Buscar

UFRJ-cap2-coesao

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 18 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

10 
2. Coesão Cristalina 
 
2.1 - Introdução 
 
 Neste capítulo, iniciamos nosso estudo dos sólidos cristalinos1 tentando responder 
a uma pergunta simples: por que átomos isolados se unem para formar sólidos? A 
resposta também parece simples: devido à atração eletrostática entre elétrons negativos e 
núcleos positivos. De fato, interação Coulombiana e Mecânica Quântica são suficientes 
para explicar a coesão cristalina2. Porém, esta aparente simplicidade esconde uma imensa 
riqueza e variedade de maneiras pelas quais os átomos se ligam entre si para formar um 
sólido. Neste capítulo, iremos explorar estas diferentes manifestações da coesão cristalina 
tendo como guia a Tabela Periódica dos elementos, auxiliar indispensável de um físico de 
Matéria Condensada. Neste passeio pela Tabela Periódica, ficará clara a conexão entre a 
estrutura eletrônica dos átomos e as formas de coesão cristalina. 
 
 
 
2.2 - Cristais de Gases Nobres: A Interação de Van der Waals 
 
 Começamos pela coluna VIII da Tabela Periódica, a dos chamados gases nobres 
ou inertes. Estes elementos possuem a última camada eletrônica totalmente preenchida e 
preferem mantê- la assim, ou seja, permanecem com sua estrutura eletrônica praticamente 
inerte ou inalterada mesmo na presença de outros átomos. Neste sentido eles forma m o 
tipo mais simples de sólido, essencialmente uma coleção de átomos neutros, cada qual 
com sua nuvem eletrônica esférica original. 
 Como então esses átomos neutros se atraem para formar um sólido? A explicação 
está na chamada interação dipolo-dipolo flutuante, ou interação de Van der Waals (ou 
ainda interação de London). Em mecânica quântica, dizer que um átomo possui uma 
distribuição esférica de carga eletrônica só faz sentido em termos de média temporal: 
flutuações quânticas produzem dipolos elétricos instantâneos nos átomos, que por sua vez 
induzem a formação de dipolos nos átomos vizinhos. A interação entre estes dipolos 
causa uma atração entre os átomos. 
 
 
 
 
1
 A definição do conceito de cristal ou sólido cristalino será feita de forma mais precisa no próximo 
capítulo. Por ora, basta dizer que um sólido cristalino é aquele onde os átomos se organizam 
geometricamente de maneira o rdenada. 
2
 Interações magnéticas contribuem pouco para a coesão e interações gravitacionais podem ser totalmente 
desprezadas. 
 
 11 
 
 
 
 
 
 
 
 
 
Vejamos como isto funciona de forma mais detalhada. Considere dois átomos (1 e 
2) separados por uma distância r. Em um dado instante, uma flutuação quântica produz 
um momento de dipolo elétrico p1 no átomo 1. Este dipolo irá gerar um campo elétrico E 
proporcional a p1/r
3 na posição do átomo 2. Este campo elétrico, por sua vez, irá 
polarizar o átomo 2, induzindo- lhe um momento de dipolo p2 proporcional ao campo 
elétrico: 
 
3
1
2
r
p
Ep

 
, 
 
onde  é a polarizabilidade do átomo em questão. A energia de interação entre os dois 
dipolos p1 e p2 é proporcional ao produto de ambos dividido pelo cubo da distância entre 
eles: 
 
6
2
1
3
21
r
p
r
pp
U


. 
 
O sinal negativo indica que a interação é atrativa. 
 Existe portanto, a longas distâncias, uma interação atrativa entre os átomos e que 
decai com r-6. Esta é a chamada interação de Van der Waals, importante não apenas em 
sólidos de gases nobres como também em outros sistemas moleculares. Apesar de termos 
usado, na demonstração acima, argumentos puramente clássicos (exceto um! Qual?), a 
origem da interação de Van der Waals é intrinsicamente quântica, e uma demonstração 
mais rigorosa da dependência com r-6 será feita no Problema 1 da Lista 1. Uma interação 
desta forma justifica o termo de correção à pressão na equação de estado de Van der 
Waals, cuja descoberta, como já vimos, valeu ao físico holandês o Nobel de física em 
1910. É uma interação fraca (se comparada às outras interações que veremos neste 
capítulo), o que explica os baixos pontos de fusão e energias de coesão dos gases nobres 
(Tabela 2.1). 
 
