Buscar

Cap_8_Escoamento_Superficial

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 38 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 38 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 38 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

CCaappííttuulloo
 88EEssccooaammeennttoo SSuuppeerrffiicciiaall
1. GENERALIDADES
O escoamento superficial tem origem, fundamentalmente, nas precipitações. Ao chegar ao solo,
parte da água se infiltra, parte é retirada pelas depressões do terreno e parte se escoa pela superfície.
Inicialmente a água se infiltra; tão logo a intensidade da chuva exceda a capacidade de infiltração do
terreno, a água é coletada pelas pequenas depressões. Quando o nível à montante se eleva e superpõe
o obstáculo (ou o destrói), o fluxo se inicia, seguindo as linhas de maior declive, formando
sucessivamente as enxurradas, córregos, ribeirões, rios e reservatórios de acumulação.
É, possivelmente, das fases básicas do ciclo hidrológico, a de maior importância para o engenheiro, pois
a maioria dos estudos hidrológicos está ligada ao aproveitamento da água superficial e à proteção
contra os efeitos causados pelo seu deslocamento.
Figura 8.1 – Escoamento superficial (Fonte: GRAY, 1973)
2. COMPONENTES DO ESCOAMENTO
A água, uma vez precipitada sobre o solo, pode seguir três caminhos básicos para atingir o curso
d’água: o escoamento superficial, o escoamento sub-superficial (hipodérmico) e o escoamento
subterrâneo , sendo as duas últimas modalidades sob velocidades mais baixas. Observa-se que o
2Cap. 8 Escoamento Superficial
deflúvio direto abrange o escoamento superficial e grande parte do sub-superficial, visto que este
último atinge o curso d’água tão rapidamente que, comumente, é difícil distinguí-lo do verdadeiro
escoamento superficial.
O escoamento de base, constituído basicamente do escoamento subterrâneo, é o responsável
pela alimentação do curso d’água durante o período de estiagem.
3. HIDRÓGRAFA
Denomina-se hidrógrafa ou hidrograma a representação gráfica da vazão que passa por uma
seção, ou ponto de controle, em função do tempo.
A caracterização de um hidrograma é feita a partir de observações e registros das variações de
vazão no decorrer do tempo.
Na figura 8.2 está mostrada um hidrograma com as vazões médias diárias para um dado ano.
Figura 8.2 – Registro de descargas diárias do Rio Tietê. (Fonte: VILLELA, 1975).
3Cap. 8 Escoamento Superficial
3.1. ELEMENTOS DO HIDROGRAMA
Isolando-se picos do hidrograma, pode-se analisar alguns fenômenos de interesse para a
hidrologia.
A figura 8.3 mostra um diagrama hipotético acompanhado da chuva que o gerou.
 Figura 8.3 – Ietograma e Hidrograma (Fonte: VILLELA, 1975).
Na seção do curso d’água onde se está registrando a vazão, verificou-se que, após o início a
precipitação (to), o nível da água começa a elevar-se. A vazão cresce desde o instante correspondente
ao ponto B, quando atinge seu pico. Terminada a precipitação, o escoamento superficial prossegue
durante certo tempo e a curva de vazão vai decrescendo. Ao trecho BC denomina-se curva de depressão
do escoamento superficial. A linha tracejada AEC representa a vazão correspondente ao lençol d’água.
Para efeitos práticos, a linha que representa a contribuição da água do lençol subterrâneo ao curso
d’água costuma ser representada pela reta AC.
4Cap. 8 Escoamento Superficial
3.2. SEPARAÇÃO DO HIDROGRAMA
O hidrograma de uma onda de cheia é formado pela superposição de dois tipos distintos de
afluxos: um proveniente do escoamento superficial (+ subsuperficial + precipitação direta) e outro,
da contribuição do lençol subterrâneo .
Esses dois componentes possuem propriedades sensivelmente diversas, notando-se que,
enquanto as águas superficiais, pela sua maior velocidade de escoamento, preponderam na formação de
enchentes, a contribuição subterrânea pouco se altera.
Essa distinção de comportamento torna conveniente o estudo separado da porção referente ao
escoamento superficial, que melhor define o fenômeno das cheias.
Embora a linha AEC seja mais correta para separar os escoamentos, é de difícil determinação e
como já referido para fins práticos toma-se a reta AC. O ponto A corresponde ao início do escoamento,
com a mudança brusca na inclinação da curva de vazão. O ponto C, de mais difícil determinação,
normalmente é tomado no ponto de máxima curvatura, sendo o período de tempo entre o ponto B e C,
tomado como um número inteiro de dias.
A determinação do total escoado superficialmente é feita por planimetria da área hachurada
ABCA.
3.3. DETERMINAÇÃO DA PRECIPITAÇÃO EFETIVA
Alguns procedimentos são disponíveis para o cálculo da chuva excedente, ou seja, daquela que
efetivamente contribui para o escoamento superficial.
3.3.1. MÉTODO DO SOIL CONSERVATION SERVICE (SCS)
Este método leva em conta, além da precipitação e a umidade anterior, o complexo solo
vegetação, expresso pelo parâmetro N encontrado na tabela 1. A fórmula tem a seguinte apresentação:
 
÷÷
ø
ö
çç
è
æ
-
+
÷÷
ø
ö
çç
è
æ
+
-
=
2,203N
20320P
8,50N
5080P
P
2
E
5Cap. 8 Escoamento Superficial
onde:
PE = excesso de chuva (mm)
P = precipitação (mm)
N = número de deflúvio que define o complexo hidrológico solo vegetação
Cumpre observar, no entanto, a validade da equação acima somente a partir da precipitação P tal
que o numerador seja positivo.
