Buscar

Radiação cósmica de fundo em micro-ondas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 5 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Continue navegando


Prévia do material em texto

Radiação cósmica de fundo em micro-ondas
Em Cosmologia, a radiação cósmica de fundo em
micro-ondas é uma forma de radiação eletromagnética,
cuja existência foi prevista teoricamente por George Ga-
mov, Ralph Alpher e Robert Herman em 1948, e que foi
descoberta experimentalmente em 1965 por Arno Pen-
zias e Robert Woodrow Wilson. Ela se caracteriza por
apresentar um espectro térmico de corpo negro com in-
tensidademáxima na faixa demicro-ondas. Basicamente,
a radiação cósmica de fundo em micro-ondas é o fóssil
da luz, resultante de uma época em que o Universo era
quente e denso, apenas 380 mil anos após o Big Bang[1].
A radiação cósmica de fundo em micro-ondas é, ao lado
do afastamento das galáxias e da abundância de elemen-
tos leves, uma das mais fortes evidências observacionais
do modelo do Big Bang, que descreve a evolução do
universo.[2] Penzias e Wilson receberam o Nobel de Fí-
sica em 1978 por essa descoberta.[3]
1 Características
Imagem WMAP (Wilkinson Microwave Anisotropy Probe) da
anisotropia da radiação cósmica de fundo em micro-ondas.
(Março de 2006)
A radiação cósmica de fundo em micro-ondas é uma ra-
diação eletromagnética que preenche todo o universo,
cujo espectro é o de um corpo negro a uma tempera-
tura de 2,725 kelvin. Ela tem uma freqüência de pico
de 160,4 GHz, o que corresponde a um comprimento
de onda de 1,9 mm. Ela é isotrópica até uma parte em
100 000: as variações de seu valor eficaz são de somente
18 µK.[4] O Far-Infrared Absolute Spectrophotometer (FI-
RAS), um instrumento no satélite COsmic Background
Explorer (COBE) da NASA, mediu cuidadosamente o
espectro da radiação cósmica de fundo, o que o tornou
a medida mais precisa de um espectro de corpo negro de
todos os tempos.[5]
O ruído provocado por essa radiação está presente em
cerca de 1% no funcionamento dos nossos aparelhos elé-
tricos. Este ruído pode ser compreendido como um “fós-
sil” de uma época em que o universo era muito novo.[6]
A radiação cósmica de fundo emmicro-ondas é uma pre-
dição da teoria do Big Bang. Segundo essa teoria, o
universo inicial era composto de um plasma quente de
fótons, elétrons e bárions. Os fótons interagiam cons-
tantemente com o plasma através do Efeito Compton.
À medida que o universo se expandia, o desvio para o
vermelho cosmológico fazia com que o plasma esfriasse
até que fosse possível aos elétrons combinarem-se com
os núcleos atômicos de hidrogênio e hélio para formarem
átomos. Isso aconteceu por volta de 3000 K, ou quando o
universo tinha aproximadamente 380 000 anos de idade
(z=1088). Nesse momento, os fótons puderam começar a
viajar livremente pelo espaço. Esse processo é chamado
“recombinação”.
Os fótons continuaram a esfriar desde então, atingindo
a temperatura de 2,7 K, e essa temperatura continuará
a diminuir enquanto o universo continuar a se expandir.
Assim, a radiação do espaço que se mede hoje é oriunda
de uma superfície esférica, chamada superfície de última
difusão, que representa a coleção de pontos no espaço (a
cerca de 46 bilhões de anos-luz da Terra, ver universo
observável) na qual ocorreu o processo de recombinação
descrito acima, há 13,7 bilhões de anos, e cujos fótons
chegam agora na Terra.
