
 
 
 
 
 
Balanço de massa no líquido no fundo da célula: 
 
 
 
 , onde 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Exemplo 1: 
A partir do uso de uma célula de Arnold foi medida a difusividade de clorofórmio no ar a 25°C e 
1 atm de pressão. A massa específica do clorofórmio líquido a 25°C é 1,485 
 
 
 e sua pressão de vapor a 
25°C é 200 mmHg. Inicialmente a superfície líquida do clorofórmio se encontrava a 7,4cm do topo do 
tubo e após 10 horas de evaporação a superfície líquida estava a 0,44 cm do nível anterior. Se a 
concentração de clorofórmio é 0 no topo do tubo, qual será o valor experimental para o coeficiente de 
difusão do clorofórmio através do ar. 
 
 
Exemplo 2: 
Um reservatório com volume e 100 cm³ contem CO2 puro e é conectado através de um tubo com 
10 cm de comprimento e 0,1 cm de raio com o ar ambiente. Sob a hipótese pseudo-estacionária, 
determine o tempo para dissipar a metade dos mols de CO2 do reservatório. Todo o sistema se encontra a 
25°C e 1 atm. 
19 
 
8. Difusão com Reação Química em Estado Estacionário 
Existem operações na engenharia onde a difusão de espécies químicas é acompanhada de reação 
química. Neste tipo de situação duas abordagens podem ser seguidas, uma associada a sistemas de difusão 
com reação homogênea e outra de difusão com reação heterogênea. 
No caso de difusão com reação heterogênea, a espécie química “A” difunde em uma fase 
enquanto a sua reação ocorre em uma segunda fase que determina o contorno da primeira. Um exemplo 
deste tipo de situação encontra-se durante a descrição da queima de estruturas sólidas. 
No caso de reação química homogênea a espécie química “A” difunde ao mesmo tempo em que 
reage em uma única fase. Este tipo de situação é encontrado, por exemplo, em sistemas de absorção de 
espécies químicas reativas em uma fase específica. 
Estes dois tipos de difusão com reação determinam encaminhamentos matemáticos distintos na 
descrição da transferência de massa. 
Em estado estacionário, a equação geral da transferência de massa resulta para difusão com 
reação química heterogênea é: 
 
Com reação homogênea: 
 
Vamos começar a abordar os processos de difusão associados à reação química pelo caso 
heterogêneo. 
 
Exercício: 
Muitas operações associadas à geração de potência possuem varias etapas vinculadas à queima 
de partículas, por exemplo, de carvão. 
O oxigênio difunde na fase gasosa até encontrar a fase sólida e então promover a sua queima 
mediante a geração de gases como CO e CO2. A fim de criarmos um caso de estudo vamos admitir que 
apenas CO é produzido e que as partículas de carvão são constituídas majoritariamente por carbono que 
se encontra na forma esférica. 
Em estado estacionário o raio da partícula é considerado constante. O ambiente da camada de 
combustão se encontra numa condição de temperatura e pressão constantes. As partículas estão de forma 
bastante espaçosas no interior da câmara. A reação é dada por: 
 
 Determine o fluxo de O2: 
 
20 
 
Existem situações em que a reação não sendo instantânea, há a necessidade de alguma 
informação sobre a taxa de reação química junto à superfície. Muitas Vezes esta taxa de consumo é 
relacionada com o fluxo pela equação: 
 
 
 
 
 
KS é a constante de reação química. 
 
Exercício: 
Um reator de carvão fluidizado foi proposto numa nova planta industrial para fornecimento de 
energia. Se operar a 1145 K, o processo será limitado pela difusão de O2 em contracorrente ao CO 
formando instantaneamente, junto à superfície da partícula. 
Assuma que o carvão é carbono puro com massa específica de 1,28.10
3
 kg/m
3
 e que inicialmente 
o diâmetro da partícula é de 1,4.10
-4
m. Ar está a vários diâmetros de distância da esfera. 
Nas condições do processo de combustão a difusividade do O2 na mistura gasosa pode ser 
considerada como 1,3.10
-4
 m
2
/s. A partir de um modelo pseudo-estacionário, avalie o tempo necessário 
para reduzir o diâmetro da partícula para 5.10
-5
m. A câmara de combustão opera à pressão atmosférica. 
 
 
21 
 
9. Difusão com Reação Química 
É importante destacar que agora a taxa de reação por unidade de volume RA deve ser modelada 
para que as quantidades de interesse do ponto de vista da transferência de massa sejam determinadas. A 
discussão assim como o procedimento de abordagem desta situação será feita a partir de um exemplo. 
Vamos considerar um processo de absorção onde um componente A de uma mistura gasosa é 
capturado por uma fase líquida a partir do contato entre essas fases. O componente “A” à medida que 
difunde no meio líquido reage com este de acordo com uma reação de ordem um de modo que RA pode 
ser descrito como: 
 
A fase líquida onde a espécie química “A” foi absorvida é considerada estática e com baixos 
teores de “A”. O meio líquido associado à absorção possui junto à interface com o gás uma concentração 
constante CA0. À medida que o componente “A” é consumido pela reação se estabelece no interior de um 
filme líquido uma camada com espessura δ a partir da qual a concentração de “A”se torna nula. Nosso 
interesse será obter o fluxo de “A” transferida da fase gasosa para a líquida associado ao conhecimento do 
perfil de concentração no interior do filme líquido. 
 