 Tabela 8.1 – Valores do número de deflúvio N. (Fonte: WILKEN, 1978)
Tipos de solos de áreaUtilização da terra Condições de superfície
A B C D
Terrenos cultivados Com suícos retilíneos
Em fileiras retas
77
70
86
80
91
87
94
90
Plantações regulares Em curvas de nível
Terraceado em nível
Em fileiras retas
67
64
64
77
73
76
83
79
84
87
82
88
Plantações de cereais Em curvas de nível
Terraceado em nível
Em fileiras retas
62
60
62
74
71
75
82
79
83
85
82
87
Plantações de legumes
ou campos cultivados
Em curvas de nível
Terraceado em nível
Pobres
Normais
Boas
60
57
68
49
39
72
70
79
69
61
81
78
86
79
74
84
89
89
94
80
Pastagens Pobres, em curvas de nível
Normais, em curvas de nível
Boas, em curvas de nível
47
25
6
67
59
35
81
75
70
88
83
79
Campos permanentes Normais
Esparsas, de baixa transpiração
Normais
Densas, de alta transpiração
30
45
36
25
58
66
60
55
71
77
73
70
78
83
79
77
Chácaras
Estradas de terra
Normais
Más
De superfície dura
59
72
74
74
82
84
82
87
90
86
89
92
Florestas Muito esparsas, baixa tanspiração
Esparsas
Densas, alta transpiração
Normais
56
46
26
36
75
68
52
60
86
78
62
70
91
84
69
76
Superfícies impermeá-
veis
Áreas urbanizadas 100 100 100 100
6Cap. 8 Escoamento Superficial
Observações:
O solo tipo A é o de mais baixo potencial de deflúvio. Terrenos muito permeáveis. Com pouco silte
e argila.
O solo tipo B tem uma capacidade de infiltração acima da média após o completo umedecimento.
Inclui solos arenosos.
O solo tipo C tem uma capacidade de infiltração abaixo da média após a pré-saturação. Contém
porcentagem considerável de argila e colóide.
O solo tipo D é o de mais alto potencial de deflúvio. Terrenos quase impermeáveis junto à
superfície. Argiloso.
3.3.2. MÉTODO DO ÍNDICE f
Conhecendo-se a precipitação e o escoamento superficial, em uma bacia pode-se calcular por
diferença, a capacidade de infiltração da mesma, embora o valor encontrado englobe, além da
infiltração, toda interceptarão é armazenagem nas depressões. Este por menor, entretanto, não afeta a
solução dos problemas de um projeto, vez que normalmente a meta é o conhecimento do escoamento
superficial resultante de uma certa precipitação, conhecida a capacidade de infiltração (VILLELA, 1975).
O método é apresentado, a seguir, em forma de algoritmo:
1. Computar, para cada intervalo de tempo, a precipitação ocorrida.
2. Deduzir da precipitaçãototal (P) , a quantidade de água escoada.
3. Dividir o valor obtido pelo tempo de duração total da chuva. Obten-se desta forma o f
hipotético.
4. Comparar o fh com as precipitações observadas em cada intervalo de tempo. Caso, algum
intervalo, a precipitação tenha sido inferior ao fh, exclui-lo do calculo e repetir o processo.
Exemplo numérico:
Durante a cheia , em uma bacia produzida por uma chuva cuja altura é de P = 76mm, o
escoamento superficial foi equivalente a Q = 33mm. A distribuição do tempo da chuva é dada abaixo:
7Cap. 8 Escoamento Superficial
Tabela 8.2
Horas 1a 2a 3a 4a 5a 6a Total
Chuvas(mm) 8 18 25 12 10 3 76
Temos que:
· Recarga da bacia ( L+ G ) = P – Q = 76 – 33 = 43 mm
· Supondo o excesso de chuva de 6 horas, obtemos:
Índice f = 
6
43
 = 7, 2 mm/h
· Entretanto, este valor é superior á chuva precipitada na 6a hora; assim, essa chuva não foi
efetivada e deve portanto ser retirada dos cálculos.
L + G = ( 76 – 3 ) – 33 = 40 mm
· Supondo agora o excesso de chuva de 5 horas:
 Índice f = 40/5 = 8,0 mm/h.
Figura 8.4 – Cálculo do Índice f
3.4. TEMPO DE CONCENTRAÇÃO (TC)
É o intervalo de tempo contado a partir do início da precipitação para que toda a bacia
hidrográfica correspondente passe a contribuir na seção de estudo. Corresponde à duração da trajetória
da partícula de água que demore mais tempo para atingir a seção.
8Cap. 8 Escoamento Superficial
3.5. FORMA DO HIDROGRAMA VERSUS A RELAÇÃO TC E TR
A relação tempo de concentração (tC) e tempo de duração da chuva (tr) condicionará, no
hidrograma, à existência de uma ou mais pontos de inflexão.
Analisaremos aqui o caso particular da bacia hipotética de tempo de concentração tC submetida a
precipitações de diferentes durações.
