Buscar

Flambagem - Teoria das Estruturas - Mecanica dos Solidos

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 33 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 33 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 33 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

1 
 
 
 
 
 
 
 
 
 
TEORIA DAS ESTRUTURAS II 
 
FLAMBAGEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 
 
TEORIA DAS ESTRUTURAS II- ESUCRI- Profº: Jorge Luiz Laureano- Msc 
CONCEITO DE FLAMBAGEM 
DEFINIÇÃO DE FLAMBAGEM 
CURVA DE DEFORMAÇÃO DO LADO DE UM ELEMENTO ESTRUTURAL COMPRIMIDO 
PELA CARGA PESADA. 
Conceito de flambagem 
Flambagem é um fenômeno de instabilidade elástica que pode ocorrer em elementos 
comprimidos delgados, e que se manifesta pelo aparecimento de movimentos signi -
ficativos transversais à direção principal de compressão. 
Em engenharia estrutural, o fenômeno aparece principalmente nos pilares e colunas e 
traduz a aparência de um adicional de flexão no pilar quando ele é submetido à ação 
de esforço axial de alguma importância.A ocorrência de deflexão por flambagem 
severamente limitada resistência na compressão de um pilar ou qualquer pedaço 
delgado., Eventualmente, do verdadeiro valor de uma carga axial de compressão, 
chamado a carga crítica de flambagem, pode ocorrer instabilidade elástica e facilmente 
deformação aumente produzindo tensões adicionais que excederem a tensão de 
ruptura, causando a ruína do elemento estrutural.Além da flambagem flexional regular 
há torsionalbuckling ou instabilidade elástica causada por um torque excessivo. 
Há maneiras diferentes ou falha por flambagemmodos.Frequentemente lá verificar 
vários deles e certifique-se de que as cargas estão longe de ser crítico carrega associa- 
do com cada modo ou maneira de SAG, para um elemento estrutural.Modos típicos 
são: 
• Flexional flambagem.Buckling modo no qual um elemento de compressão são flecta 
lateralmente sem rotação ou mudanças na seção transversal. 
• Torsionalbuckling.Modo de flambagem, em que um elemento de compressão gira 
em torno de seu centro de corte. 
• Flexo-torção flambagem.Buckling modo no qual um elemento de compressão são 
flecta e gira simultaneamente sem mudanças na seção transversal. 
• Lateral torsionalbuckling.Modo de flambagem de um elemento à flexão envolvendo 
deflexão normal ao plano de flexão e, simultaneamente, uma rotação em torno do 
centro do Tribunal 
Flambagem flexional 
Os pilares e barras de treliça comprimida podem ter diferentes modos de falha com 
base na sua magreza mecânica: 
• Muito delgados pilares muitas vezes falharem por flambagem elástica e são sensíveis 
a ambos o local flambagem próprio pilar quanto à flambagem global de toda a 
estrutura. 
• Pilares as esbeltez média imperfeições construtivas como heterogeneidades são 
particularmente importantes, sendo capaz de apresentar flambagem de anelastico. 
• Os pilares da esbeltez muito baixo falhar devido a compressão excessiva, até que os 
efeitos de flambagem são importantes. 
3 
 
 
 
Comprimento de flambagem 
Equação básica da flambagem elástica pressupõe que as extremidades da barra são 
articuladas e só podem mover-se na direção do seu eixo. Essa é a situação padrão, 
indicada em (d) da Figura 01. 
 
 
 
 
 
 
Figura- 01 
 
Obs: na figura mencionada, as retas tracejadas verticais indicam a barra no estado 
inicial e as curvas contínuas indicam aproximações das deformações por flambagem 
 
Para outras fixações, como (a), (b), (c), (e) e (f) da mesma figura, usam-
se comprimentos de flambagem específicos. 
 