 
 
 
 
 
 
 
(2.1) 
(2.2) 
p1 
p2 
r 
Figura 2.1 - Representação clássica de dois átomos neutros interagindo através de seus dipolos (um 
flutuante e o outro induzido). Os círculos brancos representam os núcleos, e os círculos pretos representam 
a posição instantânea média dos elétrons. 
 12 
 
 
Elemento Distância 
Interatômica 
(Å) 
Energia de 
Coesão 
(eV/átomo) 
Ponto de 
Fusão 
(K) 
Parâmetros de Lennard-Jones 
   
 (10-4 eV) (Å) 
He líquido a T=0K e pressão nula 8,7 2,56 
Ne 3,13 0,02 24 31 2,74 
Ar 3,76 0,080 84 104 3,40 
Kr 4,01 0,116 117 140 3,65 
Xe 4,35 0,17 161 200 3,98 
 
 
Quando os átomos se aproximam de tal modo que as funções de onda eletrônicas 
começam a se superpor (overlap), uma interação repulsiva começa a ser importante. A 
origem desta interação é um efeito combinado da chamada repulsão de overlap, da 
repulsão Coulombiana entre os elétrons das camadas mais externas e o Princípio de 
Exclusão de Pauli. Veremos isto em maior detalhe na Seção 2.3, quando tratarmos das 
ligações covalentes. 
 Não há uma forma analítica exata para o termo repulsivo. Resultados numéricos 
podem ser obtidos por cálculos de primeiros princípios, mas, em geral, formas empíricas 
simples podem ser utilizadas com sucesso. A mais popular delas é uma lei de potência 
repulsiva proporcional a 
121 r
, que, combinado ao termo atrativo de van der Waals, dá 
origem ao chamado potencial de Lennard-Jones: 
 





















612
4)(
rr
rvLJ

 . 
 
Os dois parâmetros livres do potencial, e  são em geral ajustados para 
reproduzir propriedades destes materiais no estado gasoso. Os parâmetros para os 
diversos gases nobres estão listados na Tabela 2.1, e um gráfico do potencial para átomos 
de Ar está mostrado na Fig. 2.2. O potencial de Lennard-Jones tem a forma típica de 
basicamente todos os potenciais interatômicos: atrativo a longas distâncias, repulsivo a 
curtas distâncias, com um mínimo que indica a distância de equilíbrio entre dois átomos. 
Por isso, e por sua simplicidade analítica, o potencial de Lennard-Jones é bastante 
utilizado em simulações do movimento atômico, conhecidas como simulações de 
dinâmica molecular. 
 Um dado interessante da Tabela 2.1 é o comportamento do elemento He. O hélio 
não se solidifica, mesmo a temperatura de zero absoluto 3. A origem deste efeito está no 
chamado movimento de ponto-zero: há energia cinética mesmo a temperatura zero, um 
efeito intrinsicamente quântico. 
 
 
 
 
3
 Pode-se obter He sólido somente aplicando pressão hidrostática. 
TABELA 2.1 – Alguns parâmetros estruturais dos sólidos de gases nobres. 
Fonte: Kittel, p. 60 
(2.7) 
 13 
 
 
 
 
 
 Como dissemos antes, a interação de van der Waals leva este nome porque 
contém os ingredientes que justificam a chamada equação de estado do gás de Van der 
Waals4. Esta equação foi proposta por J. D. van der Waals em sua tese de doutorado em 
1873 e é a maneira mais simples de se descrever gases não-ideais e transições de fases: 
 
  RTbv
v
a
p 






2
, 
 
onde p é a pressão e v é o volume molar. Os ingredientes são precisamente um potencial 
fortemente repulsivo a curtas distâncias (responsável pelo termo de volume excluído do 
potencial) e fracamente atrativo a longas distâncias (responsável pela correção na 
pressão), que estão contidos no potencialde Lennard-Jones, por exemplo. Mas os 
expoentes 6 e 12 dos termos atrativo e repulsivo deste potencial não são os únicos a 
reproduzir a equação de Van der Waals, esta é razoavelmente independente da forma 
analítica específica do potencial interatômico. 
 
 
 
 
 
 
4
 Os gases não-ideais ou de Van der Waals são estudados no curso de Termodinâmica. Uma boa referência 
é o livro de F. Reif, Fundamentals of Statistical and Thermal Physics, (McGraw-Hill, 1988). 
0 1 2 3 4 5 6 7
-0.01
0.00
0.01
0.02
U
 (e
V
)
R (A)
Figura 2.2 – Potencial de Lennard-Jones para o argônio. Repare o curto alcance do potencial atrativo, 
quando comparado à região “excluída” devido ao forte potencial repulsivo. 
(2.8) 
 14 
2.3 - Energia de coesão, parâmetro de rede de equilíbrio e 
módulo de bulk 
 
 A energia de coesão, o volume de equilíbrio e o módulo de bulk são três 
quantidades importantes associadas à coesão cristalina. Define-se a energia de coesão 
como a diferença entre a energia do conjunto de átomos isolados que compõem um sólido 
e a energia do sólido. É conveniente definir a energia de coesão por átomo, de modo que 
ela tenha um valor finito mesmo quando tomamos o limite termodinâmico (número 
infinito de átomos). 
 Quando for possível escrever, ainda que de forma aproximada, a energia total do 
sólido como a soma de interações entre pares de átomos, o cálculo dessa quantidade se 
simplifica. Este é o caso, por exemplo, dos cristais de átomos de gases nobres que 
interagem entre si pelo potencial de Lennard-Jones. Desta forma a energia potencial por 
átomo U de um sistema contendo N átomos é: 
 



ji
ijLJ
ij
ijLJ rv
N
rv
N
U )(
2
1
)(
1
 . (2.8) 
 