Figura 8.5 – Hidrogramas das chuvas a, b e c. (Fonte: WILKEN, 1978)
Caso A
Similarmente ao caso c, existem dois pontos de inflexão. O patamar ocorre, agora, em virtude de
uma compensação entre a água que deixou de precipitar após o tr e aquela oriunda da parte mais
jusante da bacia.
9Cap. 8 Escoamento Superficial
A figura mostra que a chuva cuja duração é igual ao tempo de concentração, produzira uma maior
vazão no ponto de controle, sendo portanto considerada de duração crítica.
Caso B
Existência de um único ponto de inflexão devido ao fato do término da chuva coincidir com o
momento em que toda a bacia contribui para a vazão na seção de controle.
Caso C
Existência de dois pontos de inflexão; um, corresponde ao tempo de concentração tC, e o outro
corresponde ao tempo de duração de chuva tr. o patamar entre tC e tr resulta do fato de que, uma vez
atingido tC (contribuição simultânea de toda a bacia), a chuva prossegue sem elevar a vazão, já que sua
intensidade é admitida constante, ou seja, há compensação entre o inflow e o outflow.
4. CLASSIFICAÇÃO DAS CHEIAS
Quando não há precipitação, o fluxo de um curso d’água provém inteiramente da água do solo.
Isto provoca um abaixamento do nível freático e uma diminuição constante da vazão do curso d’água,
até que tenha lugar uma chuva de intensidade suficiente para provocar escoamento ou acréscimo de
água no solo. Se o nível da água do solo estiver em sua máxima altura no fim de um período de
escoamento superficial, e se não ocorrer precipitação até que o escoamento no curso d’água cesse
completamente, a hidrógrafa neste período representará a curva de depleção da água do solo, o qual
podemos ver na figura 8.3 como o trecho a partir do ponto c.
Figura 8.6 – Hidrógrafa. (Fonte: WISLER, 1964).
10Cap. 8 Escoamento Superficial
O escoamento superficial produz, invariavelmente, a cheia de curso d’água. O termo “cheia” é
referido à acréscimos de fluxo de menor importância (evento extremo ® enchente) tais como os que
ocorrem algumas vezes por ano.
Classificação das cheias:
Tipo 0 – Não há escoamento superficial, uma vez que a intensidade da chuva (i) é menor que
a capacidade de infiltração (f). a curva de depleção normal tem ramo descendente
ininterrupto, não havendo assim cheia no rio. Deve-se observar que, na prática, é
impossível a ocorrência de uma cheia Tipo 0 perfeita, vez que parte da precipitação
incide diretamente sobre o curso d’água.
Tipo 1 – A intensidade da chuva (i) ainda é menor que a capacidade de infiltração (f) e a
deficiência de umidade natural (DUN) é menor que a infiltração total (F). Não há
escoamento superficial, porém verifica-se um acréscimo de água no solo. Há três
casos ligados ao tipo 1. Em todos eles é verificado o aumento do lençol d’água no
intervalo mn. No primeiro caso, a proporção de aumento é menor que a depressão
normal da água no solo; no segundo, as proporções são iguais e no terceiro, a
proporção de acréscimo da água do solo é maior que a depleção normal.
Tipo 2 – A intensidade da chuva (i) é maior que a capacidade de infiltração (f), porém a
deficiência de umidade natural do solo (DUN) é maior que a infiltração total (F).
Assim ocorre escoamento superficial, mais não há acréscimo de água no solo. A
depleção normal continua durante a cheia e o regime da água do solo é retomado em
N.
Tipo 3 – A intensidade da chuva (i) ainda é maior que a capacidade de infiltração (f), mas a
deficiência de umidade natural do solo (DUN) agora é menor que a infiltração total
(F). Assim, ocorre escoamento superficial e acréscimo do lençol d’água.
Analogamente ao tipo 1, pode-se Ter três caso conforme as proporções de acréscimo
da água do solo.
11Cap. 8 Escoamento Superficial
Figura 8.7 – Classificação das cheias dos cursos d’água. (Fonte: VILLELA, 1975)
5. MEDIÇÃO DE VAZÕES
Medidas sistemáticas de vazões são possíveis através da instalação de estações hidrométricas.
Uma estação hidrométrica é uma seção do rio, com dispositivos de medição do nível da água
(réguas linimétricas ou linígrafas, devidamente referidos a uma cota conhecida e materializada no
terreno), facilidades para medição de vazão (botes, pontes) e estruturas artificiais de controle
(se for o caso).
12Cap. 8 Escoamento Superficial
Figura 8.8 – Linígrafo (Fonte: SOUZA PINTO et allii, 1976).
Escolha do local para instalação de uma estação.
1. Próximo a um ponto de possível interesse para aproveitamento das águas.
2. Seção estável, que não apresente modificações significativas em seu leito.
3. Facilidade de acesso e condições para medições de vazões.
4. Relação unívoca cota x vazão.
Após escolhida a seção do rio, instala-se neste local uma régua linimétrica ou um linígrafo.
Figura 8.9 – Régua linimétrica (Fonte: LINSLEY, 1975).
13Cap. 8 Escoamento Superficial
A finalidade dos dispositivos acima citados é medir a altura do rio. Para cada altura do nível d’água
é medida a vazão correspondente, sendo possível desta maneira a construção de um acurva de
correlação altura-vazão (VILLELA, 1975).
Figura 8.9 – Curva chave. (Fonte: SOUZA PINTO et allii, 1976).