A teoria do Big Bang sugere que a radiação cósmica de
fundo preenche todo o espaço observável, e que a maior
parte da energia do universo está na radiação cósmica de
fundo emmicro-ondas, que constitui uma fração de apro-
ximadamente 5×10−5 da densidade total do universo.[7]
Dois dos maiores sucessos da teoria do Big Bang são suas
predições do seu espectro de corpo negro praticamente
perfeito e sua detalhada predição das anisotropias na ra-
diação cósmica de fundo em micro-ondas. A recente
sondaWilkinsonMicrowave Anisotropy Probe (WMAP)
mediu com precisão essas anisotropias através de todo
o céu até escalas angulares de 0,2 graus.[8] Elas podem
ser utilizadas para estimar os parâmetros do modelo pa-
drão Lambda-CDM do Big Bang. Algumas informações,
como a forma do universo, podem ser obtidas direta-
mente da radiação cósmica de fundo, enquanto outras,
como a constante de Hubble, não são óbvias e precisam
ser inferidas de outras medidas.[9]
1
2 3 VER TAMBÉM
2 História
A radiação cósmica de fundo emmicro-ondas foi prevista
por George Gamov, Ralph Alpher e Robert Herman em
1948. Além disso, Alpher e Herman foram capazes de
estimar a temperatura dessa radiação como sendo de 5
K.[10] Apesar de que existissem diversas estimativas ante-
riores da temperatura do espaço, essas sofriam de diver-
sos inconvenientes. Primeiramente, elas eram medidas
da temperatura efetiva do espaço, e não sugeriam que o
espaço fosse repleto com um espectro de Planck térmico;
segundo, elas eram dependentes da nossa posição especí-
fica na beira da Via Láctea e não sugeriam que a radiação
fosse isotrópica. Além disso, elas levariam a predições
completamente diferentes se a Terra estivesse localizada
em um outro lugar do Universo.[11]
Os resultados de Gamov não foram amplamente discu-
tidos. No entanto, eles foram redescobertos por Robert
Dicke e Yakov Zel'dovich no início da década de 1960.
Em 1964, isso incentivou David Todd Wilkinson e Peter
Roll, colegas de Dicke na Universidade de Princeton, a
começar a construção de um radiômetro Dicke a fim de
medir a radiação cósmica de fundo.[12] Em 1965, Arno
Penzias e Robert Woodrow Wilson, do Bell Telephone
Laboratories perto de Holmdel, New Jersey, construíram
um radiômetro Dicke que pretendiam utilizar para expe-
riências de radioastronomia e comunicação via satélite.
O instrumento deles tinha um ruído térmico excessivo de
3,5 K que eles não podiam explicar, e após diversos tes-
tes Penzias se deu finalmente conta que aquele ruído nada
mais era do que a radiação prevista por Gamov, Alpher e
Herman e mais tarde por Dicke. Após receber um telefo-
nema de Penzias, Dicke disse a famosa frase: “Gente, nos
passaram para trás (Boys, we've been scooped)".[13] Uma
reunião entre as equipes de Princeton e Holmdel deter-
minou que o ruído da antena era devido efetivamente à
radiação cósmica de fundo. Penzias e Wilson receberam
o Prêmio Nobel de Física de 1978 pela descoberta.
Melhoramentos sucessivos das observações das anisotropias (ou
flutuações) da radiação cósmica de fundo em micro-ondas
A interpretação da radiação cósmica de fundo em micro-
ondas foi um assunto controverso nos anos 1960, com
alguns defensores da teoria do estado estacionário argu-
mentando que a radiação de fundo era o resultado da di-
fusão de luz estelar de outras galáxias. Usando esse mo-
delo, e baseando-se no estudo de características da linha
de absorção no espectro de estrelas[nota 1], o astrônomo
Andrew McKellar escreveu em 1941: “Pode-se calcular
que a temperatura rotacional do espaço interestelar é de
2 K.”[15] No entanto, durante a década de 1970, o con-
senso foi estabelecido que a radiação cósmica de fundo é
um resquício do Big Bang. Isso ocorreu principalmente
porque novas medidas em uma gama de freqüências mos-
traram que o espectro era um espectro térmico, de corpo
negro, um resultado que o modelo de estado estacionário
foi incapaz de reproduzir.
Harrison, Peebles e Yu, e Zel'dovich deram-se conta que
o universo primordial deveria ter heterogeneidades a ní-
vel de 10−4 ou 10−5.[16] Rashid Sunyaev mais tarde cal-
culou a marca observável que essas heterogeneidades te-
riam na radiação cósmica de fundo.[17] Limites crescen-
tes na anisotropia da radiação cósmica de fundo foram
colocados através de experiências, mas a anisotropia foi
detectada pela primeira vez pelo Differential Microwave
Radiometer (Radiômetro de microondas diferencial) do
satélite COBE.[18]
Inspiradas pelos resultados obtidos pelo COBE, uma sé-
rie de experiências de solo e baseadas em balões medi-
ram as anisotropias da radiação cósmicade fundo em es-
calas angulares inferiores ao longo da década seguinte.
O objetivo principal dessas experiências era medir a es-
cala do primeiro pico acústico, que COBE não tinha
resolução suficiente para resolver. O primeiro pico na
anisotropia foi detectado por tentativas pela experiência
Toco e o resultado foi confirmado pelos experimentos
BOOMERanG e MAXIMA.[19] Essas medidas demons-
traram que o universo é plano e foram capazes de indicar
a teoria de string cósmico como uma teoria de formação
da estrutura cósmica, e sugeriram que a Inflação cósmica
é a teoria correta de formação estrutural.