A notação 
 ij
 indica o somatório por todos os pares de átomos ij. Já o segundo 
somatório indica a soma dupla independente por i e j, com a restrição i ≠ j e o fator ½ 
compensa a contagem dupla de pares. Se o número de átomos N tende a infinito e se os 
átomos estão arranjados de forma periódica (como veremos de maneira mais rigorosa no 
próximo capítulo), então cada átomo "enxerga" exatamente a mesma vizinhança local que 
todos os demais. Desta forma, podemos contabilizar a energia potencial por átomo 
escolhendo um átomo central (por exemplo i = 0) e somando por todos os vizinhos j deste 
átomo central: 
 



N
j
jLJ rvU
1
)(
 , (2.9) 
 
onde rj

r0j é a distância do íon j ao átomo central (origem). Desprezando os efeitos 
quânticos, à temperatura zero, a energia cinética será nula, de modo que a energia de 
coesão será dada simplesmente pelo negativo da energia potencial (supondo, é claro, que 
o potencial de interação entre pares vai a zero no infinito). 
 
Figura 2.3 - Átomos arranjados segundo uma rede cúbica simples. 
 15 
Vamos considerar um exemplo em que os átomos de gases nobres estão organizados 
segundo uma rede cúbica simples, como mostrado na Fig. 2.35. Seja a a distância mínima 
entre dois átomos quaisquer, também chamada de parâmetro de rede. Podemos verificar 
que, neste caso, a energia potencial por átomo é: 
 
 )3(8)2(12)(6)( avavavaU LJLJLJ
 (2.10) 
 
O primeiro termo desta soma é a contribuição dos 6 vizinhos mais próximos do átomo 
central (primeiros vizinhos); o segundo termo representa a contribuição dos 12 segundos 
vizinhos, e assim por diante. Desta forma, fica explícito que a energia potencial é uma 
função do parâmetro de rede a. Se a pressão sobre o sistema também for nula, o sólido irá 
adotar o parâmetro de rede a0 que minimiza a energia potencial, ou seja, temos que impor 
a condição 
 
0
0

ada
dU
 . (2.11) 
 Sabendo que, no caso da rede cúbica, o volume ocupado por átomo é 
3av 
 
(verifique!), podemos, alternativamente, escrever a energia potencial como função do 
volume: U(v). Isto nos permite calcular a pressão hidrostática sobre o sólido a um volume 
qualquer: 
 
dv
dU
vp )(
 . (2.12) 
 
Além disso, a partir da derivada segunda da energia em relação ao volume, podemos 
calcular o módulo de bulk, ou módulo de compressibilidade volumétrica: 
 
00
02
2
00
vv
dv
dp
v
dv
Ud
vB 
. (2.13) 
 
O módulo de bulk, que tem dimensões de pressão, mede a resistência do sólido a sofrer 
variações de volume sob ação de uma pressão externa, ou seja, é uma medida da rigidez 
do sólido. A Tabela 2.2 mostra o módulo de bulk de alguns materiais (inclusive líquidos e 
gases). O diamante ainda é o material menos compressível da natureza, apesar de 
existirem propostas teóricas de novos materiais com módulos de bulk ainda maiores6. 
 
 
 
 
 
 
5
 Na verdade, veremos no próximo capítulo que este não é o arranjo mais favorável energeticamente para os 
sólidos de gases nobres. 
6
 "Prediction of New Low-Compressibility So lids", A. Y. Liu e M. L. Cohen, Science 245, 841 (1989). 
 16 
 
Tabela 2.2 - Módulo de bulk de alguns materiais.Fonte: Wikipedia. 
Material Módulo de bulk (Pa) 
Diamante 442 × 109 
Aço 160 × 109 
Vidro 35-55 × 109 
Água 2,2 × 109 
Ar 1,01 × 105 
 
 
2.4 - Cristais Iônicos 
 
 Investigaremos agora a coesão entre os átomos da coluna IA da Tabela Periódica 
(os chamados metais alcalinos) com os átomos da coluna VIIA (halogênios). Estes 
compostos, conhecidos como halogenetos alcalinos, são os protótipos de um tipo de 
ligação bastante importante em FMC, a ligação iônica. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consideremos o mais estudado destes compostos, o cloreto de sódio (NaCl), 
vulgarmente conhecido como “sal de cozinha”. O mecanismo de coesão neste material 
está esquematizado na Fig. 2.3. Considere um átomo de Na isolado (na fase gasosa). Sua 
configuração eletrônica é 1s22s22p63s1, ou seja, há um único elétron na camada mais 
externa. É razoavelmente fácil arrancar este elétron e formar um íon positivo Na+. O 
custo (energia de ionização) é de apenas 5,14 eV 7. Tome agora um átomo de Cl isolado, 
com sua configuração eletrônica 1s22s22p63s23p5. Com 7 elétrons na última camada, 
necessita de apenas mais um para formar um íon negativo Cl- de camada fechada. De 
fato, este elétron extra não custa nenhuma energia adicional, pelo contrário, o íon Cl- é 
mais estável do que o átomo neutro, de forma que a formação do íon libera uma energia 
de 3,61 eV (afinidade eletrônica). Esta energia, porém, não compensa a energia para 
formação do Na+, de tal modo que, até o momento, nosso balanço energético é negativo. 
 