5.1. COMO MEDIR VAZÕES
5.1.1. PROCESSOS DIRETOS
Consiste na medição direta em recipiente de volume conhecido. Mede-se o tempo, obtendo-se:
 Q = Vol/t
14Cap. 8 Escoamento Superficial
Este processo só é aplicável nos casos de pequenas descargas, como fontes e riachos, e sob
condições muito favoráveis.
5.1.2. VERTEDORES
A vazão de rios pode ser medida através de um vertedor, que uma obstrução que faz com que a
água retorne e escoe sobre a mesma. Determina-se a vazão medindo-se a altura da superfície de água a
montante e aplicando-a na fórmula do vertedor utilizado.
· Vertedor Retangular:
Q = 1.838 (L – 2H/10)H 3/2
· Vertedor triangular
Q = 1,4•H5/2
onde:
Q = vazão
L = largura do vertedor
H = altura da lâmina líquida acima do vertedor
5.1.3. MOLINETES
A construção de um vertedor para medirvazão em grandes rios não é praticável. Nestes casos
pode-se medir a vazão do rio através da determinação da velocidade da água.
Os molinetes são aparelhos constituídos de palhetas ou conchas móveis, as quais impulsionadas
pelo líquido, dão um número de rotações proporcional a velocidade da corrente.
15Cap. 8 Escoamento Superficial
Figura 8.11 – Molinetes (Fonte: AZEVEDO NETO, 1973).
O princípio do método é o seguinte (VILLELA, 1975):
1. Divide-se a seção do rio em um certo número de posições para levantamento do perfil de
velocidade
2. Levanta-se o perfil de velocidades
3. Acha-se a velocidade média de cada perfil
4. A vazão será a somatória do produto de cada velocidade média por sua área de influência
Figura 8.12 – Medida de Vazão com molinete. (Fonte: VILLELA, 1975).
6. RELAÇÕES CHUVA x DEFÚVIO
Dada a maior facilidade de obtenção de dados de precipitação, procurou-se desenvolver métodos
para obtenção de valores de vazão a partir de informações pluviométricas.
16Cap. 8 Escoamento Superficial
Geralmente, a vazão que se deseja conhecer é aquela que é resultado de uma chuva intensa
capaz de produzir enchente no curso d’água. Entretanto, pode-se desejar conhecer a vazão de uma
chuva qualquer.
6.1. MÉTODO RACIONAL
A despeito de sua denominação, este método envolve simplificações e coeficientes de aceitação
discutível, não se levando em conta, por exemplo, a natureza real e complexa como se processa o
deflúvio.
Seu mérito está na simplicidade de aplicação e facilidade de obtenção dos elementos envolvidos.
 Q = C • i • A
Ou seja, a vazão (Q) corresponde a uma chuva de intensidade (i) sobre toda a bacia de área (A).
Caso i seja dado em mm/h, A em m2 e se deseje Q em m3/s, usaremos:
 Q = Ai C
63
10 6
,
-
e C pode ser extraído da Tabela 8.3.
Tabela 8.3 – Valores do Coeficiente de Deflúvio (c). (Fonte: VILLELA, 1975).
Natureza da Superfície Valores de C
Telhados perfeitos, sem fuga 0,70 a 0,95
Superfícies asfaltadas e em bom estado 0,85 a 0,90
Pavimentações de paralelepípedos, ladrilhos ou blocos de madeira com juntas
bem tomadas 0,75 a 0,85
Para as superfícies anteriores sem as juntas tomadas 0,50 a 0,70
Pavimentações de blocos inferiores sem as juntas tomadas 0,40 a 0,50
Estradas macadamizadas 0,25 a 0,60
Estradas e passeios de pedregulho 0,15 a 0,30
Superfícies não revestidas, pátios de estrada de ferro e terrenos descampados
0,10 a 0,30
Parques, jardins, gramados e campinas, dependendo da declividade do solo e da
natureza do subsolo 0,01 a 0,20
17Cap. 8 Escoamento Superficial
6.2. MÉTODO DO HIDROGRAMA UNITÁRIO (HU)
6.2.1. DEFINIÇÃO
Hidrograma Unitário é o hidrograma resultante de um escoamento superficial unitário (1mm, 1cm,
1polegada) gerado por uma chuva uniformemente distribuída sobre a bacia hidrográfica, com
intensidade constante e de certa duração.
Para uma dada duração de chuva, o hidrograma constitui uma característica própria da bacia; ele
reflete as condições de deflúvio para o desenvolvimento da onda de cheia.
6.2.2. PRINCÍPIOS BÁSICOS
(considerando chuva de distribuição uniforme e de intensidade constante sobre toda a bacia)
1o PRINCÍPIO: Constância do Tempo de Base
Para chuvas de iguais durações, as durações dos escoamentos superficiais correspondentes são
iguais.
Figura 8.13 – Constância de tempo de base. (Fonte: WIKEN, 1978)
18Cap. 8 Escoamento Superficial
2o PRINCÍPIO: Proporcionalidade das Descargas
Duas chuvas de mesma duração, mas com volumes escoados diferentes resultam em hidrógrafas
cujas ordenadas são proporcionais aos correspondentes volumes escoados.
Figura 8.14 – Proporcionalidade das descargas. (Fonte: WILKEN, 1978).
3o PRINCÍPIO: Aditividade
Precipitações anteriores não influenciam a distribuição no tempo do escoamento superficial de
uma dada chuva.
