Buscar

PROJETO DE CONTROLE DE PRESSÃO DA BANCADA MPS®PA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 15 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 15 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 15 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

PROJETO DE CONTROLE DE PRESSÃO DA BANCADA MPS®PA 
Engenharia de Controle e Automação-IFSC 
Djeiso L. Sandrin, Felipe Kissmann, Joel Schneider, Weiller Werner Wichnovski
Introdução
Com o intuito de fixar os conhecimentos adquiridos nas aulas teóricas, 	recebeu-se a tarefa de desenvolver e implementar diferentes sistemas de controle através de diferentes métodos para uma bancada didática MPS®PA Compact Workstation fabricada pela Festo® (Figura 01). Esta bancada possui quatro módulos que podem ser controlados independentemente, módulos estes, que são: vazão, pressão, temperatura e nível. Nosso grupo de estudo foi icumbido de desenvolver o melhor método de controle possível para o módulo de pressão.
Figura 01 - MPS®PA Compact Workstation.
Análise do Processo
 A figura 02 demonstra o diagrama de processo e instrumentação (P&I) do módulo de controle de pressão da bancada MPS®PA. As linhas contínuas reproduzem o fluxo de água nas tubulações e as linhas pontilhadas representam os sinais elétricos de controle e sensores.
Figura 02 - Diagrama de processo e instrumentação
 	Os principais instrumentos utilizados no módulo de pressão são:
Bomba centrífuga (P101):
A bomba centrífuga B101, é o dispositivo de controle do processo de pressão, a bomba conduz o fluido até o tanque B103, através do sistema de tubulação.
Figura 03 - Bomba centrífuga.
Seu funcionamento pode ser: on/off ou analógico, dependendo da aplicação.
 Taxa de entrega de 5L/min;
 Controle digital (ON/OFF);
 Controle analógico com sinal de entrada de 0-10V e saída de 0-24V.
Sensor de pressão(B103):
O sensor utiliza uma célula cerâmica de pressao para seu funcionamento. O range de tensão de saída do sensor é de 0 - 10 VDC. Ele possui um plug de conexão flexível que lhe permite ser usado dentro das tubulações.
Figura 04 - Sensor de pressão.
Tanque de Pressão
O tanque de pressão, B103, é usado para armazenar a pressão média. Sua capacidade de armazenamento é de 2 L, a pressão no tanque pode ir de -0.95 a 16 bar.
Figura 05 - Tanque de pressão.
Indicador de pressão (105)
O indicador de pressão, PI 105, mostra a pressão de forma analógica, a fim de não danificar o indicador, a pressão máxima utilizada deve ficar abaixo de 3/4 da escala total, em operação contínua.
Range de indicação: 0 - 1 bar.
Pressão de operação: 0 - 0,7 bar. 
Figura 06 - Indicador de pressão.
O processo de funcionamento é simples. Possui um indicador de pressão que exibe a pressão interna no tanque de pressão através de um sensor de pressão. O sistema de controle deve identificar essa leitura e atuar sobre a bomba de pressão, a fim de deixar a pressão do sistema exatamente no valor desejado pelo controlador.
Identificação da planta
 