7
 Analise na tabela periódica a energia de ionização dos diversos átomos. Note que os metais alcalinos são 
os átomos dos quais se pode mais facilmente arrancar um elétron. 
Na + 5,14 eV Na+ + e- 
 
 
e- + Cl Cl- + 3,61 eV 
 
 
Na+ + Cl- Na+ Cl- + 7,9 eV 
 
 
Figura 2.3 – Mecanismo de coesão dos cristais iônicos, exemplificado para o NaCl. Veja detalhes em 
Kittel, p. 67. 
 17 
Porém, este déficit energético, calculado a partir da ionização de cada íon isolado, é mais 
do que compensado pela atração eletrostática das espécies iônicas: ao trazermos os íons 
de Na+ e Cl- desde o infinito até a as posições que ocupam no cristal de NaCl há um 
ganhoenergético de 7,9 eV por par de íons. Portanto, a energia de coesão do NaCl a 
partir dos átomos neutros é de (7,9 - 5,1 + 3,6) = 6,4 eV (por par), o que representa uma 
coesão extremamente forte, típica dos cristais iônicos. Veja na Tabela 2.2 a energia de 
coesão dos diversos halogenetos alcalinos e compare com os valores da Tabela 2.1 para 
os sólidos de gases nobres. 
 
 
 
 Li Na K Rb Cs 
F 10,49 9,30 8,24 7,68 7,49 
Cl 8,61 7,93 7,18 6,93 
Br 8,24 7,55 6,87 6,62 
I 7,68 7,05 6,49 6,30 
 
Assim como nos cristais de gases nobres, a interação atrativa de Van der Waals e 
a repulsão devido ao Princípio de Exclusão também estão presentes em cristais iônicos, 
mas a atração eletrostática entre os íons é responsável pela maior parte da energia de 
coesão. A contribuição eletrostática para a energia de coesão é também conhecida como 
energia de Madelung, e seu cálculo nos põe em contato pela primeira vez com algumas 
sutilezas e dificuldades associadas ao potencial Coulombiano (
~ /1 r
). 
 Por simplicidade, consideremos um cristal iônico unidimensional de cargas 
iônicas +q e -q. O íons positivos e negativos se alternam na cadeia unidimensional 
infinita, como está mostrado na Fig. 2.4, e a distância entre íons é R. 
 
 
 
 
 
 
 
 
 
 
Queremos calcular a energia eletrostática deste sistema infinito de cargas iônicas. Cada 
par de íons contribui com uma energia de 
ij
rq 0
2 4
, onde o sinal + (-) corresponde a 
cargas de sinal igual (oposto) e rij é a distância entre as cargas. A energia potencial 
eletrostática por íon é portanto 
 




















0
2
0
2
0 4
1
4
1
2
1
j jji ij r
q
r
q
N
U 
 . 
 
 + + + + + + _ _ _ _ _ 
R 
Íon de referência 
Figura 2.4 - Cadeia unidimensional de íons separados por uma distância R. As linhas tracejadas marcam 
os limites das camadas neutras, úteis para cálculos rapidamente convergentes da constante de Madelung. 
Tabela 2.2 – Energia de coesão (em eV) de diversos halogenetos alcalinos a 
partir dos íons isolados. Fonte: Ashcroft, p. 406. 
(2.14) 
 18 
O segundo somatório envolve novamente a definição de um íon de referência (veja Fig. 
2.4) que escolhemos como origem, de modo que rj

r0j é a distância do íon j à origem. O 
índice j é um inteiro diferente de zero que vai de 
 
 a 

. Portanto, a energia por íon é 
 
R
q
jR
q
U
j


2
00
2
0 4
11
4
1


 

 , 
 
onde 
 



00 ||
11
jj j jr
R

 
 
é a chamada constante de Madelung. A primeira igualdade é a definição geral, enquanto 
que a segunda corresponde ao caso específico de nosso cristal 1D. Note que a constante 
de Madelung é um número adimensional específico da geometria da estrutura cristalina8 
em que os íons estão localizados, não dependendo das cargas dos íons q e nem mesmo da 
distância mínima entre os íons, R. Deve ser um número positivo se o cristal iônico é 
estável (
U  0
). Note ainda a mudança na convenção de sinal: + (-) corresponde agora a 
pares de cargas de sinal oposto (igual). 
Figura 2.5 – Convergência numérica da constante de Madelung, dependendo da maneira como os termos 
são somados. Os quadrados (convergência lenta) correspondem à soma expressa na Eq. (2.12), enq uanto os 
círculos (convergência rápida) correspondem à Eq. (2.13). 
 