Figura 8.15 – Interdependência dos deflúvios simultâneos. (Fonte: WILKEN, 1978).
19Cap. 8 Escoamento Superficial
6.2.3. DURAÇÃO DA CHUVA A SER ADOTADA NO HIDROGRAMA UNITÁRIO
Teoricamente deveria se determinar, para uma dada bacia hidrográfica, uma série de hidrógrafas
unitárias – uma para cada duração de chuva. Na prática, entretanto, costuma-se estabelecer a HU para
uma duração tr compreendida entre 1/4 e 1/5 do tempo de concentração tc (WILKEN, 1978). Essa
hidrógrafa servirá de base para o estabelecimento de outras hidrógrafas unitárias para maiores durações
(da mesma bacia hidrográfica).
6.2.4. HIDROGRAMA UNITÁRIO DE VÁRIAS DURAÇÕES
6.2.4.1. DETERMINAÇÃO DO HIDROGRAMA UNITÁRIO PARA UMA CHUVA DE DADA
DURAÇÃO (T) A PARTIR DE OUTRA DURAÇÃO MAIOR (T).
O método da chuva “S” presta-se para a obtenção de um hidrograma unitário a partir de outro da
mesma bacia, porém originado de chuva de duração mais longa.
A curva “S” é o hidrograma que se obteria no caso de chuva hipotética de duração infinita.
Há uma única curva “S” para uma dada bacia hidrográfica e a partir de chuva de dada duração.
Figura 8.16 – Curva S. (Fonte: GRAY,1973).
20Cap. 8 Escoamento Superficial
Podemos observar na figura 16 o gráfico de uma curva “S” para uma duração específica. A
ordenada “qe” corresponde a vazão de equilíbrio, atingida no momento em que toda a bacia passa a
contribuir para a vazão do ponto de controle. A sua constância a partir do tempo de concentração tc
decorre da hipótese da chuva Ter duração infinita.
 
t
A x 72
qe
,
=
onde,
A = área (Km2)
t = duração (h)
qe = vazão (m
3/s)
O fator 2,77 decorre da conversão de unidades.
De posse desta curva, obtém-se facilmente o hidrograma unitário referente a uma chuva mais
curta que aquela que lhe deu origem. Para isso basta defasar a curva “S” de t (duração pretendida). A
diferença entre as ordenadas das duas curvas – uma sem e a outra com defasagem – seria o
hidrograma correspondente a uma chuva capaz de produzir uma lâmina d’água uniforme na bacia de T/t
mm, não se tratando, portanto, de hidrograma unitário. Para converte-lo é suficiente multiplicar todas as
ordenadas pelo fator t/T.
Exemplo
Dado o hidrograma unitário para uma chuva de duração de 1 hora, trace a curva S.
21Cap. 8 Escoamento Superficial
Solução:
Figura 8.17 – Hidrograma unitário para duração de 1 hora e sua curva S.
6.4.2.2. DETERMINAÇÃO DO HIDROGRAMA UNITÁRIO PARA UMA CHUVA DE DADA
DURAÇÃO A PARTIR DE OUTRA DE DURAÇÃO MENOR.
Tendo em vista a validade do 3º Principio dos Hidrogramas, ou seja, o princípio da aditividade, é
possível traçar-se um hidrograma de chuva de maior duração a partir do de uma menor, bastando para
isso encadear sucessivamente chuvas das quais se conhecem o desenvolvimento da onda de cheia,
defasados de sua duração (sem interstício de tempo entre elas).
A soma das ordenadas de “n” hidrógrafas unitária de duração “t”, encadeadas, da origem ao
hidrograma que resultaria de uma chuva de duração total “n x t” e de altura de chuva “n”. O hidrograma
unitário para aquela mesma bacia produzido por uma chuva de duração “T” é facilmente obtido
dividindo-se cada ordenada por n (n = T/t). Isto se justifica pelo fato de que, embora as chuvas parciais
não se superponham no tempo, assim o fazem no espaço.
O procedimento acima descrito é diretamente aplicável aos casos em que T é multiplicado por t,
situação essa ilustrada na figura 8.18.
22Cap. 8 Escoamento Superficial
Figura 8.18 – Hidrogramas.
Casos ocorrem em que a duração T não é múltiplo da duração t. Nessas circunstâncias o mesmo
princípio se mantém válido; no entanto, para a sua utilização é necessário converter a chuva da
hidrógrafa conhecida t em submúltiplo de T. O algoritmo abaixo esclarece o procedimento a ser seguido:
Passo 1 – Traçar a curva “S”a partir do hidrograma da chuva de duração t.
Passo 2 – Determinar um número divisor comum de t e T(t´). Recomenda-se a adoção do
máximo divisor comum (MDC) para redução posterior da carga de trabalho.
Passo 3 – Determinar a partir da chuva “S” obtida no “passo 1”, o hidrograma unitário relativo a
uma curva de duração t’.
23Cap. 8 Escoamento Superficial
A conversão esta concluída! Procede-se a partir deste ponto conforme orientação
da figura 18, cumprindo observar, no entanto, que a conversão no caso presente
será feita dividindo-se as ordenadas por T/t’.
Exemplo Numérico:
Dado o hidrograma abaixo (Colunas (0) e (1) correspondente a uma precipitação efetiva de
duração t = 1h, obter o hidrograma para uma outra chuva de duração t´= 2h.
