Logo Passei Direto
Buscar

QUESTIONARIO UNIDADE III - MATEMATICA APLICADA

Ferramentas de estudo

Questões resolvidas

A copiadora Xerox S&A tem um custo fixo de R$ 1600,00 por mês e custos vaiáveis de R$ 0,08 por folha que reproduz. Se os consumidores pagam R$ 0,18 por folhas, quantas folhas a copiadora precisa reproduzir para não ter prejuízo?
Quantas folhas a copiadora precisa reproduzir para não ter prejuízo?
Q ≥ 16.000
Q < 16.000
Q > 16.000
Q = 16.000
Q ≤ 16.000

Dada a função LT= -2q2 +220q -5250, a região em que o lucro é crescente e positivo é:
Qual é a região em que o lucro é crescente e positivo?
35 < q < 55
0 < q < 55
0 < q < 35
0 < q < 75
35< q < 75

A dona do Salão Bem Star verificou que quando o valor do design de sobrancelha custava R$ 15,00 ela tinha, por semana, 200 clientes sendo atendidos, porém, aumentando para R$ 20,00, o número de clientes semanais caiu pela metade.
Que preço deve ser cobrado para maximizar a receita e quantos clientes consegue captar por este preço semanalmente?
P = R$ 12,50 e 250 clientes
P = R$ 17,50 e 150 clientes
P = R$ 17,50 e 200 clientes
P = R$ 12,50 e 250 clientes
P = R$ 12,50 e 150 clientes

O gerente de uma empresa de produtos eletrônicos, sabendo que o preço de mercado para um determinado tipo de GPS é igual a R$ 317,00 por unidade, decide colocar à venda 424 unidades por mês.
A que preço de mercado ele deve oferecer 838 unidades de GPS?
R$ 524,00
R$ 314,00
R$ 626,53
R$ 556,06
R$ 105,00

Uma empresa apresenta um custo fixo mensal para determinado produto de R$ 8000,00 e um custo variável unitário de R$ 40,00.
Qual deve ser a quantidade produzida para que o custo médio de fabricação seja de R$ 74,78?
230 unidades.
198 unidades.
70 unidades.
202 unidades.
200 unidades.

Num modelo linear de oferta e procura, as quantidades ofertadas e demandadas são, respectivamente, funções lineares do preço S = -30+18P e D = 42-6P.
Assinale a informação falsa.
Se o preço for R$ 5,00 haverá um excesso de demanda correspondente a 12 unidades em relação à quantidade de equilíbrio.
Para um preço de R$ 4,00 os produtores se sentem mais a vontade de ofertar seu produto uma vez que a oferta aumenta em 18 unidades em relação à quantidade de equilíbrio.
O preço de equilíbrio é obtido quando for ofertado/vendido 24 unidades do produto.
O preço inicial para ofertar produto é acima de R$ 1,67.
Só é possível vender uma quantidade inferior a 42 produtos.

Num modelo linear de oferta e procura, as quantidades ofertadas e demandadas são, respectivamente, funções lineares do preço S = -30+18P e D = 42-6P.
Qual é o ponto de equilíbrio (p,q) para estas funções?
(3 ; 24)
(24 ; 3)
(1 ; 36)
(36 ; 1)
(1,67 ; 7)

O departamento financeiro de uma microempresa verificou que a receita diária é dada por RT = -q2 + 58q, onde q é a quantidade de produtos vendidos.
Qual será a receita quinzenal se forem vendidos 50 produtos por dia?
R$ 81.000,00
R$ 44.250,00
R$ 6.000,00
R$ 2.950,00
R$ 5.400,00

O valor da receita total obtida na venda de 178 unidades de determinado produto sabendo que a empresa vende cada unidade por um preço 35% maior do que o custo unitário variável, que é de R$ 5,20.
Qual é o valor da receita total obtida?
R$ 1.249,56
R$ 956,60
R$ 25.356,13
R$ 323,96
R$ 34.230,77

O gerente de uma empresa de produtos eletrônicos, sabendo que o preço de mercado para um determinado tipo de GPS é igual a R$ 317,00 por unidade, decide colocar à venda 424 unidades por mês.
Expresse a função oferta e o preço para iniciar a ofertar mercadoria.
Função oferta é S = 2P – 210 e começará a ofertar mercadoria quando P > R$ 105,00
Função oferta é S = 0,5P – 265,50 e começará a ofertar mercadoria quando P > R$ 531,00
Função oferta é S = 0,5P – 265,50 e começará a ofertar mercadoria quando P = R$ 569,79
Função oferta é S = 2P – 210 e começará a ofertar mercadoria quando P = R$ 105,00
Função oferta é S = 2P – 210 e começará a ofertar mercadoria quando P > R$ 105,00