 Vamos então calcular a constante de Madelung para o nosso cristal iônico 
unidimensional. Agrupando os termos +j e -j na soma, temos: 
 
 
8
 Aguarde a definição mais rigorosa deste conceito para o próximo capítulo. Por ora, entenda c omo 
estrutura cristalina o conjunto de posições espaciais que os íons ocupam. 
(2.15) 
(2.16) 
0 2 4 6 8 10
1.0
1.2
1.4
1.6
1.8
2.0
2 ln2

Termos
 19 
     



2
1
1
1
2
1
3
1
4

. 
 
Se tentássemos realizar numericamente esta soma exatamente na ordem descrita acima 
notaríamos uma convergência bastante lenta para o resultado final (Fig. 2.5). Para este 
caso simples unidimensional, a série pode ser somada exatamente usando-se a expansão 
ln( )1 2 32 3    x x x x 
, de modo que 
  2 2ln .
 Porém, em cristais de 2 ou 3 
dimensões a soma deve ser realizada numericamente, e aí nos deparamos com a 
dificuldade associada ao fato de que este tipo de série é condicionalmente convergente, 
significando que a convergência depende da ordem em que os termos são somados. 
 
Há um método bastante útil para convergir a soma rapidamente. O truque consiste 
em somar por camadas neutras do cristal, indicadas por linhas tracejadas na Fig. 2.4. A 
primeira camada inclui o íon de referência e metade de cada um dos vizinhos mais 
próximos de modo que a carga total da primeira camada é 
   1 1 2 1 2 0
. Para cada 
metade de carga inclui-se um fator adicional de ½. Considerando todas as células, 
obtemos 
 
    




   





   












1
1
1
1
1
2
1
2
1
3
1
3
1
4

 . 
 
Uma breve inspeção nos faz concluir que esta série é idêntica à da Eq. (2.11). O 
reagrupamento dos termos desta maneira, porém, permite uma rápida convergência da 
mesma, como mostrado na Fig. 2.5. Na lista de exercícios deste Capítulo, aplica-se o 
método de Madelung para um cristal bidimensional. 
 A Fig. 2.6 mostra a densidade eletrônica em um plano do cristal de NaCl. Nota-se 
que os íons são praticamente esféricos. 
 
Figura 2.6 - Densidade eletrônica em um p lano do cristal de NaCl. Fonte: Ashcroft e Mermim. 
(2.17) 
(2.18) 
 20 
Dissemos que, em um cristal iônico formado por elementos das colunas I-VII 
existe uma transferência de 1 elétron do cátion para o ânion. Na realidade, esta 
transferência eletrônica nunca é completa: quando os íons se juntam para formar o sólido, 
existe ainda uma certa probabilidade de que este elétron passe uma fração de seu tempo 
em orbitais do cátion. De fato, é impossível associar rigorosamente uma carga a um íon 
específico em um sólido ou molécula. No entanto, há algumas receitas que são usadas 
para estimar a quantidade fracionária de carga eletrônica que é transferida do cátion para 
o ânion9. Esta quantidade de carga está também associada à ionicidade ou caráter iônico 
de uma ligação química. A Tabela 2.3 apresenta o caráter iônico de vários compostos. 
Note que os halogenetos alcalinos apresentam uma ionicidade bem próxima de 1, 
indicando uma transferência quase completa de um elétron. 
 
 
Cristal Ionicidade Cristal Ionicidade Cristal Ionicidade 
Si 0,00 CdSe 0,70 AgBr 0,85 
SiC 0,18 CdTe 0,67 AgI 0,77 
Ge 0,00 InP 0,42 MgO 0,84 
ZnO 0,62 InAs 0,36 MgS 0,79 
ZnSe 0,62 InSb 0,32 MgSe 0,79 
ZnTe 0,63 GaAs 0,31 LiF 0,92 
CdO 0,79 GaSb 0,26 NaCl 0,94 
CdS 0,69 AgCl 0,86 RbF 0,96 
 
 
Consideremos agora os compostos II-VI, ou seja, formados por elementos das 
colunas IIA e VIA da Tabela Periódica (por exemplo, MgS, MgO, etc.). A Tabela 2.3 
mostra que estes compostos têm ionicidades menores que as dos halogenetos alcalinos. 
Isto ocorre porque os compostos II-VI apresentam menor diferença de 
eletronegatividades entre seus constituintes. Como regra geral, quanto menor a diferença 
entre eletronegatividades, menor a transferência de carga eletrônica. Deste modo, espera-
se que os compostos III-V (GaAs, InP, etc.) tenham ionicidade ainda menor, e que os 
sólidos formados por elementos do grupo IV (C, Si, Ge, etc) tenham ionicidade nula. Istoé confirmado pelos dados da Tabela 2.3 e está ilustrado pictoricamente na Fig. 2.7. 
Nestes compostos, um novo tipo de coesão, onde os elétrons são compartilhados ao invés 
de transferidos, passa a atuar: as ligações covalentes. 
 