A tabela abaixo dá os valores teóricos e práticos para cada uma das situações 
mencionadas. 
Desde que os cálculos são baseados na força de Euler conforme tópico anterior, outras 
fixações devem ter seus comprimentos convertidos. 
 
4 
 
Tipo (a) (b) (c) (d) (e) (f) 
FLTeórico 0,5 L 0,7 L 1,0 L 1,0 L 2,0 L 2,0 L 
FL Prático 0,65 L 0,8 L 1,2 L 1,0 L 2,1 L 2,0 L 
 
 
Exemplo: uma coluna de 3 metros de altura está fixada como em (f) da figura. 
Então, ela é equivalente a uma coluna do tipo padrão (d), com comprimento 2,0 x 3 = 6 
metros. 
 
É importante lembrar que, em casos práticos (estruturas, máquinas), extremidades de 
colunas ou de barras comprimidas podem ter liberdade de movimento em 
determinadas direções e não ter em outras. Portanto, todas as hipóteses devem ser 
analisadas, dimensionando-se pela mais desfavorável. 
 
Coeficiente de esbeltez 
Considerando-se o conceito de comprimento de flambagem, pode-se reescrever a 
igualdade da força de flambagem de Euler K, dado em #C.1# do tópico Equação básica 
da flambagem elástica: 
 
K = π2 E J / Lfl2 
 
Se se deseja a tensão limite, os valores são divididos pela área da seção S 
 
σfl = K/S = π2 E J / S Lfl2 = π2 E / [Lfl / √ (J/S)]2. 
O valor Lfl / √ (J/S) é denominado coeficiente de esbeltez da barra. É comum o uso da 
letra grega lambda minúsculo para simbolizá-lo. Assim, 
 
λ = Lfl / √ (J/S) 
 
5 
 
 
A expressão √ (J/S) é o raio de giração ou raio de inércia (i) da seção. E, assim, o 
coeficiente de esbeltez pode ser dado por: 
λ = Lfl / i 
Desde que i depende do momento de inércia J e que esse varia com a orientação do 
eixo de referência, deve-se usar, em geral, o menor valor de J, isto é, J2 (eixo principal 
com menor valor). 
E a fórmula anterior da tensão pode ser escrita 
σfl = π2 E /λ2 
Essa fórmula mostra que a tensão de flambagem depende apenas do módulo de 
elasticidade E (característica do material) e do coeficiente de esbeltez λ (característica 
geométrica da barra). 
 
Para um mesmo material, E é constante e pode-se ter a tensão em função de λ. Por 
exemplo: para o aço, E = 206 GPa. Assim, 
 
σfl (MPa) = π2 206 103 / λ2. 
 
Essa curva está representada na Figura 01. É denominada hipérbole de Euler para o 
material (aço, no caso). 
 
Notar, entretanto, que a curva é limitada pela região de proporcionalidade (elástica) 
do material (hipótese assumida no desenvolvimento da equação básica). 
 
Nesse caso do aço, para a tensão limite de proporcionalidade, σp = 226 MPa, há o 
coeficiente de esbeltez correspondente, λp ≈ 96. 
Esses valores estão indicados na figura. 
Para coeficientes de esbeltez menores, a fórmula não é válida, pois não há mais 
proporcionalidade entre tensão e deformação e/ou há deformações residuais 
decorrentes da plasticidade. 
 