O primeiro passo para obter a planta referente ao sistema de pressão é isolar o sistema do módulo de pressão dos demais módulos da bancada. Isso se dará através do fechamento das válvulas de entrada dos reservatórios V107 e V109, da válvula de descarte da água (V105) do VERIFICAR Q CARALHOS PRECISA SER DESLIGADO PRA LEVANTAR ESSA PLANTA MALDITA
	Para o levantamento do modelo da planta foram realizados ensaios e transformados em gráficos via placa de aquisição de dados que acompanha a planta. Nestes ensaios, foram colocados degraus de tensões na bomba e retirados os dados via sensor de pressão. 	A partir dos dados levantados, foi possível fazer um gráfico do comportamento da planta em malha aberta e posteriormente o levantamento da planta relacionando entrada com saída (degraus de tensão na bomba em volts e pressão em bar no sensor). Podemos ver o gráfico tensão x pressão (tensão em dourado, pressão em azul) na Figura 07 a seguir:
Figura 07 - Levantamento do modelo da planta.
Em um primeiro momento foi dado um degrau de 10 volts na bomba e pegado a leitura dos dados de saída. Posteriormente foram dados degraus de 1 em 1 volt na bomba, até 10V. Também foram retirados os dados dando degraus de 5 volts. 
Com os dados em mãos, foi possível fazer o levantamento da planta via o software computacional Matlab, com a ferramenta “ident”. A própria ferramenta diz o quão aproximado da curva real fica a função de transferência dada. Foram feitas algumas funções a partir dos dados levantados. A primeira função de transferência foi feita com o degrau de 10 volts, que neste caso, obteve uma aproximação de 85.84% da curva real. Também foi feito uma função de transferência utilizando degraus intermediários, neste caso 4 à 5 volts, a fim de utilizar uma média dos dados. Esta, obteve a melhor aproximação encontrada, com 90.02% da curva real. A figura a seguir mostra a curva real, a curva da função de transferência com o degrau de 10V (em verde) e a curva da função de transferência com os degraus intermediários (em azul). 
Figura 08 - Curva da função de transferência via “ident”.
	Sendo assim, a função de transferência escolhida para implementar o controle foi a que mais se aproximou da curva real e é:
Controles projetados
Com a função de transferência em mãos foram feitos diversos controles a fim de obter o melhor resultado possível. A seguir, serão expostos os gráficos dos controles projetados, os seus respectivos esforços de controle e a função de transferência do controlador. No final, serão expostos todos os controles juntos a fim de comparação dos resultados. 
Lugar das raízes I:
 
Resposta em malha fechada: 
Figura 09 - Resposta em malha fechada, Lugar das Raízes I.
 
Esforço de controle: 
Figura 10 - Esforço de controle, Lugar das Raízes I.
Lugar das raízes II:
Resposta em malha fechada:
Figura 11 - Resposta em malha fechada, Lugar das Raízes II.
Esforço de controle:
Figura 12 - Esforço de controle, Lugar das Raízes II.
PI no auto-tunning do Matlab (auto-tunning do simulink):
	Kp = 136,3
 Ti = 0,75526
Resposta em malha fechada:
Figura 13 - Resposta em malha fechada, PI no auto-tunning do Matlab.
Esforço de controle:
Figura 14 - Esforço de controle, PI no auto-tunning do Matlab.
PID no auto-tunning do Matlab (auto-tunning do simulink):
Kp = 129,264
 Ti = 1,021
 					 Td = 0,1097
Resposta em malha fechada: 
Figura 15 - Resposta em malha fechada, PID no auto-tunning do Matlab.
Esforço de controle:
Figura 16 - Esforço de controle, PID no auto-tunning do Matlab.
PID usando o método de Ziegler-Nichols:
Kp = 840
Ti = 0,15
Td = 0,05
Resposta em malha fechada: 
Figura 17 - Resposta em malha fechada, PID com Ziegler - Nichols.
Esforço de controle:
Figura 18 - Esforço de controle, PID com Ziegler - Nichols.
	
PI usando o método de Ziegler-Nichols:
 Kp = 85
Ti = 0,85
Resposta em malha fechada:
					
 Figura 19 - Resposta em malha fechada, PI com Ziegler - Nichols.
Esforço de controle:
Figura 20 - Esforço de controle, PI com Ziegler - Nichols.
Comparação dos resultados:
Figura 21: Comparação das respostas de todos os controladores com os respectivos esforços de controle em relação à diferentes degraus.
Comparando todos os gráficos, viu-se que entre os resultados obtidos, o PID feito a partir de Ziegler-Nichols e que o PI obtido pelo auto-tunning foram os que apresentaram melhor rendimento. O PID feito a partir de Ziegler-Nichols apresentou um tempo de estabilização de 2.5 segundos, valor bem inferior aos 4 segundos da planta, este apresentou um overshoot de 9.14%. Já o PI encontrado pelo auto-tunning apresentou um tempo de estabilização de 4 segundos. A vantagem deste controlador, é que o tempo de subida é alto (1.25 segundos) com um overshoot baixo, cerca de 7.14%. A seguir, encontra-se um gráfico comparando todas as respostas em malha fechada decorrentes à duas trocas de referência de pressão. No gráfico posterior, estão os respectivos esforços de controle para os controladores.
Figura 22: Respostas à trocas de referências.
Figura 23: Esforços de controle.
	 Controlador PID via Ziegler-Nichols 
	Controlador Lugar das Raízes IIControlador PID via auto-tunning do Matlab
	Controlador PI via auto-tunning do Matlab
	Controlador PI via Ziegler-Nichols 
	Controlador Lugar das Raízes I

Outros materiais