Tabela 8.4: Calculo do hidrograma de 2h.
Tempo (H) Vazão (M3/S)
(0) (1) (2) (3) = (1) + (2) (4) = (3) : 2
0 0 - 0 0
1 5,6 0 5,6 2,8
2 18,3 5,6 23,9 11,9
3 15,7 18,3 34,0 17,0
4 10,1 15,7 25,8 12,9
5 7,9 10,1 18,0 9,0
6 4,6 7,9 12,5 6,3
7 0 4,6 4,6 2,3
8 - 0 0 0
A coluna (4) fornece as ordenadas do hidrograma relativo a uma precipitação excedente de duas
horas.
6.2.5. HIDROGRAMA UNITÁRIO INSTANTÂNEO
O conceito de hidrograma unitário instantâneo se origina da teoria do Hidrograma Unitário, posto
que, numa situação fictícia de precipitação efetiva de duração infinitamente pequena, o hidrograma
unitário resultante seria a própria Hidrógrafa unitária Instantânea.
24Cap. 8 Escoamento Superficial
A grande vantagem do Hidrograma Unitário Instantâneo sobre o Hidrograma Unitário é que o
primeiro independe da duração da chuva efetiva, e assim só existe um HUI para dada bacia hidrográfica;
de modo que qualquer hidrograma pode ser gerado a partir dele.
Uma vez obtida o HUI, para traçarmos o hidrograma unitário de uma chuva de duração t podemos
seguir o algoritmo abaixo:
1. Dividir o HUI em intervalos de t
2. Marcar os pontos no HUI
3. Calcular a ordenada média para cada par consecutivo
4. Plotar a média (vazão) obtida, associando-a ao tempo (limite superior do intervalo)
5. Ligar os pontos, procurando ajustar, a sentimento, a curva pretendida, ou seja, o hidrograma
unitário de t horas.
Figura 8.19 – Hidrógrafa unitária instância (Fonte: WILSON, 1969).
25Cap. 8 Escoamento Superficial
6.2.6. HIDROGRAMA UNITÁRIO SINTÉTICO
Em casos freqüentes não se dispõe de registros suficientes para a determinação de hidrogramas
unitários relativos às seções de interesses em projeto. Parte-se então, para o emprego de hidrogramas
unitários sintéticos. Tais hidrogramas são obtidos a partir de características físicas das bacias.
Os três HUS mais conhecidos são os de Snyder, o de Commons e o do Soil Conservation Service.
Cada um deles foi determinado após estudos de vários hidrogramas para bacias de dada região, onde se
procurou correlacioná-los com parâmetros definidos.
Note-se que um HUS, tendo em vista seu caráter empírico, tem aplicação regional; sua adoção em
regiões distintas deve ser feita com cautela e após levantamento de parâmetros empíricos regionais.
Dentre as características físicas da bacia hidrográfica que intervém na forma e dimensão do
hidrograma de dada precipitação destacam-se a área, declividade, dimensão do canal, densidade de
drenagem e o formato. Com base na correlação destas características com a configuração das ondas de
cheias observadas, pode-se embasar as tentativas de estabelecimento de processos de sintetização.
6.2.6.1. MÉTODO DE SNYDER
Baseado em observação de rios dos Apalaches (EUA), Snyder propôs equações para o cálculo de
tempo de retardamento, da vazão de pico e da duração total do escoamento (tempo de base).
Figura 8.20 – Hidrograma Sintético de Snyder. (Fonte: WILKEN, 1978).
26Cap. 8 Escoamento Superficial
Para obtenção do hidrograma sintético de Snyder, empregamos os passos seguintes:
1. Cálculo de tp (tempo de retardamento, tempo de pico ou “timelag”)
 tp = 0,75 Ct (L x Lg)
0,3 (em horas)
onde:
L – comprimento da bacia em Km, medido ao longo do rio principal.
Lg – distância do centro de gravidade da bacia em Km, medido ao longo do rio principal até
a projeção do C.G. sobre o rio.
Ct – coeficiente que depende das características da bacia hidrográfica e que varia de 1,8 a
2,2.
2. Cálculo de tr (duração da chuva unitária)
 
5 5,
t
t pr = (tr e tp em horas)
3. Verificar se a duração da chuva da chuva excedente (te) supera a duração da chuva
unitária (tp). Em caso afirmativo, fazer:
 tp = te - tr
 tp’ = tp + 
4
tpD
4. Cálculo de t (tempo de base)
 T = 3 + 3 ÷÷ø
ö
ççè
æ
24
tp (t em dias e tp em horas)
 5. Cálculo de qp (vazão de pico)
 qp = 2,75 x 
p
p
t
A x C
 (qp em m³/s)
onde:
A – área (Km²)
Cp – coeficiente que varia entre 0,56 e 0,69 e que depende das características da bacia.