 
 
 
 
 
 
Equação Geral: 
 
 
 
 
1ª lei de Fick: 
 
Devido às considerações de baixa concentração o último termo pode ser desprezado: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
z = δ ; CA=0 
 = 0 ; CA = CA0 
G
ás 
Líquido 
R
A 
A 
22 
 
Para se quantificar a quantidade molar retirada da fase gasosa e capturada pela fase líquida na 
operação de absorção vamos avaliar a derivada perfil de concentração em z = 0 e substituí-la na equação 
para o fluxo, . 
 
 
 
 
 
 
 
Ao dividirmos o fluxo molar da espécie química “A” associado a uma operação de absorção com 
reação pelo fluxo molar em um processo análogo de absorção, mas sem reação, uma quantidade 
adimensional é estabelecida e conhecida como Número de Hatta. Esta quantidade diz da influência da 
reação do processo de absorção com relação à sua ausência. No caso do exemplo apresentado esta 
quantidade é: 
 
 
 
 
 
 
 
 
23 
 
10. Difusão em Estado Não-estacionário 
A transferência de massa associada ao mecanismo da difusão em sistemas que possuam como 
característica a variação da concentração com o tempo e com as coordenadas espaciais são classificadas 
como não-estacionárias. Em um meio estático não reativo, a equação que descreve o comportamento da 
concentração é conhecida como 2ª lei de Fick: 
 
 
 
 
 
 
 
A equação diferencial anteriormente apresentada possui sua solução muitas vezes expressa em 
forma de diagramas denominados cartas. 
Analogamente à concentração molar, a concentração mássica em um problema sob as mesmas 
hipóteses anteriormente apresentadas satisfaz a seguinte equação: 
 
 
 
 
 
 
 
Com o objetivo de preservar a forma da equação diferencial para a situação onde dados estejam 
apresentados em termos da fração mássica ou molar, orienta-se o procedimento da seguinte mudança de 
variável: 
 
 
 
 
 
 
 . 
Com isto a variável conhecida como fração em base livre do componente que esta sendo 
transportado ( em processo de secagem conhecida como base seca ) satisfaz a seguinte equação. 
 
 
 
 
 
 
 
 
 
As cartas são uma representação do transporte unidimensional em sistemas com simetria relativa 
à linha ou ponto central do corpo, que inicialmente se encontra em uma condição homogênea em termos e 
concentração e cujo contorno fica submetido à condições invariantes com o tempo. As cartas que iremos 
utilizar estão apresentadas em função de quatro quantidades adimensionais. 
 
 
 
 
 
 
 
 
Tempo Admensionado: 
 
 
 
 
Posição Relativa: 
 
 
 
 
 
 
 
Resistência Relativa ( indicativo da razão entre a resistência superficial e interna): 
 
 
 
 
Apesar das cartas representarem a transferência unidimensional de massa é possível a abordagem 
de problemas multidimensionais mediante manipulações. 
Além do transporte multidimensional à situação onde a transferência de massa ocorre a partir de 
uma única face de uma placa plana pode ser avaliada utilizando-se as cartas para uma placa com 
espessura igual ao dobro da espessura original. Esta consideração é decisiva na avaliação dos fatores 
adimensionais. Este tipo de situação esta vinculado a, por exemplo, placas que possuam uma de suas 
faces isoladas. 
 
24 
 
11. Difusão em Meio Semi-Infinito 
Um importante caso de difusão transiente de massa com solução analítica é a transferência 
unidimensional em um meio semi-infinito com concentração superficial fixa. Por exemplo, nós podemos 
descrever a absorção do oxigênio a partir do ar para a água de um lago ou a difusão em meio sólido, num 
processo de têmpera do aço em um ambiente rico em carbono, todas estas situações incluem-se no caso 
de meio semi-infinito. 
 
Distribuição de concentração numa placa semi-infinita para um tempo t. 
Matematicamente o problema se coloca como: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fazendo a seguinte mudança de variável: 
 
 
 
 
A equação da difusão é escrita como: 
 
 
 
 
 
 
 
 
 
 
 
 
Aplicando Transformada de Laplace (t passará a p) na equação da difusão (uma equação 
diferencial parcial), obtemos a seguinte equação diferencial ordinária. 
 
 
 
 
 
 
Cuja solução é escrita como: 
 
 
 
 
 
 
 
Como o problema em meio semi-infinito se projeta no domínio de , a solução com a 
parte da exponencial positiva tende a infinito, isto não é possível em problemas de transferência de massa, 
ou seja, não existe concentração infinita, então para a solução do problema físico ficar limitada, a 
constante B deve ser nula. Para se determinar a constante A, utiliza-se a condição de contorno em 
transformada: 
 
 
 
 
25 
 
Então escreve-se a solução como: 
 
 
 
 
 
 
 
Buscando-se uma tabela que forneça a volta do domínio p de Laplace para o domínio t, temos: 
F(p) f(t) 
 
 
 
 
 
 
 
Sendo a a função erro de Gauss, definida como: 
 
 
 
 
 
 
 
 
 
Dessa forma a solução do problema de transferência de massa em termos da concentração é 
escrita como: 
 
 
 
 
 
 
 
 
 