O segundo pico foi detectado por tentativas por diver-
sas experiências antes de ser definitivamente detectado
pelo WMAP, que também detectou por tentativas o ter-
ceiro pico. A polarização da radiação cósmica de fundo
foi primeiramente descoberta pelo Degree Angular Scale
Interferometer (DASI).[20] Várias experiências para me-
lhorar as medidas da polarização da radiação cósmica
de fundo em pequenas escalas angulares estão em anda-
mento. Estas incluem DASI, WMAP, BOOMERanG e o
Cosmic Background Imager. Outras experiências incluem
a sonda Planck, o Telescópio cosmológico de Atacama e
o Telescópio do Polo Sul.
3 Ver também
• BICEP2
3
• Big Bang
• COBE
• WMAP
4 Ligações externas
4.1 Missões
• Site da missão COBE (em inglês)
• Site da missão Archeops (em inglês)
• Site da missão BOOMERANG (em inglês)
• Site da missão WMAP (em inglês)
4.2 Resultados
• The Cosmic Microwave Background Spectrum (em
inglês), por George F. Smoot
• The CMB Dipole: The Most Recent Measurement
And Some History (em inglês), por Charles H. Li-
neweaver
• A catalog of galaxies behind the Southern Milky
Way (em inglês), por R.C. Kraan-Korteweg
• The Cosmic Microwave Background Anisotropy
Experiments (em inglês) (pre BOOMERANG) por
George F. Smoot
4.3 Aspectos cosmológicos
• A física das anisotropias da radiação cósmica de
fundo em micro-ondas (em inglês)
5 Notas
[1] As observações da polarização de Planck da radiação cós-
mica, em 2015, nos dizem que a “Idade das Trevas” ter-
minou cerca de 550 milhões de anos após o Big Bang -
mais de 100 milhões de anos mais tarde do que se pen-
sava anteriormente.[14]
6 Referências
[1] European Space Agency (5 de fevereiro de 2015).
Cosmology: First stars were born much later than thought
ScienceDaily. Visitado em 7 de fevereiro de 2015.
[2] Kolb, Edward; TURNER, Michael. The Early Universe
(em inglês). Reading: Addison-Wesley, 1994. p. 14-16.
ISBN 0-201-62674-8
[3] The Nobel Prize in Physics 1978 (em inglês) Fundação
Nobel. Visitado em 3 de março de 2012.
[4] Isso ignora a anisotropia dipolar, que é devida ao efeito
Doppler da radiação de fundo causado pela nossa velo-
cidade relativa ao resto do cosmos. Essa característica é
consistente com o movimento da Terra a 380 km/s em
direção da constelação de Virgo.
[5] D. J. Fixen et al., “The Cosmic Microwave Background
Spectrum from the full COBE FIRAS data set”, Astrophy-
sical Journal 473, 576–587 (1996).
[6] VILLELA NETO, Thyrso. (dezembro de 2009). “A ra-
diação cósmica de fundo - O ruído do universo”. Ciência
Hoje 45 (266): 28-33. ICH.
[7] A densidade de energia de um espectro de corpo negro
é pik2BT 4/15(~c)3 , onde T é a temperatura, 'kB é a
constante de Boltzmann, ~ é a constante de Planck e c
a velocidade da luz no vácuo. Isso pode ser relacionado
à densidade crítica do universo através dos parâmetros do
modelo Lambda-CDM.
[8] Astrophysical Journal Supplement, 148 (2003). Em parti-
cular, G. Hinshaw et al. “First-year Wilkinson Microwave
Anisotropy Probe (WMAP) observations: the angular
power spectrum”, 135–159.
[9] D. N. Spergel et al., “First-year Wilkinson Microwave
Anisotropy Probe (WMAP) observations: determination
of cosmological parameters”, Astrophysical Journal Sup-
plement 148, 175–194 (2003).
[10] G. Gamow, “The Origin of Elements and the Separation
of Galaxies,” Physical Review 74 (1948), 505. G. Gamow,
“The evolution of the universe”, Nature 162 (1948), 680.
R. A. Alpher andR. Herman, “On the RelativeAbundance
of the Elements,” Physical Review 74 (1948), 1577.
[11] A. K. T. Assis, M. C. D. Neves, “History of the 2.7 K
Temperature Prior to Penzias and Wilson,” (1995, PDF |
HTML) mas veja também N. Wright, “Eddington did not
predict the CMB”, .
[12] R. H. Dicke, “The measurement of thermal radiation at
microwave frequencies”, Rev. Sci. Instrum. 17, 268
(1946). Esse projeto básico para um radiômetro foi utili-
zado na maioria das experiências posteriores implicando
a radiação cósmica de fundo.