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

A copiadora Xerox S&A tem um custo fixo de R$ 1600,00 por mês e custos vaiáveis de R$ 0,08 por folha que reproduz. Se os consumidores pagam R$ 0,18 por folhas, quantas folhas a copiadora precisa reproduzir para não ter prejuízo?
Quantas folhas a copiadora precisa reproduzir para não ter prejuízo?
Q ≥ 16.000
Q < 16.000
Q > 16.000
Q = 16.000
Q ≤ 16.000

Dada a função LT= -2q2 +220q -5250, a região em que o lucro é crescente e positivo é:
Qual é a região em que o lucro é crescente e positivo?
35 < q < 55
0 < q < 55
0 < q < 35
0 < q < 75
35< q < 75

A dona do Salão Bem Star verificou que quando o valor do design de sobrancelha custava R$ 15,00 ela tinha, por semana, 200 clientes sendo atendidos, porém, aumentando para R$ 20,00, o número de clientes semanais caiu pela metade.
Que preço deve ser cobrado para maximizar a receita e quantos clientes consegue captar por este preço semanalmente?
P = R$ 12,50 e 250 clientes
P = R$ 17,50 e 150 clientes
P = R$ 17,50 e 200 clientes
P = R$ 12,50 e 250 clientes
P = R$ 12,50 e 150 clientes

O gerente de uma empresa de produtos eletrônicos, sabendo que o preço de mercado para um determinado tipo de GPS é igual a R$ 317,00 por unidade, decide colocar à venda 424 unidades por mês.
A que preço de mercado ele deve oferecer 838 unidades de GPS?
R$ 524,00
R$ 314,00
R$ 626,53
R$ 556,06
R$ 105,00

Uma empresa apresenta um custo fixo mensal para determinado produto de R$ 8000,00 e um custo variável unitário de R$ 40,00.
Qual deve ser a quantidade produzida para que o custo médio de fabricação seja de R$ 74,78?
230 unidades.
198 unidades.
70 unidades.
202 unidades.
200 unidades.

Num modelo linear de oferta e procura, as quantidades ofertadas e demandadas são, respectivamente, funções lineares do preço S = -30+18P e D = 42-6P.
Assinale a informação falsa.
Se o preço for R$ 5,00 haverá um excesso de demanda correspondente a 12 unidades em relação à quantidade de equilíbrio.
Para um preço de R$ 4,00 os produtores se sentem mais a vontade de ofertar seu produto uma vez que a oferta aumenta em 18 unidades em relação à quantidade de equilíbrio.
O preço de equilíbrio é obtido quando for ofertado/vendido 24 unidades do produto.
O preço inicial para ofertar produto é acima de R$ 1,67.
Só é possível vender uma quantidade inferior a 42 produtos.

Num modelo linear de oferta e procura, as quantidades ofertadas e demandadas são, respectivamente, funções lineares do preço S = -30+18P e D = 42-6P.
Qual é o ponto de equilíbrio (p,q) para estas funções?
(3 ; 24)
(24 ; 3)
(1 ; 36)
(36 ; 1)
(1,67 ; 7)

O departamento financeiro de uma microempresa verificou que a receita diária é dada por RT = -q2 + 58q, onde q é a quantidade de produtos vendidos.
Qual será a receita quinzenal se forem vendidos 50 produtos por dia?
R$ 81.000,00
R$ 44.250,00
R$ 6.000,00
R$ 2.950,00
R$ 5.400,00

O valor da receita total obtida na venda de 178 unidades de determinado produto sabendo que a empresa vende cada unidade por um preço 35% maior do que o custo unitário variável, que é de R$ 5,20.
Qual é o valor da receita total obtida?
R$ 1.249,56
R$ 956,60
R$ 25.356,13
R$ 323,96
R$ 34.230,77

O gerente de uma empresa de produtos eletrônicos, sabendo que o preço de mercado para um determinado tipo de GPS é igual a R$ 317,00 por unidade, decide colocar à venda 424 unidades por mês.
Expresse a função oferta e o preço para iniciar a ofertar mercadoria.
Função oferta é S = 2P – 210 e começará a ofertar mercadoria quando P > R$ 105,00
Função oferta é S = 0,5P – 265,50 e começará a ofertar mercadoria quando P > R$ 531,00
Função oferta é S = 0,5P – 265,50 e começará a ofertar mercadoria quando P = R$ 569,79
Função oferta é S = 2P – 210 e começará a ofertar mercadoria quando P = R$ 105,00
Função oferta é S = 2P – 210 e começará a ofertar mercadoria quando P > R$ 105,00