Exemplo: 
Um pedaço de aço, tendo uma concentração inicial de 0,20% em massa de carbono, é exposto a 
uma atmosfera rica em carbono por 1hora. Sob as condições do processo, uma concentração superficial de 
0,7% em massa de carbono se estabelece sobre o aço. Se a difusividade do carbono através do aço é 
 nas condições do processo, determine a concentração em termos de carbono a 0,01cm, 
0,02 cm e 0,04 cm abaixo da superfície. 
Solução: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Com z em metros. Desta maneira tem-se que: 
z(cm) z(m) erf w'A W’A(%) 
0,01 1.10
-4
 erf(0,264)=0,291 0,0055 0,55 
0,02 2.10
-4
 erf(0,528)=0,545 0,0043 0,43 
0,04 4.10
-4
 erf(1,055)=0,866 0,0027 0,27 
Na fabricação de equipamentos de microeletrônica, filmes finos de semicondutores podem ser 
feitos pela impregnação de fósforo ou boro para o interior de uma bolacha de silício. Este processo é 
chamado de dopagem. A dopagem de átomos de fósforo no silício cristalino produz semicondutores do 
tipo n, enquanto que se a dopagem fosse com boro ter-se-ia semicondutor do tipo p. A formação do fino 
26 
 
filme de semicondutor é controlada pela difusão moleculardo átomo dopante através da rede cristalina do 
silício. 
Métodos para liberar átomos de fósforo para a superfície do silício incluem a deposição química 
de vapor e a implantação iônica. Em um processo típico, oxicloreto de fósforo, POCl3, que possui ponto 
normal de ebulição igual a 105.3
o
C, é vaporizado. O POCl3, em estado vapor, alimenta um reator em 
condições de alta temperatura e baixa pressão (em torno de 0.1atm), onde é decomposto sobre a superfície 
do silício de acordo com a seguinte reação: 
 
Uma cobertura rica em fósforo molecular é formada então sobre a superfície do silício. O fósforo 
molecular difunde então através do silício formando finos filmes de Si-P. Dessa forma, a cobertura é uma 
fonte para transferência de massa do fósforo, enquanto o silício é o meio para onde este difunde. Este 
processo pode ser bastante complexo, mas se pode considerar o caso simplificado em que uma 
concentração constante de fósforo se estabelece na interface vapor-sólido. Como o coeficiente de difusão 
dos átomos de fósforo no silício é bastante baixo, e somente um fino filme de Si-P é desejado, além dos 
átomos de fósforo penetrarem muito pouco o interior do silício, pode-se admitir o silício como um meio 
semi-infinito onde está se dando a difusão. É desejável, para se prever as propriedades do Si-P, conhecer- 
se a concentração do dopante. O perfil dos átomos de fósforo dopados é muito importante para o controle 
das propriedades elétricas do semicondutor. 
Considere a dopagem de silício a 1100ºC, note que a temperatura é alta para que a difusão 
ocorra. A concentração de átomos de fósforo na superfície do silício é de 2,5x10
20
 átomos/cm
3
, que é 
relativamente diluído, tendo em vista que o silício sólido possui 5x10
22
átomos/cm
3
. Admita que esta 
concentração superficial é constante e preveja a que profundidade do filme de Si-P, após 1hora, se terá 
uma concentração 1% do valor superficial (2,5x10
18
átomos/cm
3
). 
Solução: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A partir de uma tabela de função erro, temos que o argumento da função erro para o qual ela 
atinge o valor de 0,990 é 1,82. Então 
 
 
 
 
 
 
 
 
 
 
27 
 
12. Transferência de Massa por Convecção 
A transferência de massa por convecção ocorre sempre na presença de movimento de uma fase 
fluida, em relação a uma dada superfície, mediante a diferença de concentração existente em termos de 
um componente específico na superfície e no meio fluido que escoa. O fluxo molar transferido nestas 
condições é expresso pela equação: 
 
 
 
 
Se 
Sendo o coeficiente de transferência de massa por convecção, sua dimensão é a de fluxo por 
concentração, logo resultará em unidades de comprimento por tempo. é a concentração molar de A 
junto à superfície e é a concentração molar de A no fluido que escoa sobre a superfície. 
Cabe destacar que o coeficiente de transferência de massa depende da geometria do problema, 
das propriedades físicas do fluido envolvido e da dinâmica do sistema. 
Este coeficiente não é uma propriedade física e, portanto não se encontra tabelado, como 
acontece com quantidades como condutividade térmica, viscosidade entre outras. 
Cabe destacar que a convecção é um fenômeno complexo que ocorre no fluido, observe que ao 
escoar o fluido imediatamente em contato com a superfície apresenta velocidade nula, desta forma, uma 
fina camada de fluido junto à superfície será sempre laminar independente das condições do escoamento 
da corrente global. Dessa forma, a transferência de massa nesta camada envolve o transporte molecular e 
desempenha um papel fundamental na descrição do processo convectivo como um todo. Se o escoamento 
é laminar, uma camada de fluido desloca-se sobre a outra, sem grandes afetações entre elas em termos de 
mistura, o mecanismo molecular regula este processo de transferência de massa convectiva. Por outro 
lado, se o escoamento é turbulento, o conteúdo das camadas se mistura, e o transporte pelos vórtices e 
turbilhões que se formam são decisivos na descrição da transferência de massa convectiva. 
Da descrição anterior, observa-se que a definição de camada limite torna-se importante na 
análise convectiva. Em termos de transferência de massa, define-se como camada limite da transferência 
de massa, a região do fluido sobre a superfície que sofre os efeitos desta parede, em termos de alteração 
dos valores de concentração do componente que está sendo transportado. Observe que dependendo do 
fenômeno, nem todo o fluido sofre os efeitos de alteração de sua concentração quando a transferência de 
massa se dá apenas uma região é afetado pelo processo de transferência e fora dela o fluido continua a 
escoa r a concentração 
AC
, sem sofrer alterações devido à transferência de massa. 
A determinação do coeficiente de transferência de massa por convecção pode ocorrer através dos 
seguintes métodos: 
a) Análise dimensional vinculada a experimentos; 
b) Analogia entre os fenômenos de transporte; 
c) Análise exata ou aproximada da camada limite. 
 
