Buscar

APOI-Apostila Estudo dos Acidos nucleicos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Disciplina Biologia Molecular 
Estudo dos ácidos nucléicos 
 
 
Profa. Beatriz Ferreira. 
 
 
INTRODUÇÃO 
- Estrutura dos ácidos nucléicos 
 Os ácidos nucléicos são considerados as moléculas da hereditariedade. Tais moléculas 
carregam as informações genéticas de um indivíduo e possibilitam que as mesmas sejam herdadas 
por sua prole. Esses ácidos tem função definida, o ácido desoxirribunucléico (DNA) armazena as 
informações genéticas, enquanto que o ácido ribunucléico “decodifica” essas informações dentro da 
célula, fazendo com que a informação armazenada se transforme em uma ação definida. 
 O DNA é uma molécula filamentar muito longa, formada por um grande número de 
desoxirribonucleotídeo. Cada nucleotídeo que compõe a molécula de DNA é formado por um 
açúcar (pentose), uma base nitrogenada e um grupamento fosfato. O açúcar de um 
desoxirribonucleotídeo é a desoxirribose. O prefixo desoxi indica que nesta molécula falta um 
átomo de oxigênio no carbono 2’. A base nitrogenada está sempre ligada ao carbono 1’ da 
desoxirribose e o grupamento fosfato encontra-se ligado ao carbono 5’ da mesma. As bases 
nitrogenadas da molécula de DNA carregam a informação genética, enquanto que as pentoses e os 
grupamentos fosfatos têm um papel estrutural. 
 A estrutura dos nucleotídeos é sempre a mesma o que varia e diferencia um nucleotídeo de 
outro é a base nitrogenada que cada um carrega. Os desoxirribonucleotídeos que compõem o DNA 
são formados por 4 bases nitrogenadas: adenina (A), citosina (C), guanina (G) e timina (T). Devido 
ás suas característica químicas e estruturais, tais bases foram classificadas como Purinas (A e G) e 
Pirimidinas (C e T). 
A molécula de DNA encontra-se em dupla fita, isso se deve a formação de pontes de 
hidrogênio em ocasião do pareamento das bases nitrogenadas (adenina pareada com timina e 
guanina pareada com citosina). A ligação que une um nucleotídeo a outro na fita de DNA é 
denominada ligação fosfodiester. Essa ligação ocorre entre o grupamento fosfato, localizado no 
carbono 5’ de um nucleotídeo e o grupamento OH ligado ao carbono 3’ do nucleotídeo anterior. 
 O RNA é uma molécula longa não ramificada constituída por nucleotídeos unidos por 
ligações fosfodiéster. Como o próprio nome indica a pentoseose do RNA é uma ribose. As quatro 
bases constituintes são adenina (A), uracila (U), guanina (G) e citosina (C). A adenina pode parear 
com a uracila e a guanina com a citosina. A célula tem vários tipos de RNA: o RNA mensageiro, o 
RNA transportador, o RNA ribossômico e pequenas moléculas de RNA nuclear (sn RNA). 
 Ambos RNA e DNA são polímeros lineares de nucleotídeos, tais ácidos nucléicos se 
diferem em três aspectos básicos: 
1- O esqueleto pentose-fosfato de RNA contém ribose em vez de desoxirribose; 
2- O RNA contém base uracila (U) em vez de timina (T); 
3- O RNA existe em fita simples em vez de uma dupla-fita. 
 Inúmeras pesquisas têm sido feitas usando os ácidos nucléicos. Essas pesquisas tentam, não só 
elucidar o verdadeiro mecanismo de ação e regulação dessas moléculas dentro da célula, como 
também as utilizam como ferramentas para testes que não têm como único objetivo estudar os 
mecanismos de herança. Assim sendo, é necessário a utilização de técnicas que permitam a extração 
de ácidos nucléicos. Existem diversos protocolos de extração, cada um deles é específico para o 
organismo do qual será feita a extração de DNA ou RNA. Cada protocolo deve atender as 
peculiaridades do organismo ou tecido, levando-se em consideração sua constituição química e 
física, bem como deve respeitar as diferenças na constituição do ácido nucléico a ser extraído. 
 