Exemplo simples de cálculo 
6 
 
Uma plataforma metálica usa colunas de perfil comercial de aço tipo I 6", 18,5 kg/m. A 
altura das colunas é 3,30 m e a montagem é conforme (c) da Figura 01 do tópico 
Comprimento de flambagem. Verificar a carga máxima que cada coluna pode suportar 
sem flambar. 
Características do perfil I 6" 18,5 kg/m: área S = 23,6 cm2 e raio de giração r = 1,79 cm 
(mínimo). 
Conforme tabela do mesmo tópico, a montagem (c) tem comprimento de 
flambagemLfl = 1,2 L = 1,23,30. 
Portanto, Lfl = 3,96 m. 
E, de acordo com do tópico Coeficiente de esbeltez, 
λ = 3,96 / 1,79 10−2 = 221. 
A tensão de flambagem é dada por #C.1# do mesmo tópico (considerando-se E = 
206000 MPa): 
σfl = π2 206000 / 2212 ≈ 42 MPa. 
Portanto 
F = σfl S = 42 103 kPa 23,6 10−4 m2 ≈ 99 kN. 
O cálculo dessa carga não inclui os coeficientes de segurança, que devem ser 
introduzidos de acordo com as condições de utilização, conforme visto nas primeiras 
páginas desta série. 
Esse é um cálculo simples, sem os critérios - em geral conservadores e a favor da 
segurança - previstos em normas. Por exemplo: o coeficiente de esbeltez está alto. A 
maioria das normas fixa um limite de 200 para prédios e 120 para pontes. 
Outro exemplo de cálculo 
Uma coluna de madeira, de seção retangular 5 x 10 cm, tem altura livre de 2,5 m. A 
madeira tem as propriedades σe = 45 MPa e E = 13,1 GPa. A fixação das extremidades 
é conforme (d) da Figura 01 do tópico Comprimento de flambagem. Determinar os 
parâmetros para a flambagem elásticadessa coluna. 
 
Para a seção retangular, área S = ab (= 5 10 = 50 10−4 m2), onde a e b são os lados. 
O momento de inércia é J = ab3/12. 
7 
 
Visto que o raio de giração é r = √ (J/S) = √ [(ab3/12)/ab] = √ (b2/12). Desde que se 
deseja saber a condição mais crítica, deve-se usar o menor raio de giração. Assim, o 
lado de 5 cm deve ser considerado b. 
r = √ (25 10−4 m2 / 12) ≈ 0,0144 m. 
O coeficiente de esbeltez é λ = 2,5 / 0,0144 ≈ 174, segundo #B.2# do tópico Coeficiente 
de esbeltez. 
A tensão de flambagem conforme Euler é dada pela igualdade #C.1# do mesmo tópico: 
σfl = π2 E / λ2 = π2 13,1 103 MPa / 1742 = 4,27 MPa. 
 
Notar que a tensão de flambagem é apenas uma pequena fração da tensão de 
escoamento considerada para o material. Outras observações conforme exemplo 
anterior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9 
 
 
 
 
 
 
 
10 
 
 
 
 
 
11 
 
 
 
 
 
12 
 
 
 
 
 
 
13 
 
 
 
 
 
 
 
 
 
 
 
14 
 
 
 
 
 
 
 
15 
 
 
 
 
EXEMPLO: 
 
16 
 
 
EXEMPLO: 
 
 
17 
 
 
 
EXEMPLO 
 
 
 
 
18 
 
 
EXEMPLO 
 
19 
 
 
FLAMBAGEM 
Quando uma peça fina e comprida é comprimida, isto é, recebe nas extremidades uma 
força de compressão, a peça tende a flambar, isto é, a peça enverga e pode até 
quebrar. 
 
Se vai quebrar ou não vai depender da combinação de 3 fatores: 
1 - A força aplicada. até um certo limite não há flambagem e apartir desse limite 
ocorre a flambagem; 
 
2 - A seção transversal da peça. Peças grossas não flambam. Na medida em que vai se 
afinando a peça começa a surgir a tendência à flambagem que ocorre apartirde uma 
certa seção transversal; 
20 
 
3 - O comprimento da peça. Peças curtas não flambam. Na medida em que se vai 
encompridando a peça começa a surgir a tendência à flambagem que ocorre apartir de 
um certo comprimento. 
VERIFICAÇÃO DA FLAMBAGEM 
 
A carga limite, isto é, abaixo daqual não ocorre a flambagem da barra é dada pela 
fórmula conhecida como Fórmula de Euler (pronucia-seÓiler): 
 