 
 
28 
 
12.1. Parâmetros Adimensionais para a Convecção 
Número de Schmidt (Sc) relaciona os efeitos do perfil de velocidade sobre o perfil de 
concentração, é definido como: 
 
 
 
 
Onde 
 
 
 
 
 
 e 
 
 
. 
Número de Lewis (Le) relaciona os efeitos do perfil de temperatura sobre o perfil de 
concentração, é definido como. 
 
 
 
 
Onde 
 
 
 
 
 
. 
O número de Prandtl (Pr) é o parâmetro que relaciona as espessuras relativas das camadas limite 
hidrodinâmica e térmica 
 
 
 
 
Número de Nusselt da transferência de massa (NuAB) , também chamado de número de 
Sherwood (Sh) 
 
 
 
 
Este adimensional relaciona o gradiente de concentração junto à superfície e um gradiente total 
ou de referência; conseqüentemente pode-se dizer que é a razão entre a resistência ao transporte 
molecular e a resistência associada ao transporte convectivo de massa. 
 
 
29 
 
12.2. Análise Dimensional 
A análise dimensional vai lançar previsões sobre os grupos adimensionais relevantes ao processo 
físico estudado. Os resultados vindos a partir dela, vinculados a experimentos, produzem equações, 
usualmente chamadas de correlações, que permitirão a determinação do coeficiente de transferência de 
massa convectiva. 
Considere a situação em que uma corrente-vapor flui sob condição de convecção forçada no 
interior de uma tubulação de seção circular. As variáveis relevantes na descrição deste processo de 
transferência de massa são: 
Variável Símbolo Dimensão 
Diâmetro da tubulação D L 
Massa específica do fluido  M/L
3
 
Viscosidade dinâmica do fluido  M/LT 
Velocidade do fluido V L/T 
Difusividade molecular DAB L
2
/T 
Coef. de T. M. por convecção kc L/T 
Observe que as dimensões de cada propriedade estão escritas em termos das dimensões 
fundamentais: massa M, comprimento L e tempo T. 
A partir do teorema pi, escolhemos três variáveis para constituir o núcleo e para cada uma 
restante constrói-se um número adimensional. Escolhemos para constituir o núcleo três variáveis 
quaisquer apresentadas anteriormente, desde que, tenhamos com esta escolha a contemplação das três 
dimensões fundamentais. Nossa escolha foi a difusividade molecular, a massa específica e o diâmetro. 
Dessa forma, o primeiro grupo adimensionalé 
c
cba
AB kDD  1
 em termos de dimensões 
  1
3
2
1 













 c
c
ba
kL
L
M
T
L
. Dessa forma o coeficiente 
total de cada dimensão deve ser nulo. 
 para a dimensão L: 0=2a-3b+c+1 
 para a dimensão T: 0=-a-1 
 para a dimensão M: 0=b 
A solução para este sistema é: a=-1; b=0 e c=1 
Então o número adimensional gerado é 
ShSherwood
D
Dk
kDD
AB
c
cAB 
 101
1 
 
Desta forma procederemos para obter os outros dois adimensionais restantes. 
 cbaAB DD2
 
  1
3
2
2 




















LT
M
L
L
M
T
L c
ba

 
E o sistema obtido para a determinação dos coeficientes é 
 para a dimensão L: 0=2a-3b+c-1 
 para a dimensão T: 0=-a-1 
 para a dimensão M: 0=b+1 
E a solução para este sistema é a=-1; b=-1 e c=0, sendo o grupo adimensional escrito como 
ScSchmidt
DD
DD
ABAB
AB 
 
 0112
 
 
30 
 
Para o terceiro grupo temos o mesmo desenvolvimento para o primeiro, visto que o coeficiente 
de transferência de massa convectiva e a velocidade possuem a mesma dimensão, então: 
AB
AB
D
vD
vDD 
 101
3 
 
Veja, que se os grupos pi2 e pi3 são adimensionais, então a razão entre eles também é um grupo 
adimensional: 
ynolds
DvD
D
vD AB
AB
Re
2
3  





 
Dessa forma, o resultado fruto da análise dimensional se traduz na informação de que para o 
problema analisado de convecção forçada, o número de Sherwood é função dos números de Reynolds e 
Schmidt. Cabe destacar que a função que relaciona estes adimensionais só pode ser determinada a partir 
do estudo experimental, e da correlação dos dados deste experimento. 
 
Análise dimensional para avaliar o problema de transferência de massa em uma fase cujo 
movimento é devido à convecção natural em uma placa. 
Variável Símbolo Dimensão 
Comprimento da placa L L 
Massa específica do fluido  M/L
3
 
Viscosidade dinâmica do fluido  M/LT 
Força de empuxo mássico por unidade volume g M/L
2
T
2
 
Difusividade molecular DAB L
2
/T 
Coef. de T. M. por convecção kc L/T 
De maneira semelhantes a anterior tem-se ao utilizar-se o teorema de Buckingham 
c
c
AB
ba kDL  1
 
 cABba DL2
 
A
c
AB
ba gDL  3
 
ShSherwood
D
Lk
kDL
AB
c
cAB 
101
1 
 
ScSchmidt
D
DL
AB
AB 


 1102
 
2
3
213
3
)( AB
A
AAB
D
Lg
gDL

  
 
Dividindo o terceiro grupo pelo segundo grupo ao quadrado continuamos tendo um número 
adimensional 
AB
AAB
AB
A GrmassadeciatransferêndeGrashoff
gLD
D
Lg





2
3
2
22
2
3
2
2
3
)(  
 
Desta forma, para a convecção natural em placa, se pode dizer que o número de Sherwood é 
função dos números de Schmidt e de Grashoff. 
 