- Extração de ácidos nucléicos 
 Muitas diferenças podem ser observadas entre os protocolos de extração de RNA e DNA. 
Isso se deve as diferenças encontradas tanto na estrutura quanto nos processos de síntese e 
degradação dessas moléculas. As moléculas de DNA e RNA são degradadas por enzimas 
denominadas Nucleases (DNAses e RNAses). Essas enzimas são específicas e atuam clivando as 
ligações fosfodiéster entre os nucleotídeos da cadeia do ácido nucléico. Essas nucleases são 
abundantes e estão presentes em todo o ambiente. Uma das preocupações ao se executar um 
procedimento de extração de ácidos nucléicos é eliminar RNASes e DNAses presentes na vidraria 
e soluções utilizadas para o processo. 
 Os protocolos para extração de RNA são mais criteriosos e exigem uma maior rigidez 
quanto à eliminação da RNAse, esse é o principal aspecto que diferencia os procedimentos de 
extração de DNA e RNA. 
 Para extração de RNA de um tecido ou organismo é preciso tratar todas as vidrarias e 
soluções a serem utilizadas para que fiquem totalmente livres de RNAse. As vidrarias são 
esterilizadas a alta temperatura (180C) durante longos períodos de tempo (12h) e as soluções são 
tratadas com DEPC (dietilpirocarbonato), um reagente que interage com a RNAse inativando-a. 
Após o tratamento, essas são esterilizadas por alta pressão e temperatura (autoclavagem). 
 A necessidade de um sistema completamente livre de nuclease para a extração de RNA se 
deve ao fato de que as moléculas de RNA, por se encontrarem em fita simples, são mais instáveis, 
sendo facilmente degradadas. Adicionalmente, a RNAse é uma proteína altamente estável e 
abundante, podendo ocorrer em diversas superfícies. 
 A extração de DNA exige critérios de limpeza e esterilização das vidrarias a serem 
utilizadas, porém dispensa o uso de reagentes fortes para inibição de nucleases. A DNAse 
geralmente é inativada durante o processo de extração, e a mesma existente em vidrarias e soluções 
é degrada por autoclavagem. 
 Nessa aula prática será executado um protocolo de extração de DNA genômico, assim será 
possível aprender com detalhes a metodologia de extração, bem como observar os cuidados 
exigidos pelo procedimento. 
 
- Análise de DNA através de eletroforese em gel de agarose. 
A eletroforese em gel de agarose permite estimar a concentração de ácidos nucléccos em 
solução, mas, sobretudo, permite separar, purificar, estimar o tamanho do fragmento e avaliar a 
qualidade da amostra. 
As amostras são aplicadas no gel e separadas sob ação de um campo elétrico, sendo que os 
fragmentos de menor massa molecular migram mais rapidamente que os de maior massa molecular. 
Após a migração ou corrida, os fragmentos são visualizados por coloração com brometo de 
etídeo, agente intercalante que fluoresce após a excitação com luz ultravioleta (UV). O limite de 
detecção é de cerca de 10 ng/ banda de ácido nucléico. Outro método utilizado para visualização é a 
coloração com nitrato de prata. Este sal permite a visualização dos ácidos nucléicos através de 
precipitação formando cor ocre, que pode ser observada sem auxilio de instrumentos. Neste caso o 
limite de detecção é de 0,1-1 ng/ banda de ácido nucléico. 
A distância de migração dos fragmentos analisados é inversamente proporcional ao 
logarítimo de seu tamanho. Com o auxílio de marcadores de massa molecular conhecida é possível 
determinar o tamanho de um fragmento. A velocidade de migração dos fragmentos de ácidos 
nucléicos em um gel de agarose é em função do seu tamanho, da concentração do gel e da voltagem 
aplicada. Nas condições de corrida utilizadas, os ácidos nucléicos são carregados negativamente, 
migrando do polo negativo para o positivo. 
Para análise de RNA, o gel deverá conter um agente desnaturante para corrigir a tendência 
das estruturas secundárias em interferir no padrão de corrida. Os agentes desnaturantes mais 
utilizados são a formamida e o formaldeido. 
-Preparação de um Gel de Agarose para Análise de DNA 
Preparo da placa de gel. 
a) Montar uma placa de eletroforese,limitando-a em toda sua extensão com fita crepe. 
Certifique-se de que houve uma boa vedação. 
b) Calcular o volume necessário de TAE 1 X para a cuba e diluir o TAE 10X. 
 Em Erlenmeyer: 
a) Colocar agarose e TAE 1 X, de acordo com volume e concentração do gel desejados. 
b) Fundir a solução em forno de microondas. 
c) Deixar a temperatura abaixar até cerca de 50°C e adicionar o volume apropriado de 
brometo de etídeo, para se obter uma concentração final de 0,5 g/ml 
d) Verter o conteúdo do erlenmeyer no molde de gel. 
e) Colocar rapidamente o pente sobre a placa, centrando-o suspenso. 
f) Deixar gelificar à temperatura ambiente por 30-45 minutos, retirar o pente. 
Soluções. 
 1 - Tampão TAE 10x 
Tris-base .................... 2 M 
Acido acético ............. 0,1 M 
EDTA ......................... 0,05M solução O,5M pH8,0). 
Ajustar pH para 7,4 com HCl. 
 