Prévia do material em texto

Segunda-feira, 19 de Agosto de 2019 21h20min35s BRT
Usuário diovanna.silva1 @unipinterativa.edu.br
Curso MATEMÁTICA APLICADA
Teste QUESTIONÁRIO UNIDADE III
Iniciado 19/08/19 21:17
Enviado 19/08/19 21:20
Status Completada
Resultado da
tentativa
4 em 4 pontos 
Tempo decorrido 3 minutos
Resultados
exibidos
Todas as respostas, Respostas enviadas, Respostas corretas, Comentários, Perguntas
respondidas incorretamente
Pergunta 1
Resposta Selecionada: d. 
Respostas: a. 
b. 
c. 
d. 
e. 
Feedback da
resposta:
A copiadora Xerox S&A tem um custo fixo de R$ 1600,00 por mês e custos vaiáveis de R$ 0,08 por
folha que reproduz. Se os consumidores pagam R$ 0,18 por folhas, quantas folhas a copiadora
precisa reproduzir para não ter prejuízo?
Q ≥ 16.000
Q < 16.000
Q > 16.000
Q = 16.000
Q ≥ 16.000
Q ≤ 16.000
Resposta: letra “D”. 
Comentário: 
Sabendo que R = 0,18.q e C = 1600 + 0,08q, basta determinar o Ponto de
Nivelamento, ou seja, igualar as duas funções. 
R = C 
0,18q = 1600 + 0,08q 
0,10q = 1600 
q = 16000 folhas. 
Fazendo análise econômica: 
Q = 16000 Ⱦ 
R = C Ⱦ Lucro é zero 
Q > 16000 Ⱦ R > C Ⱦ 
Lucro 
Q < 16000 Ⱦ C > R Ⱦ 
Prejuízo 
Logo, para a empresa não ter prejuízo é preciso que ela reproduza uma
quantidade maior e igual a 16000 folhas.
Pergunta 2
Resposta Selecionada: e. 
Respostas: a. 
b. 
c. 
d. 
e. 
Feedback da
resposta:
Dada a função LT= -2q2 +220q -5250, a região em que o lucro é crescente e positivo é:
35 < q < 55
0 < q < 55
0 < q < 35
0 < q < 75
35< q < 75
35 < q < 55
Resposta: letra “E ”. 
Comentário: 
 
Dada a função: LT= -2q2 
+220q -5250, (a = -2, b = 220 e c = -5250) 
Fazendo LT = 0 
 -2q2 +220q -5250 = 0 
Resolvendo a equação de 2° grau, temos: 
 
Sua representação é: 
 
Logo, a região em que o Lucro é crescente e positivo esta compreendida
entre 35 < q < 55.
Pergunta 3
Resposta Selecionada: c. 
Respostas: a. 
b. 
c. 
d. 
e. 
Feedback da
resposta:
A dona do Salão Bem Star verificou que quando o valor do design de sobrancelha custava R$ 15,00
ela tinha, por semana, 200 clientes sendo atendidos, porém, aumentando para R$ 20,00, o número
de clientes semanais caiu pela metade. Preocupada com isto, ela precisa saber que preço deve ser
cobrado para maximizar a receita e quantos clientes consegue captar por este preço semanalmente.
P = R$ 12,50 e 250 clientes
P = R$ 17,50 e 150 clientes
P = R$ 17,50 e 200 clientes
P = R$ 12,50 e 250 clientes
P = R$ 12,50 e 150 clientes
P = R$ 18,00 e 140 clientes
Resposta: letra “C ”. 
Comentário: 
 
Considerando x como quantidade e y como preço temos os conjuntos de
pontos: 
(200; 15) e (100 ; 20) 
Substituindo na equação: y = ax + b 
y = ax + b 
15 = 200.a + b 
20 = 100.a + b 
 
Resolvendo o sistema 
15 = 200.a + b 
20 = 100.a + b 
a = -0,05 
b = 25 
 Logo a função demanda é P = -0,05D + 25 
Substituindo na função RT = P.D 
RT = (-0,05D + 25).D 
RT = -0,05D2 + 25D 
 
Calculando xv e yv temos: 
Xv = -25 / 2.(-0,05) 
Xv = 250 unidades (quantidade que maximiza a receita) 
 
Yv = -((252)-4.(-0,05).0)/4. (-0,05) 
Yv = R$ 3125,00 (Receita máxima) 
 