 
 
 
 
 
 
 
 
 
9
 http://en.wikipedia.org/wiki/Partial_charge 
Tabela 2.3 – Ionicidade de vários materiais. Fonte: Kittel, p. 76. 
 21 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.5 - Ligações Covalentes 
 
 Ligações covalentes ocorrem em uma grande variedade de sólidos e moléculas. 
Entre os sólidos, os exemplos típicos são os elementos da coluna IVA (C, Si, Ge, Sn). 
Iniciaremos nosso estudo deste tipo de coesão pela molécula mais simples da natureza, a 
H
2

, composta por apenas 2 prótons e 1 elétron, como mostra a Fig. 2.7 (a). 
 No estado fundamental de um átomo de hidrogênio isolado, temos o único elétron 
ocupando o orbital atômico 1s. É razoável imaginar, portanto, que se os dois átomos de H 
estiverem bastante afastados um do outro, o único elétron deverá estar em um dos dois 
orbitais 1s. Isto faz com que estes dois orbitais, que denominamos 
1s
 e 
2s
, 
correspondendo aos átomos 1 e 2 que irão formar a molécula (Fig. 2.7(b)), representem 
uma boa escolha de base para descrevermos a função de onda 

 da molécula. Assim, 
fazemos o ansatz 
 
2211 susu 
 . 
 
 
Figura 2.7 – Desenho esquemático da distribuição espacial dos 8 elétrons de valência (por par de átomos) 
em NaCl, MgO, GaAs e Si. Note a mudança do regime de coesão, desde completamente iônico (NaCl), 
até completamente covalente (Si), passando por regimes intermediários onde a coesão é parcialmente 
iônica e parcialmente covalente. Ashcroft, p. 388. 
(2.19) 
Cl7
+ 
Cl7
+ 
Mg2+ 
O6+ Na
1+ 
Na1+ O6+ 
Mg2+ 
Ga3+ As5+ 
Ga3+ As5+ Si4+ 
Si4+ Si4+ 
Si4+ 
 22 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Os valores dos coeficientes u1 e u2 são obtidos minimizando-se a energia 

 H
E 
 com relação a 
1u
 e 
2u
, onde H é a Hamiltoniana do elétron na molécula. 
Encontram-se (lista de exercícios) dois auto-estados: 
 21)1(2
1
, ssSal  
, com energias 
SVVE sal  ,
. Para simplificar a discussão, vamos ignorar inicialmente o termo SV 
(repulsão de overlap), 
21 ssS 
. Isto corresponde, na prática, à aproximação S<<1, ou 
seja, overlap pequeno. O termo 
2211
sHssHss 
 é aproximadamente10 a 
energia do orbital 1s do hidrogênio e V é a energia covalente (a ser calculada também na 
lista de exercícios), e representa o decréscimo de energia associada à formação da ligação 
covalente. Portanto, o nível s se divide em dois, como mostra a Fig. 2.8(c), o de mais 
baixa energia conhecido como estado ligante e o de mais alta energia como estado anti-
ligante. Note que o estado fundamental (ligante) corresponde a um acúmulo de carga 
eletrônica na região entre os átomos, ao contrário do estado anti- ligante, que apresenta 
um mínimo de carga eletrônica (
2

). 
 
10
 A energia s é na verdade menor que a do estado 1s do H devido ao potencial atrativo do segundo núcleo. 
(a) 
e- 
H+ H+ 
1 2 
s1 s2 
(b) 
 21)1(2
1 ss
Sl



 
 21)1(2
1 ss
Sa



 
s 
s + V 
s - V 
(c) 
Ligante 
 
Figura 2.7 – Ligação covalente na molécu la de H

2
. Por simplicidade, estamos ignorando a repulsão de 
overlap, que será discutida mais adiante. 
Anti-ligante 
 23 
 O termo SV é positivo (S é positivo se as funções de onda têm o mesmo sinal). 
Representa portanto uma repulsão, e será tanto mais importante quanto maior for a 
superposição entre os orbitais atômicos, ou seja, quanto menor for a distância entre os 
átomos. Esta é a chamada "repulsão de overlap" e tem origem puramente quântica. Note 
que está presente mesmo que o sistema tenha apenas um elétron, como no caso da 
molécula de H
2