 
 
31 
 
12.3. Correlações Para a Transferência de Massa 
12.3.1. Convecção Forçada 
 Escoamento Sobre Placa Plana 
Regime laminar: 
Coeficiente local: 
 
 
 
 
Coeficiente médio: 
 
 
 
 
 
Regime laminar e turbulento no final da placa: 
Coeficiente local: 
 
 
 
 
Coeficiente médio: 
 
 
 
 
 
 
 
 Escoamento no Interior de um Conduto Circular (Tubo) 
Regime laminar: 
 
 
 
 
 
 
 
 
Sendo 
 
 
 
 
Regime turbulento: 
Para Líquidos: Escoamento de uma solução no interior de um tubo. (Linton e Sherwood). 
 
 
 
 
 
 
 
 
Com espectro de aplicação: 
 
Para Gases: Na vaporização de líquidos em correntes gasosas. (Gilliland e Sherwood). 
 
 
 
 
Sendo Yblm, a média logarítmica do solvente tendo como base as frações molares do soluto na 
interface com a parede do tubo e no seio da corrente gasosa. 
Com espectro de aplicação: 
 
 Escoamento no Interior de um Conduto Não Circular 
As mesmas equações anteriores apenas com a substituição do diâmetro pelo diâmetro 
equivalente. 
 
 
 
 
 
 
32 
 
 Escoamento ao Redor de Corpos Bojudos 
Esfera única: 
 
Sendo: 
c = 0,552 para escoamento de gases em torno da esfera. 
Com espectro de aplicação: 2 < Re < 12000 e 0,6 < Sc < 2,7. 
c = 0,95 para escoamento de líquidos em torno da esfera. 
Com espectro de aplicação: 100< Re < 700 e 1200 < Sc < 1250. 
 
Existe também a correlação de Williams que pode ser utilizada para os fluidos de trabalho: 
Ar: 
 
 
 
 
 
 
Água: 
 
 
 
 
 
 
Sua validade é para . 
 
Escoando perpendicularmente ao eixo de um cilindro: 
Gases (Bedingfield e Drew): 
 
 
 
 
 
 
Com intervalo de aplicação 400< Re < 2,5.10
4
 e 0,6 < Sc < 2,6. 
 
Líquidos (Linton e Sherwood): 
 
 
 
 
 
 
Com intervalo de aplicação 400< Re < 2,5.10
4
 e Sc > 3000. 
 
 Escoamento em Leito Fixo e Fluidizado 
Leito fixo: Para escoamento de gases ou líquidos em leito com partículas esféricas, Ranz: 
 
Válida para Re > 80. 
 
Wakao e Funazkri propuseram a seguinte correlação para leito com recheio esférico com fluido 
de trabalho tanto líquido como gasoso, mas com intervalo de validade maior: 3 < Re < 10
4
. 
 
 
 
Leito fluidizado: Correlação de Gupta e Thodos, válida tanto para gases como líquidos. 
 
 
 
 
Validade de aplicação: 20 < Re < 3000. 
 
 
33 
 
12.3.2. Convecção Natural 
Esfera isolada: Escoamento com baixa velocidade. 
Correlação de Steinberger e Treybal: 
 
 , para Ra < 10
8
 
 Ou 
 
 , para Ra > 108 
Sendo: 
 
 
 e 
 
 
 
 
Steinberger e Treybal propuseram uma correlação para convecção mássica mista para uma esfera 
única: 
 
 
 
 
Com intervalo de aplicação 1< Re < 3.10
4
 e 0,6 < Sc < 3200. 
 
Leito Fixo: Considerando efeitos de convecção natural 
 
 ,para: 
Karabelas et all:  107< Ra < 3,23.109 
Mandelbaun e Bohm:  106< Ra < 1,49.108 
 
 
 
 
 
 
 
 
e  para escoamento descendente do solvente. 
e  para escoamento ascendente do solvente. 
 
Com intervalo de aplicação 0,0346< Re’p < 29,7 e 5,41.10
6
 < RaMp < 3,23.10
8
 . Substituir Rep 
por Re’p=(uidp/) ; sendo ui=u0/ , sendo u0 velocidade superficial. 
 
Quando se utiliza fluidos supercríticos, adotam-se os valores de Lim, Holdn e Shah 
e para limites de validade restritos a: 
2 < Rep < 70 ; 2 < Sc < 11; 78 < GrMp < 3,25.10
7
 e 10 < P < 200atm. 
Sendo Rep = Dpu0/. 
 
 
34 
 
Problemas: 
1) Remove-se o excesso de uréia de uma folha de plástico depois da fabricação fazendo-se 
passar uma corrente de água sobre a folha, após esta ter sido resfriada até uma temperatura de 77
0
F. Se a 
folha possui 2ft de comprimento e a água flui sobre ela com uma velocidade de 1ft/s, estime a taxa inicial 
de transferência de massa para uma concentração de uréia nasuperfície da folha de 0,5lbm/ft
3
. DAB = 
5,32x10
-5
ft
2
/h. 
 