27Cap. 8 Escoamento Superficial
6. De posse dos elementos principais do hidrograma, traçar o gráfico a sentimento.
Exemplo Numérico:
Calcular o hidrograma unitário sintético do Snyder para uma bacia de drenagem hipotética com
as seguintes características:
A = 120,0 Km²
L = 25,0 Km
Lg = 15,0 Km
Ct = 2,0
Cp = 0,60
 te < tr
· Cálculo do tempo de pico tp
( ) 30gtp LL x 331
C
t ,
,
=
( ) h 9815,0 x 25,0
331
02
t 30p ,,
, , ==
· Cálculo do tempo da duração da chuva tr
h 61
5,5
8,9
55
t
t pr ,,
===
· Cálculo da vazão do pico qp
sm 322
98
 120,0 x 0,60 x 762
t
 x AC x 762
q 3
p
p
p /,,
,,
===
· Cálculo do tempo de base tb
tb = 3 + 3 dias 14
24
98
 33
24
tp ,
,
=÷
ø
ö
ç
è
æ+=÷÷
ø
ö
çç
è
æ
Com a obtenção dos valores acima pode-se traçar, a sentimento, o hidrograma sintético de
Snyder, de modo a ajustar a área sobra o mesmo ao volume unitário.
28Cap. 8 Escoamento Superficial
6.2.6.2 MÉTODO DE COMMONS
O hidrograma básico de Commons é simplesmente um diagrama adimensional, baseado em cheias
observadas no estado do Texas, e que proporciona uma primeira aproximação para hidrogramas de
ondas de cheias para bacias hidrográficas de qualquer área, embora seja mais adequado para áreas de
drenagem compreendidas entre 920 e 525.000Km2.
Figura 8.21 – Hidrograma unitário de Commons
O tempo de base do hidrograma é dividido em 100 unidades de tempo (UT); a altura, em 60
unidades de vazão (UQ) e a área sobre a curva mede 1196,5 unidades de área (UA).
Podemos seguir dois procedimentos para o traçado de hidrograma de Commons:
1. Qp Conhecida
· UQ = ( )sm 
60
Q 3p /
· UA = ( )2tt m emA x A 0,01 Vonde 51196
V
=
,
29Cap. 8 Escoamento Superficial
 h = cm
 A = Km2
 Qp = m
3/s
· UT = (horas) 
U x 3600
U
Q
A
 ou
· UT = (horas) 
Q
 x Ah x 1390
P
,
2. tb conhecido
· UT = 
100
tb (horas)
· UA = 
1196,5
 x Ah
 h = (m)
 A = (m2)
· UQ = /s)(m 3600
UT
UA 3/
Exemplo numérico
Para um deflúvio direto de 10mm sobre dada bacia hidrográfica com área total de 100Km2 e com
uma vazão de pico de 9m3/s calcular as unidades de vazão e de tempo, assim como o tempo de
ascensão e o tempo de base do hidrograma de Commons.
Solução:
· (UQ) = /sm 150
60
9
 
60
Q 3p ,==
· (UT) = 
Q
 x A h x 1390
p
,
(horas)
· (UT) = horas 1,54
9
100 x 1 x 1390
=
,
· tp = 100 (UT) = 100 x 1,54 = 154 horas.
Para a obtenção do hidrograma sintético de Commons basta substituir os fatores de conversão de
escala encontrados acima no hidrograma admensional.
30Cap. 8 Escoamento Superficial
6.2.6.3MÉTODO DE SOIL CONSERVATION SERVICE (SCS) (HIDROGRAMA UNITÁRIO TRIANGULAR)
O Soil Conservation Service propôs a elaboração de um hidrograma unitário sintético a partir de
um admensional, requerendo tão somente a determinação da vazão de pico e do tempo em que ela
ocorre.
O processo consiste, então, dos seguintes passos:
1. Cálculo do tempo de pico (tp)
tp = 0,5 tr + 0,6 tc (horas)
onde,
tp = tempo de pico (h)
tr = tempo de duração da chuva (h)
* tc = tempo de concentração (h)
Recomenda-se a adoção de tr compreendido entre ¼ e 1/5 de tc. Posterior ajustamento a
duração pretendida pode ser efetuado, se necessário, através de técnicas já explanadas.
2. Calculo do tempo de base (tb)
tb = 2,67 x tp (horas)
3. Cálculo da vazão de pico (qp)
 qp = 
bt
 x AP x 2
 (m3/s)
onde,
P = precipitação efetiva (= 1mm)
A = área da bacia (Km2)
(*) No presente trabalho adotaremos a fórmula do Califórnia Highways and Public Roads.
31Cap. 8 Escoamento Superficial
38503
c H
L
 57t
,
÷
÷
ø
ö
ç
ç
è
æ
=
onde,
tC (min)
L = extensão do Rio Principal (Km)
H = máximo desnível ao longo de L (m)
Figura 8.22 – Hidrograma Unitário do SCS
4. Conversão do diagrama unitário triangular em um hidrograma unitário curvilíneo
definitivo
Esta conversão é feita com base no gráfico admensional, do qual extraímos valores das relações
t/tp e q/qp, apresentados na tabela abaixo.
Tabela 8.5 – Valores das relações t/ tp e q/qp tirados do gráfico admensional.
t/tp q/qp t/tp q/qp t/tp q/qp t/tp q/qp
0,0 0,000 0,7 0,77 1,4 0,75 2,6 0,13
0,1 0,015 0,8 0,89 1,5 0,66 2,8 0,098
0,2 0,075 0,9 0,97 1,6 0,56 3,0 0,075
0,3 0,16 1,0 1,00 1,8 0,42 3,5 0,036
0,4 0,28 1,1 0,98 2,0 0,32 4,0 0,018
0,5 0,43 1,2 0,92 2,2 0,24 4,5 0,009
0,6 0,60 1,3 0,84 2,4 0,18 5,0 0,004
32Cap. 8 Escoamento Superficial
Exemplo Numérico
Este exemplo é continuação do projeto de açude de Várzea alegre. No capítulo referente a
precipitação, foram calculadas as precipitações intensas de 1 e 24 horas e traçado a curva altura x
duração x freqüência para os períodos de retorno 100, 200 ,500 e 1000 anos.