, ou seja, pode ser claramente diferenciada da repulsão Coulombiana 
entre elétrons (que estaria presente também se a molécula tivesse mais que 1 elétron). 
 Se o sistema for composto por mais de um elétron, o Princípio de Exclusão de 
Pauli passa a exercer um papel importante. Cada nível eletrônico pode ser ocupado por 
no máximo 2 elétrons com spins opostos. De maneira muito aproximada, poderíamos 
calcular o decréscimo de energia eletrônica como mostrado na Fig. 2.8: -V, -2V, -V e 0 
para 1, 2, 3 e 4 elétrons, respectivamente. Este argumento é aproximado porque ignora 
não apenas a repulsão de overlap como também, como já adiantamos, um termo extra na 
Hamiltoniana que aparece quando mais de um elétron está presente no sistema: a 
repulsão Coulombiana entre os elétrons, que aumenta a energia e portanto diminui a 
estabilidade da ligação covalente. Portanto, para um sistema com 4 elétrons (por 
exemplo, dois átomos de He), há 2 elétrons em estados ligantes e 2 elétrons em estados 
anti- ligantes, o que torna a ligação covalente efetivamente nula e, levando-se em conta a 
repulsão Coulombiana entre os elétrons, ocorre de fato uma repulsão entre os átomos. É 
este efeito combinado do Princípio de Pauli e da interação entre os elétrons, somado com 
a repulsão de overlap e a repulsão Coulombiana entre os núcleos (que também começa a 
ser importante a curtas distâncias) que dá origem à repulsão a curtas distâncias entre 
átomos de camadas fechadas como os gases nobres. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Portanto, uma ligação covalente é mais forte quando contém exatamente 2 
elétrons. Em sólidos do grupo IV, há 4 elétrons de valência que podem portanto formar 4 
ligações covalentes por átomo. Como veremos nos próximos capítulos, a estrutura típica 
destes materiais é a chamada estrutura do diamante , na qual cada átomo fica no centro 
de um tetraedro formado por seus 4 primeiros vizinhos, com os quais forma ligações 
covalentes. Analogamente à molécula de H
2

, há um acúmulo de elétrons ao longo da 
direção que une os átomos. Isto fica claro na Fig. 2.9, que mostra a densidade de elétrons 
das camadas de valência em um plano de um cristal de Si, calculada por métodos de 
primeiros princípios. Note que, ao contrário das interações iônica e de Van der Waals que 
Figura 2.8 – Variação de energia com relação a s em função do número de elétrons na ligação covalente, 
ignorando-se os efeitos de repulsão Coulombiana entre os elétrons. 
U = -V U = -V U = -2V U = 0 
s 
s + V 
s - V 
 24 
são esfericamente simétricas, a ligação covalente é extremamente direcionada. Já a Fig. 
2.10 mostra a densidade eletrônica de sólidos formados por átomos das colunas III-V e 
II-VI da tabela periódica, onde as ligações são parcialmente iônicas e parcialmente 
covalentes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 2.10 - Densidade eletrônica dos elétrons de valência em um composto III-V (GaAs) e outro II-VI 
(CdTe). Note que as ligações são parcialmente iônicas e parcialmente covalentes. Fonte: T.Kajitani et al., J. 
Crystal Growth 229, 130 (2001). 
 
2.6 - Coesão Metálica 
 
 No que diz respeito às propriedades elétricas, todas as três classes de sólidos 
discutidas até agora (cristais de gases nobres, cristais iônicos e cristais covalentes do 
grupo IV) são classificados como isolantes, ou seja, apresentam baixa condutividade 
Figura 2.9 – Contribuição dos elétrons de valência para a densidade eletrônica em um plano do cristalde 
Si. As posições atômicas estão marcadas com um 

. A escala de cinza varia desde branco (altas 
densidades) até preto (baixas densidades). Note o acúmulo de elétrons ao longo da direção que une os 
átomos. 
 25 
elétrica. Metais formam uma classe diferente e importante de materiais, apresentando 
diversos fenômenos inexistentes nos isolantes. Mais de 2/3 dos elementos puros são 
metais, apresentando configurações eletrônicas distintas e portanto distintos mecanismos 
de coesão. Iremos considerar três classes representativas: os metais alcalinos, os metais 
de transição, e os metais nobres. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Os metais alcalinos formam o tipo mais simples de metal. São formados pelos 
elementos da coluna IA da Tabela Periódica (Li, Na, K, etc.). Como descrito na discussão 
sobre halogenetos alcalinos, estes elementos possuem um elétron facilmente ionizável no 
orbital s da última camada. Ao formar-se o sólido, estes elétrons tornam-se 
deslocalizados e podem mover-se quase livremente pelo cristal, ocupando todas as 
regiões entre os átomos (veja Fig. 2.11) e são os responsáveis pela condução de 
eletricidade nestes materiais. Além disso, participam de forma importante na coesão 
cristalina ao exercerem uma blindagem bastante efetiva dos íons. Veremos nos capítulos 
seguintes que, em inúmeras situações, os metais alcalinos são o sistema físico mais 
próximo do modelo idealizado de gás de elétrons livres, que estudaremos no Capítulo 6. 
Na ocasião, estudaremos com um pouco mais de detalhe a coesão metálica. 
Os metais de transição ocupam uma boa parte da Tabela Periódica: as 3 fileiras 
que se estendem desde a coluna IB até à VIIIB. Nestes metais, além dos elétrons quase-
livres derivados dos orbitais s da ultima camada, que exercem função semelhante à dos 
metais alcalinos, há os elétrons originários de orbitais d da penúltima camada. Estes 
orbitais são gradualmente preenchidos desde a coluna I até a VIII. Os elétrons d 
contribuem ativamente na coesão destes materiais formando ligações covalentes entre 
átomos vizinhos. Isto faz com que os metais de transição tenham energias de coesão e 
temperaturas de fusão mais altas do que os metais alcalinos. 
 Os metais nobres (Cu, Ag, Au) possuem os orbitais d da penúltima camada 
totalmente preenchidos e portanto não formam ligações covalentes entre si. Mas 
contribuem na coesão cristalina através de interações de Van der Waals entre átomos 
vizinhos. 
Na1+ 
Na1+ Na1+ Na1+ 
Na1+ Na1+ 
Na1+ Na1+ Na1+ 
Figura 2.11 – Distribuição eletrônica esquemática (região cinza) em um metal alcalino. Neste tipo de 
material, os elétrons se distribuem quase uniformemente pelas regiões intersticiais. 
 26 
 Na Tabela 2.4, energias de coesão e pontos de fusão para alguns metais alcalinos, 
de transição e nobres. 
 