 2 - Tampão de Amostra 5x 
Azul de Bromofenol ............ .. 0,12% (p/v) 
Ficoll tipo 400 ....................... 1 S% (p/v) ou glicerol 30% (v/v) 
 Dissolver em TAE 5x 
 
- Eletroforese 
a) Transferir o gel para a cuba de eletroforese, verte-se a quantidade de TAE 1 X necessária 
para cobrir completamente o gel. 
b) Conectar os cabos entre a fonte de tensão e a cuba, de maneira, que a corrida ocorra do 
polo negativo para o positivo (testar para ver se está passando corrente). Observar a 
formação de bolhas de ar que são geradas no ânodo e cátodo, devido à eletrólise. 
c) Aplicar as preparações de DNA, previamente misturadas ao tampão de amostra, com 
auxílio de uma micropipeta automática. 
d) Aplicar voltagem de 1-5 V / cm (distância medida entre os eletrodos). 
e) Acompanhar a corrida usando como referência o corante azul do tampão de amostra. 
Desligar a fonte de tensão e remover o gel da cuba. 
g) Analisar o resultado da corrida através da exposição do gel à luz UV e fotografar para 
documentação. 
 
- Cuidados Recomendados 
 
a) O brometo de etídeo é um agente mutagênico potente. Usar luvas para manipular os géis 
ou soluções contendo este composto. 
b) Luz UV : usar proteção quando estiver operando equipamentos contendo esta fonte de 
luz. 
c) O nitrato de prata se complexa com as proteínas da pele. Usar luvas para manipular os 
géis ou soluções contendo este sal. 
- Faixa de separação de DNA em gel de diferentes concentrações de agarose. 
Concentração de agarose( % p/v ) Faixa de separação de DNA linear % /v kb 
0,3 5-60 
0,6 1-20 
0,7 0,8-10 
0,9 0,5-7 
1,2 0,4-6 
1,5 0,2-3 
2,0 0,1-2 
 
Mecanismos químicos da extração de DNA 
 
Para extração de ácidos nucléicos, inicialmente, o DNA tem que ser liberado do interior dos núcleos 
celulares. Essa fase é conduzida através de processos físicos e químicos. Assim, em todo processo 
de extração, o primeiro passoconsiste na maceração. Durante a maceração, geralmente com tecido 
congelado, o tecido é pulverizado até formar um pó bem fino. Durante esse processo ocorre a 
quebra mecânica de boa parte das células. Entretanto, o DNA ainda está insolúvel, assim como 
todo o resto do material celular, como proteínas, membranas, parede celular, etc. É nessa etapa que 
a solução de extração faz a diferença. Essa solução contém reagentes responsáveis pela 
solubilização de DNA, RNA, proteínas e lipídeos. Todas as soluções de extração contem, 
geralmente, um agente tamponante para regular o pH, um detergente para solubilizar as membranas 
(como a membrana nuclear para exposição do DNA) e, em alguns casos, desnaturar proteínas, sal 
para manter a estringência iônica e água como solvente. Dessa forma, após o tecido ter sido 
macerado, a solução de extração é adicionada ao material macerado e misturado até atingir uma 
massa uniforme. Durante esse processo o detergente interage com as membranas fazendo com que 
elas sejam “dissolvidas”. Nessa etapa todo o conteúdo celular é exposto e entra em solução em 
função da presença do detergente e do sal. Com a adição da solução de extração, a maioria das 
interações entre as macromoléculas da célula é desfeita. Como o nosso exemplo é o DNA, a solução 
de extração desfaz todas aquelas estruturas enoveladas formadas por DNA e proteínas, deixando o 
DNA linearizado com todas as suas cargas negativas expostas. Como os ácidos nucléicos são 
moléculas longas e altamente carregadas, uma grande força de repulsão entre essas moléculas será 
gerada. Essa força de repulsão é evitada pela presença de sal no tampão de extração. Como os sais 
em solução aquosa são encontrados em sua forma iônica, os íons carregados irão interagir com as 
moléculas em solução [DNA (carga -), RNA (carga -) e proteínas (carga variável)]. Após a 
solubilização, o DNA é retirado “seletivamente” da mistura de moléculas orgânicas através da 
adição de álcool (etanol ou isopropanol). O álcool, na proporção indicada, “seqüestra” as moléculas 
de água solvatada no longo polímero de DNA. Como o DNA é insolúvel em álcool ele sai de 
solução e forma um emaranhado com todas as moléculas de DNA presentes na amostra. Na 
ausência do sal essa interação entre as moléculas seria inviabilizada, pois arepulsão entre as cargas 
negativas seria muito forte.

Outros materiais