Cálculo do hidrograma unitário
· Da planta na escala 1/100.000 da SUDENE observe-se:
L = 21,5 Km
H = 220 m
· Tempo de concentração (tc)
38503
c H
L
 57t
,
÷
÷
ø
ö
ç
ç
è
æ
=
tc = 247,2 min = 4,1 horas
tc = 4,0 horas
· Duração da chuva (tr)
tr = 5
1
 tc
tr = 0,80 horas
· Tempo de pico (tp)
tp = 0,6 tc + 0,5 tr
tp = 2,80 horas
· Tempo de base (tb)
tb = 2,6 tp
tb = 7,5 horas
· Vazão de pico
fp = 
s 3600 x 57
m10 x 71,8 x m 0,001 x 2
t
 x AP x 2 26
b
e
,
=
fp = 5,3 m
3/s
33Cap. 8 Escoamento Superficial
Figura 8.23 – Hidrograma unitário calculado. (Fonte: AGUASOLOS)
Calculado o hidrograma unitário para uma chuva de 1mm e duração 0,8 horas (tc/5), deve-se
convertê-lo para um hidrograma correspondente a chuva de duração tc (4 horas) e alturas referentes a
vários períodos de retorno.
· Cálculo da precipitação efetiva
Na figura 8.20 do capítulo Precipitação (curva altura x duração x freqüência), achar as
precipitações referentes a uma duração de 4 horas para os vários períodos de retorno.
· Cálculo da precipitação efetiva através da fórmula do SCS:
PE = 
( )
2203N32020P
850N5080P 2
,/.
,/
-+
+-
Usando N = 73 (tabela deste capítulo) referente a campo permanente, em condições naturais
e solo “C”.
Tabela 8.6 – Precipitação efetiva para período de retorno
de 100, 200 ,500 e 1000 anos em Várzea
Alegre (mm)
Tr (anos) PE (mm)
100 38,4
200 43,5
500 48,7
1000 52,5
34Cap. 8 Escoamento Superficial
· Cálculo do hidrograma afluente
Etapa 1: Cálculo do hidrograma para uma chuva de duração de 4 horas e altura de chuva
efetiva igual a 5mm
Figura 8.24 – Hidrograma para uma chuva efetiva de 5 mm e de
duração igual a 4,0 h (tempo de concentração da bacia)
Açude Várzea Alegre. (Fonte: AGUASOLOS)
35Cap. 8 Escoamento Superficial
Etapa 2: Cálculo do hidrograma para chuvas de período de retorno de 100, 200, 500 e 1000
anos multiplicando-se as ordenadas do hidrograma obtido na etapa 1 pela relação
PE (T)/5.
Tabela 8.7 – Hidrogramas afluentes ao açude Várzea Alegre para períodos de retorno de 100, 200, 500
e 1000 anos. (Fonte: AGUASOLOS).
 VALORES DE Q em m3/s
PERÍODOS DE RETORNO (ANOS)
TEMPO(h) 100 200 500 1000
0 0 0 0 0
1 17,7 20,0 22,4 24,2
2 52,2 59,2 66,2 71,4
3 101,4 114,8 128,6 138,6
4 137,5 155,7 174,3 188,0
5 163,6 185,3 207,5 223,7
6 163,6 185,3 207,5 223,7
7 135,2 153,1 171,4 184,8
8 84,5 95,7 107,1 115,5
9 45,3 51,3 57,5 62,0
10 19,2 21,8 24,4 26,3
11 4,6 5,2 5,8 6,3
12 0,0 0,0 0,0 0,0
36Cap. 8 Escoamento Superficial
Figura 8.25 – HidrogramaS para chuva de período de retorno de 100,
200, 500 e 1000 anos. Açude Várzea Alegre. (Fonte:
AGUASOLOS)
37Cap. 8 Escoamento Superficial
3. PERÍODO DE RETORNO
A cheia de projeto está associada a um período de retorno (tr), que é o tempo médio em anos o evento
é igualado ou superado pelo menos uma vez.
Na adoção do Tr das enchentes, são utilizados alguns critérios, tais como (VILLELA, 1975):
· vida útil da obra
· tipo de estrutura
· facilidade de reparação e ampliação
· perigo de perda de vida.
Outro critério para a escolha do Tr é a fixação do risco que se deseja correr da obra falhar dentro de sua
vida útil.
· Probabilidade do evento ocorrer no período de retorno
 P = 1/Tr
· Probabilidade do evento não ocorrer no período de retorno
 P = 1 – P
· Probabilidade do evento não ocorrer dentro de (n) quaisquer anos do período de retorno.
 J = Pn
· Probabilidade do evento ocorrer dentro de (n) quaisquer anos do período de retorno (RISCO
PERMISSÍVEL).
 K = 1 - Pn
 K = 1 – (1 - P)n
 K = 1 – (1 – 1/tr)n
 Ou ainda
38Cap. 8 Escoamento Superficial
 Tr = 1 (tabelado)
 1 – (1 – K)1/n

Outros materiais