2) Uma corrente gasosa de ar e vapor d’água está fluindo em contracorrente a um filme de 
líquido numa coluna de parede molhada de 3cm de diâmetro interno. O gás e o líquido se encontram a 
298K e a pressão 1 atm. Em um ponto da coluna, a vazão de ar é 9,5x10
-4
m
3
/s e a pressão parcial média 
do vapor d’água na corrente gasosa é 665Pa. A viscosidade cinemática da corrente gasosa é 1,7x10-5m2/s. 
Determine o coeficiente de transferência de massa KG. A pressão de vapor d’água a 298K é 0,3048atm. 
 
3) Foi proposto um experimento que consiste de uma tubulação no interior da qual se faz escoar 
água a 25
0
C e 1m/s. Inseriu-se no centro da tubulação um corpo de prova feito de ácido benzóico durante 
uma hora. Sabendo-se que Sc=740 e que a solubilidade do ácido benzóico em água é 3x10
-3
g/cm
3
, 
determine o raio final do corpo de prova, assumindo-o esférico com raio inicial 0,5cm. 
 
4) Água flui a 700F através de um cano com 2in de diâmetro interno com velocidade média de 
10ft/s. Uma seção de 1ft de comprimento é repassada por um tubo feito de cloreto de sódio sólido. Estime 
o coeficiente de transferência de massa do cloreto de sódio na água e compare com o obtido através da 
analogia de Chilton-Colburn. 
 
5) Procurou-se extrair óleo essencial de pimenta do reino utilizando-se CO2 supercrítico como 
solvente. Para tanto, lançou-se mão de um extrator tipo leito fixo cuja porosidade é 0,24. Sabendo-se que 
a partícula, considerando-a esférica, apresenta diâmetro médio de 8x10
-3
cm e que o mecanismo de 
convecção mássica é misto, calcule o coeficiente de transferência de massa para as condições indicadas a 
seguir. Compare o resultado obtido com o experimental que é 0,016m/s. Dados: ui=41,7x10
-3
cm/s; 
Sc=14,74; DAB=0,73x10
-4
cm
2
/s; 0,0108 e g=981cm/s2. 
 
Indica-se como sugestão os problemas 7 e 11 do Cremasco - Cap. 8 - parte de cálculo; e os 
problemas 30.12; 30.16; 30.19 ; 30.23 e 30.25 do Welty terceira edição. 
 
Alguns adimensionais: 
 
 
 
 
 
 
 
 
 
 
 
Sendo 
 
 
 
 
 o coeficiente volumétrico de expansão mássica. 
 
 
35 
 
13. Transferência de Massa Entre Fases 
Até o momento temos estudado a transferência em uma única fase, entretanto muitas das 
operações unitárias de transferência de massa envolvem duas fases, como por exemplo nos processos de 
absorção, onde tem-se em contato uma fase líquida e outra gasosa onde um determinado componente da 
fase gasosa é transferido para a fase líquida. A abordagem a ser adotada neste módulo será de operação 
em estado estacionário. 
 
13.1. Equilíbrio 
O mecanismo de transferência de massa tanto de forma difusiva como convectiva é relacionado a 
diferença de concentração de uma dada espécie química em pontos diferentes de uma fase. Quando o 
equilíbrio é estabelecido então não existe mais gradiente de concentração nem taxa líquida de 
transferência dentro de tal região. Para que se tenha transferência de massa entre duas fases é necessário 
que exista um afastamento da condição de equilíbrio entre as fases. 
Com fins didáticos se irá considerar um sistema particular para análise e então se procederá a 
uma generalização. Para isso, considere um sistema envolvendo duas fases em contato, uma líquida e 
outra gasosa. Inicialmente considere a composição do sistema incluindo amônia e ar na fase gasosa e 
somente água na fase líquida. Quando se promove o contato, amônia é transferida para fase líquida, pelo 
fato de ser solúvel em água, e água é vaporizada para a fase gasosa. Considerando-se que a mistura esteja 
em um tanque isotérmico e isobárico, a dinâmica do equilíbrio será estabelecida entre as duas fases, 
mediante a troca das espécies químicas envolvidas, até o momento em que a concentração de amônia na 
fase líquida fique constante, assim como a pressão parcial da amônia da fase gasosa também, cessando 
desta maneira a transferência de amônia entre as fases. Então para esta temperatura e pressão os valores 
de concentração de amônia no líquido e a sua pressão parcial no gás serão valores em equilíbrio. Esta 
condição pode ser alterada através da ingestão de mais amônia na fase gasosa, isto deslocará o sistema do 
equilíbrio e transferência de massa se reiniciará, até que dado tempo suficiente ao sistema, este 
estabelecerá uma nova condição de equilíbrio para o sistema. De maneira que se plotássemos estes dados 
de concentração de amônia de uma fase em relação à outra se obteria uma curva de equilíbrio. 
 