ONDE: 
- Constante matemática (3,14159...); 
E - Módulo de Elasticidade do material (em pascal); 
J - Menor momento de inércia da barra (em m4); 
L = Comprimento da barra (em metros); 
 
 
 
 
 
 
 
 
 
 
 
 
 
21 
 
 
 
 
 
 
 
 
 
EXEMPLO: 
Para sedimentar os conceitos e a metodologia apresentados no capítulo, vamos ver 
como se faz uma análise de verificação da flambagem de um caso real. 
Tomemos uma barra de alumínio feita de um tubo (portanto ôco). A barra tem um 
comprimento L de 1,20 metros. 
O tubo usado é o tubo de 1 e 1/2 X 1,58 mm, isto é, ele tem 1,5 polegadas de 
diâmetro e parede com 1,58 milímetros de espessura. 
Como vimos no capítulo anterior, o Momento de Inércia é dado pela fórmula: 
 
 
 
b = 2,54 + 1,27 = 3,81 centímetros 
a = b - 2X0,158 = 3,494 centímetros 
J = 3,1416 X (0,03814-0,034944) / 64 
J = 3,025 X 10-8 m4 
pela tabela apresentada na tabela acima, o Módulo de Elasticidade do 
alumínio: E = 70 X 106 
 
22 
 
Aplicando a Fórmula de Euler: 
 
 
P = 3,14162 X 70 X 106 X 3,025 X 10-8 / 1,22 
P = 14,510 kNou 1.451 kgf 
Isto significa que aplicando uma carga com valor infeiror a 1.451 kgf não ocorre a 
flambagem na barra e aplicando-se uma carga superior a 1.451 kgf ocorrerá a 
flambagem da barra. 
Ao fazer o cálculo da força na barra, se o valor da força de compressão for maior que 
1.451 kgf, esta barra não poderá ser usada na treliça (pelo menos nessa posição). 
Então a alternativa será substituir essa barra por outra de maior espessura ou de maior 
diâmetro. 
 
 
 
 
 
Primeiro você deve tentar usar uma barra de maior espessura para tentar manter o 
diâmetro. Esteticamente é mais bonito ver uma treliça com todas as barras iguais, isto 
é, do mesmo diâmetro. 
 
 
 
 
 
 
 
 
23 
 
Lista de Exercícios -FLAMBAGEM 
1) Determine a carga crítica para uma peça de madeira de 1 m de comprimento e 
seção transversal retangular de 7 mm x 24 mm. Usar E = 12 GPa. Resp.: 81,2 N. 
2) Determine a carga crítica para um tubo de alumínio com 1,5m de comprimento, 
tendo diâmetro externo igual a 16 mm e espessura de parede igual a 1,25mm. Usar E 
= 70 GPa. Resp.: 487 N. 
3) A barra de alumínio AB tem seção retangular 16 x 30 mm estando articulada nos 
extremos. Cadaextremo pode girar livremente em torno de um eixo horizontal, mas 
não pode girar em torno de um eixo vertical. Usando E = 70 GPa, determine o 
comprimento L para o qual a carga crítica da barra é P = 10 kN. Resp: 1,577m. 
4) Um elemento estrutural sujeito à compressão, de comprimento efetivo à 
flambagem igual a 1,5 m, é constituído por uma barra maciça de latão de 30 mm de 
diâmetro. A fim de reduzir o peso desteelemento em 25%, ela foi substituída por outra 
oca como mostrado na figura. Determine (a) apercentagem de redução na carga 
crítica, (b) o valor da carga crítica para a barra oca. Usar E =105 GPa. Resp.: (a) 6,25% 
e (b) 17,17 kN. 5) Uma coluna de comprimento à flambagem igual a 3,5m é 
construída pregando-se quatro peças de madeira de 30 mm x 120 mm cada uma. 
Usando E = 12,5 MPa, determine a carga crítica quando as peças de madeira são 
pregadas em cada uma das formas mostradas na figura. Resp.: 174 kN e 370 kN. 6) 
Uma coluna com 4m de comprimento à flambagem é construída pela soldagem de 
duas cantoneiras de aço L 102 x 76 x 6,4 como mostrado na figura. Usando E = 200 
GPa, determine o fator de segurança à flambagem para uma carga centrada de 75 
kN. Resp.: 3,68. 7) Uma coluna de 4m de comprimento efetivo à flambagem é 
construída pela soldagem de dois perfis de aço C 150 x 12,2. Usando E = 200 GPa, 
determine para cada um dos arranjos mostrados a carga centrada admissível se um 
fator de segurança igual a 3,2 é exigido. Resp.: 42,4 kN e 168,4 kN. 
 