[13] A. A. Penzias and R. W. Wilson, “A Measurement of Ex-
cess Antenna Temperature at 4080 Mc/s,” Astrophysical
Journal 142 (1965), 419. R. H. Dicke, P. J. E. Peebles, P.
G. Roll and D. T. Wilkinson, “Cosmic Black-Body Radi-
ation,” Astrophysical Journal 142 (1965), 414. A história
é contada em P. J. E. Peebles, Principles of physical cos-
mology (Princeton Univ. Pr., Princeton 1993)
[14] European Space Agency (5 de fevereiro de 2015).
Cosmology: First stars were born much later than thought
ScienceDaily. Visitado em 7 de fevereiro de 2015.
[15] A. McKellar, Publ. Dominion Astrophys. Obs. 7, 251.
4 6 REFERÊNCIAS
[16] E. R. Harrison, “Fluctuations at the threshold of classical
cosmology,” Phys. Rev. D1 (1970), 2726. P. J. E. Pee-
bles and J. T. Yu, “Primeval adiabatic perturbation in an
expanding universe,” Astrophysical Journal 162 (1970),
815. Ya. B. Zel'dovich, “A hypothesis, unifying the struc-
ture and entropy of the universe,” Monthly Notices of the
Royal Astronomical Society 160 (1972).
[17] R. A. Sunyaev, “Fluctuations of the microwave back-
ground radiation,” in Large Scale Structure of the Universe
ed. M. S. Longair and J. Einasto, 393. Dordrecht: Rei-
del 1978. Enquanto esta é a primeira publicação a discu-
tir a marca observável das heterogeneidades de densidade
como anisotropias na radiação cósmica de fundo, parte do
trabalho de base baseava-se em Peebles e Yu, acima.
[18] G. F. Smoot et al. “Stucture in the COBE DMR first year
maps”, Astrophysical Journal 396 L1–L5 (1992). C. L.
Bennett et al. “Four year COBE DMR cosmic microwave
background observations: maps and basic results.”, As-
trophysical Journal 464 L1–L4 (1996).
[19] A. D. Miller et al., “A measurement of the angular power
spectrum of the cosmic microwave background from l =
100 to 400”, Astrophysical Journal 524, L1–L4 (1999).
A. E. Lange et al., “Cosmological parameters from the
first results of Boomerang”. P. de Bernardis et al., “A
flat universe from high-resolution maps of the cosmic mi-
crowave background”, Nature 404, 955 (2000). S. Ha-
nany et al. “MAXIMA-1: A measurement of the cos-
mic microwave background anisotropy on angular scales
of 10'−5°", Astrophysical Journal 545 L5–L9 (2000).
[20] J. Kovac et al., “Detection of polarization in the cosmic
microwave background using DASI”, Nature 420, 772-
787 (2002).
5
7 Fontes, contribuidores e licenças de texto e imagem
7.1 Texto
• Radiação cósmica de fundo em micro-ondas Fonte: http://pt.wikipedia.org/wiki/Radia%C3%A7%C3%A3o_c%C3%B3smica_de_
fundo_em_micro-ondas?oldid=41327344 Contribuidores: Mschlindwein, RobotQuistnix, Renatomcr, OS2Warp, LijeBot, Thijs!bot,
JAnDbot, Thiago Guimarães, Py4nf, TXiKiBoT, VolkovBot, SieBot, YonaBot, Kaktus Kid, Chronus, Maañón, PixelBot, BOTarate, Alex-
bot, BodhisattvaBot, ChristianH, Luckas-bot, LaaknorBot, Ptbotgourou, GoeBOThe, Yonidebot, ArthurBot, DumZiBoT, Xqbot, Onjack-
tallcuca, LucienBOT, RibotBOT, RedBot, TobeBot, Drysh, Rjbot, Alch Bot, TjBot, EmausBot, ZéroBot, WikitanvirBot, AvocatoBot,
Luizpuodzius, JYBot, Addbot, Gherzog, Custocampos e Anónimo: 7
7.2 Imagens• Ficheiro:BigBangNoise.jpg Fonte: http://upload.wikimedia.org/wikipedia/commons/6/62/BigBangNoise.jpg Licença: Public domain
Contribuidores: map.gsfc.nasa.gov/m ig/030644/030644.html Artista original: NASA
• Ficheiro:WMAP.jpg Fonte: http://upload.wikimedia.org/wikipedia/commons/a/a5/WMAP.jpg Licença: Public domain Contribuidores:
? Artista original: ?
7.3 Licença
• Creative Commons Attribution-Share Alike 3.0
	Características 
	História 
	Ver também 
	Ligações externas 
	Missões 
	Resultados 
	Aspectos cosmológicos 
	Notas
	Referências
	Fontes, contribuidores e licenças de texto e imagem
	Texto
	Imagens
	Licença