Para calcular o preço basta dividir a receita máxima pela quantidade 
RT = P. D 
P = 3125 / 250 
P = R$ 12,50
Pergunta 4
Resposta Selecionada: e. 
Respostas: a. 
b. 
c. 
d. 
e. 
Feedback da
resposta:
O gerente de uma empresa de produtos eletrônicos, sabendo que o preço de mercado para um
determinado tipo de GPS é igual a R$ 317,00 por unidade, decide colocar à venda 424 unidades por
mês. Se o preço de mercado fosse de R$ 426,00, o gerente acharia vantagem em oferecer 642
unidades à venda por mês. Nesta situação, o gerente deseja saber a que preço de mercado ele deve
oferecer 838 unidades de GPS?
R$ 524,00
R$ 314,00
R$ 626,53
R$ 556,06
R$ 105,00
R$ 524,00
Resposta: letra “E ”. 
Comentário: 
 
Considerando x como preço e y como quantidade temos os conjuntos de pontos: 
(317; 424) e (426 ; 642) 
Substituindo na equação: y = ax + b 
y = ax + b 
424 = 317.a + b 
642 = 426.a + b 
 
Resolvendo o sistema 
424 = 317.a + b 
642 = 426.a + b 
a = 2 
b =-210 
Logo a Função oferta é: S = 2P – 210 
Para saber a que preço de mercado o gerente deve oferecer 838 unidades de GPS,
basta substituir a quantidade na equação oferta. 
S = 2P – 210 
838 = 2P – 210 
838 + 210 = 2P 
1048 = 2P 
P = R$ 524,00
Pergunta 5
Resposta Selecionada: b. 
Respostas: a. 
b. 
c. 
d. 
e. 
Feedback da resposta:
Uma empresa apresenta um custo fixo mensal para determinado produto de R$ 8000,00 e um custo
variável unitário de R$ 40,00. Qual deve ser a quantidade produzida para que o custo médio de
fabricação seja de R$ 74,78?
230 unidades.
198 unidades.
230 unidades.
70 unidades.
202 unidades.
200 unidades.
Resposta: letra “B”. 
Comentário: 
Função Custo: CT = 8000 + 40q 
Custo médio: Cme = CT / q 
74,78 = (8000 + 40q) / q 
74,78.q = 8000 + 40q 
34,78q = 8000 
q = 8000 / 34,78 
q = 230 unidades
Pergunta 6
Resposta
Selecionada:
c.
Respostas: a.
b.
c.
d. 
e. 
Feedback da
resposta:
Num modelo linear de oferta e procura, as quantidades ofertadas e demandadas são,
respectivamente, funções lineares do preço S = -30+18P e D = 42-6P. Analise as seguintes situações e
assinale a informação falsa.
Se o preço for R$ 5,00 haverá um excesso de demanda correspondente a 12
unidades em relação à quantidade de equilíbrio.
Para um preço de R$ 4,00 os produtores se sentem mais a vontade de ofertar seu
produto uma vez que a oferta aumenta em 18 unidades em relação à quantidade
de equilíbrio.
O preço de equilíbrio é obtido quando for ofertado/vendido 24 unidades do
produto.
Se o preço for R$ 5,00 haverá um excesso de demanda correspondente a 12
unidades em relação à quantidade de equilíbrio.
O preço inicial para ofertar produto é acima de R$ 1,67.
Só é possível vender uma quantidade inferior a 42 produtos.
Resposta: letra “ C ”. 
Comentário: 
O ponto de equilíbrio é determinado igualando as funções Oferta e Demanda. 
S = D 
-30 + 18P = 42 – 6P 
72 = 24P 
P=R$ 3,00 
Substituindo p = R$ 3,00 na função Demanda, temos: 
D = 42 – 6P 
D = 42 – 6.(3) 
D = 24 unidades. 
Logo, o ponto de Equilíbrio é dado pelas coordenadas (3 ; 24) 
 