 
 
 
P
re
ss
âo
 P
ar
ci
al
 d
e
 A
 n
o
 G
ás
 (
P
A
)
Concentração de A no líquido (CA)
36 
 
Existem muitos gráficos dos dados de equilíbrio devido às várias maneiras de se expressar 
concentração em cada fase. Existem vários modelos para descrever o equilíbrio entre fases, e este ainda é 
um assunto de pesquisa no mundo atual. Vários livros e periódicos de Termodinâmica tratam deste 
assunto e não é nosso objetivo aqui aprofundarmos esta discussão. Tendo em vista a complexidade de 
modelos mais completos para descrição do equilíbrio líquido vapor, se irá aqui adotar os modelos mais 
simples que são aqueles que tratam o gás e a solução idealmente. Por exemplo, o modelo Dalton-Raoult 
 yA P = xA PA
0
 
Onde yA é a fração molar de A na fase gasosa, P é a pressão total do sistema, xA é a fração molar 
de A no líquido e PA
0
 é a pressão de vapor de A na temperatura do sistema, lembre-se que a pressão de 
vapor pode ser determinada para uma dada substância a partir da equação de Antoine para a temperatura 
em que se encontra tal substância, e que pela lei de Dalton a pressão parcial de A na mistura gasosa é o 
produto de sua fração molar pela pressão total. 
Outra relação de equilíbrio, válida para soluções bastante diluídas é Lei de Henry, expressa por: 
 PA = H CA 
Onde H é constante de Henry para o sistema; CA é a concentração de A do equilíbrio na fase 
líquida e PA é a pressão de A do equilíbrio na fase gasosa. 
Sintetizando: 
a) Pela regra das fases de Gibbs, para um dado conjunto fixo de condições, tais como 
temperatura e pressão, tem-se um conjunto de relações de equilíbrio que pode por sua 
vez ser mostrado na forma de uma curva de equilíbrio. 
b) Quando um sistema está em equilíbrio, não existe transferência líquida de massa entre 
as fases. 
c) Quando um sistema não está em equilíbrio, componentes ou um componente do sistema 
serão transportados de modo que ocasione a composição do sistema saltar em direção 
ao equilíbrio. Isto sempre ocorrerá se tempo suficiente for dado ao sistema. 
 
 
Exemplo 1: A relação de equilíbrio de Dalton Raoult pode ser usada para determinar as 
composições das fases para um sistema binário, benzeno-tolueno, a baixas pressões e temperatura. 
Determine a composição do vapor no equilíbrio com um líquido contendo 60% em móis de benzeno a 
68
0
F. 
 
Exemplo 2: A constante da Lei de Henry para o oxigênio dissolvido em água é 
4,01x10
4
atm/fração molar a 20
0
C. Determine a concentração de saturação do oxigênio na água que é 
exposta a ar seco a 1atm e 20
0
C. A lei de Henry pode ser expressa em termos de fração molar por: 
PA = H’ xA . Considere o ar seco contendo 21% em móis de oxigênio. 
 
 
 
37 
 
13.2. Teoria das Duas Resistências 
A transferência de massa entre fases envolve três passos de transferência: 
a) A transferência de massa a partir das condições “bulk” de uma das fases até a superfície 
de interface. 
b) A transferência através da interface indo para a segunda fase. 
c) A transferência a partir da interfacepelo lado da segunda fase até o seio da segunda 
fase, ou seja, para o “bulk” da segunda fase. 
A teoria das duas resistências proposta por Whitman é freqüentemente usada para explicar o 
processo de transferência de massa entre fases, suas hipóteses principais são: a taxa de transferência de 
massa entre as duas fases é controlada pelas taxas de transferência através de cada fase, ou seja de cada 
lado da interface; e não há resistência oferecida à transferência dos componentes difundentes através da 
interface. 
 
 
A transferência de massa do componente A através da fase gasosa desde o seio da fase gasosa até 
a interface líquido-vapor se dá devido ao gradiente de pressão (PAG-PAi), sendo PAG a pressão parcial de A 
no seio da fase gasosa, também chamado valor bulk de A na fase gasosa e PAi é o valor da pressão parcial 
de A na interface pelo lado gasoso. O componente A continua a ser transportado agora para o interior da 
fase líquida, isto ocorre devido ao gradiente de concentração em relação ao componente A dentro desta 
fase, ou seja, ( CAi - CAL ), sendo CAi a concentração de A na interface pelo lado líquido e CAL o valor de 
concentração bulk de A na fase líquida. Se não existe resistência na interface, o que é estabelecido ao 
adotar-se o modelo das duas resistências, PAi e CAi são concentrações em equilíbrio; ou seja são os 
valores de concentração que seriam obtidos se as duas fases estivessem em contato por um período de 
tempo infinito. Os valores de concentração interfacial serão então relacionados por uma relação 
termodinâmica de equilíbrio líquido-vapor. 
 
 
38 
 
 Os Coeficientes Individuais de Transferência de Massa 
Restringindo a análise do processo de transferência de massa em estado estacionário as taxas 
transferidas poderão ser descritas pelas seguintes relações: 
NAz = kG ( PAG – PAi ) 
E 
NAz = kL ( CAi – CAL ) 
 
Onde kG é o coeficiente individual de transferência de massa na fase gasosa, em móis de 
A/(tempo - área interfacial – variação de pressão de A na fase gasosa) e kL é o coeficiente individual de 
transferência de massa na fase líquida, em móis de A/(tempo- área interfacial – variação de concentração 
de A na fase líquida). 
Sob condições estacionárias, o fluxo de massa em uma fase deve ser igual ao fluxo de massa na 
segunda fase, então 
NAz = kG ( PAG – PAi ) = - kL ( CAL – CAi ) 
A razão entre os dois coeficientes pode ser escrita como: 
(-kL/kG)=( PAG – PAi )/( CAL- CAi) 
Na figura abaixo, a vê-se a aplicação e interpretação da equação acima. 
 
 
 
O ponto “O” representa as condições encontradas junto a um ponto dentro do trocador de massa; 
as condições junto a outro plano seriam diferentes. 
 