 
Elemento Tfusão(K) Ecoesão 
(eV/átomo) 
Elemento Tfusão(K) Ecoesão 
(eV/átomo) 
Li 453 1.63 Mn 1518 2.92 
Na 371 1.113 Fe 1808 4.28 
K 337 0.934 Ni 1726 4.44 
Ti 1933 4.85 Pt 2045 5.84 
Nb 2741 7.57 Cu 1356 3.49 
Cr 2130 4.10 Ag 1234 2.95 
W 3683 8.90 Au 1337 3.81 
 
 
2.7 - Pontes de Hidrogênio 
 
 O hidrogênio ocupa uma posição única entre os elementos. Pode compartilhar seu 
único elétron em uma única ligação covalente, mas isso não é de muita utilidade em 
sólidos que necessitam uma conectividade tridimensional da rede. Por outro lado, por ter 
apenas 1 elétron de valência, se poderia esperar um comportamento similar aos demais 
elementos da coluna IA, ou seja, a constituição de um sólido metálico (como os metais 
alcalinos) ou a formação de cristais iônicos com halogênios. Com relação ao sólido 
metálico, esta fase já foi predita teoricamente para ocorrer a altíssimas pressões, mas 
ainda não foi observada experimentalmente11. Há, porém, uma outra peculiaridade do 
átomo de hidrogênio que impede este comportamento: ao perder seu elétron, o íon de 
hidrogênio é nada mais que um próton, 105 vezes menor do que qualquer outro íon. Isto 
permite uma aproximação grande entre dois íons negativos, com o íon H+ fazendo uma 
“ponte” entre os dois (Fig. 2.12). Esta aproximação, porém, impede que outros íons 
negativos se aproximem. A ponte de hidrogênio é portanto uma ligação essencialmente 
iônica entre dois átomos apenas, em geral átomos de alta eletronegatividade (F, N, O, 
etc). Exerce um papel importante em sistemas biológicos (por exemplo, é responsável 
pela ligação entre cadeias do DNA) e em gelo (veja Fig. 2.13) e água. 
 
 
 
 
 
 
 
 
 
 
11
 A fase mais estável do hidrogênio a pressões ambientes é um sólido molecular, onde molécu las de H2 
formam as unidade básicas (H.-K. Mao e R. J. Hemley, Rev. Mod. Phys. 66, 671 (1994)). 
Tabela 2.4 - Temperaturas de fusão e energias de coesão de diversos metais. Fonte: Kittel e Ashcroft. 
 27 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Leituras Complementares: 
 Kittel, Capítulo 3. 
 Ashcroft-Mermim, Capítulos 19 e 20. O método da soma por camadas neutras 
para a constante de Madelung está bem discutido aí. 
 Ibach-Lüth, Capítulo 1. 
 Uma boa introdução ao conceito de ligação covalente se encontra em W. A. 
Harrison, Electronic Structure and The Properties of Solids, (Dover, 1989), 
Capítulo 1. 
 F. Reif, Fundamentals of Statistical and Thermal Physics, (McGraw-Hill, 
1988). No Cap. 10 há uma discussão detalhada dos gases de Van der Waals. 
 Uma descrição mais detalhada da molécula de H2
+ está em B. H. Bransden e 
C. J. Joachain, Physics of Atoms and Molecules, (Longman, 1990), Cap. 9. 
 Uma outra abordagem, também detalhada, para a ligação covalente 
(especificamente para a molécula de Li2
+, bastante semelhante à molécula de 
H2
+), está em W. A. Harrison, Elementary Electronic Structure, (World 
Scientific, 1999), Cap. 1. 
 
F- F- 
H+ 
Figura 2.12 – Ponte de hidrogênio na molécula de HF2
-
. Note que o pequeno tamanho do próton permite 
uma grande aproximação entre os dois ânions, o que por sua vez impede a aproximação de demais ânions. 
Veja Kittel, p. 77. 
Figura 2.13 – Desenho esquemático bidimensional da estrutura do gelo (H2O). As linhas tracejadas 
representam as pontes de hidrogênio.

Continue navegando