Se o preço for R$ 5,00 Haverá escassez de demanda correspondente a 12
unidades em relação à quantidade de equilíbrio 
D = 42 – 6.(5) 
D = 12 unidades 
Analisando a demanda em relação à demanda de equilíbrio, temos: 
24 - 12 = 12 unidades.
Pergunta 7
Resposta Selecionada: a. 
Respostas: a. 
b. 
c. 
d. 
e. 
Feedback da
resposta:
Num modelo linear de oferta e procura, as quantidades ofertadas e demandadas são,
respectivamente, funções lineares do preço S = -30+18P e D = 42-6P. O ponto de equilíbrio (p,q) para
estas funções é:
(3 ; 24)
(3 ; 24)
(24 ; 3)
(1 ; 36)
(36 ; 1)
(1,67 ; 7)
Resposta: letra “ A ”. 
Comentário: 
O ponto de equilíbrio é determinado igualando as funções Oferta e
Demanda. 
S = D 
-30 + 18P = 42 – 6P 
72 = 24P 
P=R$ 3,00 
Substituindo p = R$ 3,00 na função Demanda, temos: 
D = 42 – 6P 
D = 42 – 6.(3) 
D = 24 unidades. 
Logo, o ponto de Equilíbrio é dado pelas coordenadas (3 ; 24)
Pergunta 8
Resposta Selecionada: b. 
Respostas: a. 
b. 
c. 
d. 
e. 
Feedback da
resposta:
O departamento financeiro de uma microempresa verificou que a receita diária é dada por RT = -q2 
+ 58q, onde q é a quantidade de produtos vendidos. Qual será areceita quinzenal se forem
vendidos 50 produtos por dia?
R$ 81.000,00
R$ 44.250,00
R$ 81.000,00
R$ 6.000,00
R$ 2.950,00
R$ 5.400,00
Resposta: letra “B”. 
 Comentário: 
Dada a função: RT = -q2 + 58q, para q = 50 temos: 
RT = -q2 + 58q 
RT = -(50)2 + 58(50) 
RT = +2500 + 2900 
RT = R$ 5400,00 
Para saber a Receita em 15 dias, basta multiplicar o valor da receita por
15. 
5400 x 15 = R$ 81.000,00
Pergunta 9
Resposta Selecionada: d. 
Respostas: a. 
b. 
c. 
d. 
e. 
Feedback da resposta:
O valor da receita total obtida na venda de 178 unidades de determinando produto sabendo que a
empresa vende cada unidade por um preço 35% maior do que o custo unitário variável, que é de R$
5,20 é de:
R$ 1.249,56
R$ 956,60
R$ 25.356,13
R$ 323,96
R$ 1.249,56
R$ 34.230,77
Resposta: letra “D”. 
Comentário: 
35% do custo unitário; 35% x 5,20 = 1,82 
Pv = 5,20 + 1,82 = 7,02 
RT = p . q 
RT = 7,02 . q 
Para q = 178 unidades, temos: 
RT = 7,02 . 178 
RT = R$ 1249,56
Pergunta 10
Resposta
Selecionada:
d.
Respostas: a.
b.
c.
d.
e.
Feedback da
resposta:
O gerente de uma empresa de produtos eletrônicos, sabendo que o preço de mercado para um
determinado tipo de GPS é igual a R$ 317,00 por unidade, decide colocar à venda 424 unidades por
mês. Se o preço de mercado fosse de R$ 426,00, a gerente acharia vantagem em oferecer 642
unidades à venda por mês. Expresse a função oferta e o preço para iniciar a ofertar mercadoria.
Função oferta é S = 2P – 210 e começará a ofertar mercadoria quando P > R$
105,00
Função oferta é S = 0,5P – 265,50 e começará a ofertar mercadoria quando P
> R$ 531,00
Função oferta é S = 0,5P – 265,50 e começará a ofertar mercadoria quando P
> R$ 531,00
Função oferta é S = 0,5P – 265,50 e começará a ofertar mercadoria quando P
= R$ 569,79
Função oferta é S = 2P – 210 e começará a ofertar mercadoria quando P > R$
105,00
Função oferta é S = 2P – 210 e começará a ofertar mercadoria quando P = R$
105,00
Resposta: letra “D ”. 
Comentário: 
 
Considerando x como preço e y como quantidade temos os conjuntos de
pontos: 
(317; 424) e (426 ; 642) 
Substituindo na equação: y = ax + b 
y = ax + b 
424 = 317.a + b 
642 = 426.a + b 
 
Resolvendo o sistema 
424 = 317.a + b 
642 = 426.a + b 
a = 2 
b =-210 
Logo a Função oferta é: S = 2P – 210 
Condição de existência da Oferta: S > 0 
2P – 210 > 0 
2P > 210 
P > 210 / 2 Ⱦ P > R$ 105,00
ȼ OK
 Revisar envio do teste: QUESTIONÁRIO UNIDADE III›
CONTEÚDOS ACADÊMICOS
0,4 em 0,4 pontos
0,4 em 0,4 pontos
0,4 em 0,4 pontos
0,4 em 0,4 pontos
0,4 em 0,4 pontos
0,4 em 0,4 pontos
0,4 em 0,4 pontos
0,4 em 0,4 pontos
0,4 em 0,4 pontos
0,4 em 0,4 pontos
19/08/2019 21(21
Página 1 de 1

Mais conteúdos dessa disciplina