 
O
P
re
ss
âo
 P
ar
ci
al
 d
e
 A
 n
o
 G
ás
 (
P
A
)
Concentração de A no líquido (CA)
PAi
PAG
CAL CAi
39 
 
 Coeficiente Global de Transferência de Massa 
Devido a dificuldade de medir-se fisicamente a pressão parcial e a concentração na interface é 
conveniente definir-se coeficientes baseados na força motriz global entre as duas correntes, PAG e CAL. 
Este coeficiente global considera tanto a resistência da fase gasosa como a resistência da fase líquida. Este 
coeficiente pode tanto ser definido em unidades de pressão como em unidades de concentração da fase 
líquida. Tem-se então as seguintes definições: 
NAz = KG ( PAG – PA
*
 ) 
E 
NAz = KL ( CA
*
 – CAL ) 
Onde PA
*
 é a pressão parcial de A em equilíbrio com a composição global da fase líquida CAL. 
Como a distribuição de equilíbrio do soluto A entre as fases gás e líquido é única na pressão e 
temperatura do sistema, então PA
*
, em equilíbrio com CAL, é uma boa medida de CAL na base de medidas 
pressão. KG é o coeficiente global de transferência de massa que leva em conta a resistência total 
transferência em unidades de pressão. 
CA
*
 é a concentração de A em equilíbrio com PAG e é conseqüentemente, uma boa medida de PAG 
em unidades de concentração da fase líquida; KL é então o coeficiente global de transferência de massa 
em unidades de medidas de concentração da fase líquida. 
A razão entre as resistências em cada fase individual e a resistência total pode ser determinada 
por: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A relação entre os coeficientes globais e individuais de uma fase pode ser obtida quando uma 
relação de equilíbrio puder ser expressa como: 
PAi = m CAi 
Esta condição é sempre encontrada quando o sistema obedece a Lei de Henry e m é repassado 
por H. Tendo em vista que esta equação representa a condição de equilíbrio temos o seguinte: 
PAG = m CA
*
 
PA
*
 = m CAL 
PAi = m CAi 
Rearranjando as equações para o fluxo NA, obtém-se: 
1/KG = ( PAG – PA
*
 )/NA = ( PAG – PAi )/ NA + ( PAi – PA
*
 )/NA 
Ou em termos de m: 
1/KG = ( PAG – PAi )/ NA + m( CAi – CAL )/NA 
Ou seja; 
1/KG = (1/kG ) + m/kL 
De maneira análoga uma expressão similar para KL pode ser obtida: 
1/KL = (1/mkG ) +1/kL 
As equações acima estabelecem a relação entre as resistências individuais de acordo com a 
solubilidade do gás, de acordo com a magnitude da constante de proporcionalidade. Por exemplo, para 
um sistema envolvendo gás solúvel na fase líquida, como amônia em água, m é muito pequeno, o que faz 
concluir que a fase gasosa é controladora do processo. Indica-se o uso de coluna spray neste tipo de 
sistema. 
40 
 
Já em situações onde o gás é pouco solúvel na fase líquida, como dióxido de carbono em água, 
tem-se m muito grande então quem controla o processo é fase líquida, nesta situação indica-se o uso da 
coluna de borbulha. 
Em muitos sistemas, ambas as resistências são importantes nenhuma é significativamente maior 
que a outra, nesta situação indica-se o uso de colunas recheadas. 
 
 
Exercícios: 
Num estudo experimental de absorção da amônia por água numa coluna de parede molhada, o 
valor KG foi encontrado como sendo 0,205lbmolde NH3/(h ft
2
atm). Junto a um ponto da coluna, o gás 
contem 8% em móis de NH3 e a fase líquida tem concentração 0,004lbmolNH3/ft
3
de solução. A 
temperatura era 68
0
F e a pressão total era 1 atm. 85% da resistência total foi encontrada na fase gasosa. Se 
a constante de Henry a 68
0
F é 0,215atm/(lbmol/ft
3
), calcule os coeficientes individuais dos filmes e as 
composições interfaciais. 
Soluto A está sendo absorvido de uma mistura A e B em uma torre de parede molhada. Em certo 
ponto da torre a composição da fase gasosa é 38% em móis de A e a composição da fase líquida é 10% 
em móis de A. A torre opera a 298K e ! atm e os dados de equilíbrio são os seguintes: 
xA 0 0,050 0,100 0,150 0,200 0,250 0,300 0,350 
yA 0 0,022 0,052 0,087 0,131 0,187 0,265 0,385 
 
Usando as correalações para soluções diluídas em torres de parede molhada, foram obtidos as 
seguintes valores para os coeficientes individuais de transferência de massa. 
Ky = 1,465x10
-3
 Kgmol/(sm
2
(fr. Molar)) 
Kx = 1,967x10
-3
 Kgmol/(sm
2
(fr. Molar)) 
Calcule: as concentrações interfaciais, o fluxo de transferência de massa, o % da resistência 
global devido ao filme líquido. 
 
1 
 
1. APÊNDICE A 
1.1. Coeficientes de Difusão Para Transferência de Massa em Sistemas Binários 
1.1.1. Em Gases 
Ar 
Sistema T (K) 
 
 
 
 
 
 
Acetato de etil 273 0,0709 0,718 
Acetato de propil 315 0,0920 0,932 
Água 298 0,2600 2,634 
Amônia 273 0,1980 2,006 
Anilina 298 0,0726 0,735 
Benzeno 298 0,0962

Continue navegando