 
 
 
 
 
 
 
24 
 
Compressão 
EXEMPLOS DE MEMBROS COMPRIMIDOS 
 Dados: 
1-Selecionar um perfil laminado tipo W ou HP de aço ASTM A572 Grau 50, para uma força 
axial de compressão de 1600 kN , sendo 400kN de ações permanentes e 1200 kN de ações 
variáveis. O elemento tem um comprimento de 6,0 m e ambas asextremidades rotuladas. 
Perfil sugerido: HP 360 x 122,0 
Ag = 155,3 cm2 d = 36,3 cm tw = 1,30 cm 
Lx = 600 cm rx = 15,53 cm bf = 25,7 cm 
tf = 2,17 cm Ly = 600 cm ry = 6,29 cm 
h = d – 2.(tf+R) -> h = 36,3 – 2.(2,17+1,6) = 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25 
 
 
Solução: 
 
 
 
 
26 
 
 
 
 
 
 
 
 
 
 
27 
 
2- 
 
 
 
28 
 
 
 
 
 
29 
 
Exercício de Fixação 
 
 
 
 
No caso de colunas com seção transversal quadrada ou circular, o momento deinércia 
da seção transversal em relação a qualquer eixo baricêntrico é o mesmo, demodo que 
a coluna pode flambar em qualquer plano. Para seções transversais deoutras formas, a 
carga crítica deve ser calculada para I= Imin. 
Se a flambagem ocorrer,ela acontecerá em um plano perpendicular ao eixo principal 
de inércia correspondente. 
Tensão Crítica 
A tensão crítica é dada por: 
 
30 
 
 
Observações: 
1.O raiode giração deve ser aquele correspondente ao momento de inérciamínimo. 
2.O indice de esbeltes (λ) deve ser inferior a 200. 
 
 
 
 
31 
 
Exercícios: 
 
1 . D e te rmi na r a c a rg a c rí t i c a de f l a mba g e m de um pi l a r de 2 m 
c om e x tre mi da de s a rt i c ul a da s s a be ndo- s e que o módul o 
de e l a s t i c i da de do ma te ri a l é de 2 0 0 . 0 0 0 kgf/cm². A seção transversal 
mede 10 x 15 cm. 
 
 
2. Supondo-se que a tensão crítica para o pilar da questão anterior é de 500 
kgf/cm²,verifique se a peça está sujeita à flambagem. 
3. Determine a carga crítica de flambagem para um pilar engastado com 2 m de altura. 
O módulo de elasticidade é de 200.000 kgf/cm². 
 
4. Supondo-se que a tensão crítica para o pilar da questão anterior é de 500 
kgf/cm²,verifique se a peça está sujeita à flambagem. 
5. Determine a carga crítica de flambagem para o pilar de seção transversal tipo Tdado 
abaixo. O módulo de elasticidade é de 250.000 kgf/cm². 
32 
 
 
6. Determine a carga admissível para o pilar da questão anterior adotando 
coeficientede segurança igual a 2. 
 
 
 
 
 
33

Mais conteúdos dessa disciplina