Buscar

Apostila Hematologia parte 1

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 33 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 33 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 33 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Curso Técnico em Análises Clínicas 
Hematologia I
1
Curso Técnico em Análises Clínicas 
Disciplina: Hematologia I 
Módulo I
Curso Técnico em Análises Clínicas 
Hematologia I
2
ÍNDICE
· TEORIA
UNIDADE I – HEMATOLOGIA 3
UNIDADE II - SISTEMA CIRCULATÓRIO 7
UNIDADE III - HEMATOPOIESE E ERITROPOIESE 13
UNIDADE IV - ERITRÓCITOS – MORFOLOGIA E ALTERAÇÕES 18
UNIDADE V – HEMOGRAMA 27
UNIDADE VI – HEMOGLOBINA ______________________________________________________ 32
· PRÁTICA
UNIDADE VII - COLETA DE SANGUE 34
UNIDADE VIII - PREPARO DA DISTENSÃO DE SANGUE 39
UNIDADE IX - DETERMINAÇÃO DO HEMATÓCRITO 45
UNIDADE X - DOSAGEM DE HEMOGLOBINA 47
UNIDADE XI - CONTAGEM MANUAL DE HEMÁCIAS 48
UNIDADE XII - HEMOSSEDIMENTAÇÃO – VHS 50
UNIDADE XIII - CONTAGEM DE RETICULÓCITOS 53
REFERÊNCIAS BIBLIOGRÁFICAS 55
Curso Técnico em Análises Clínicas 
Hematologia I
3
UNIDADE I 
HEMATOLOGIA 
INTRODUÇÃO
Conceito
Hematologia é o ramo da biologia que estuda o sangue. A palavra é composta pelos radicais 
gregos: Haima (de haimatos), "sangue" e lógos, "estudo, tratado, discurso". A Hematologia estuda os 
elementos figurados do sangue: hemácias (glóbulos vermelhos), leucócitos (glóbulos brancos) e 
plaquetas. Estuda, também, a produção desses elementos e os órgãos onde eles são produzidos (órgãos 
hematopoiéticos): medula óssea, baço e linfonodos. Além de estudar o estado de normalidade dos 
elementos sanguíneos e dos órgãos hematopoiéticos, estuda as doenças a eles relacionadas.
O sangue
O sangue é um tecido conjuntivo líquido que circula pelo sistema vascular sanguíneo dos animais
vertebrados. É produzido na medula óssea vermelha, e tem como função a manutenção da vida do 
organismo por meio do transporte de nutrientes, toxinas (metabólitos), oxigênio e gás carbônico. É
constituído por diversos tipos de células, que formam a sua parte "sólida". Estas células estão imersas em 
uma parte líquida chamada plasma. 
As células são classificadas em leucócitos (ou glóbulos brancos), que são células de defesa; 
eritrócitos (glóbulos vermelhos ou hemácias), responsáveis pelo transporte de oxigênio; e plaquetas
responsáveis pela coagulação do sangue.
Como dito, o sangue é constituído por uma porção celular (hemácias, leucócitos e plaquetas) e 
outra fluida, denominada plasma ou soro. Numa pessoa sadia, encontram-se em torno de 40 a 45% de 
elementos figurados (células) e 60 a 65% de plasma. Um adulto possui em média 4 a 6 litros de sangue. 
Veja abaixo um esquema detalhado das 3 linhagens de células sanguíneas:
· Hemácias: são unidades morfológicas da série vermelha do sangue, também designadas por 
eritrócitos ou glóbulos vermelhos, que estão presentes no sangue em número de cerca de 4,5 a 6,5 x 
106/mm³, em condições normais e sua função é transportar o oxigênio (principalmente) e o gás carbônico 
(em menor quantidade) aos tecidos. As hemácias vivem por aproximadamente 120 dias. Embora sejam 
células anucleadas, constituídas apenas por membrana plasmática e citoplasma, são bastante complexas. 
Originam-se na medula óssea pela proliferação e maturação dos eritroblastos, fenômeno chamado de 
eritropoiese (assunto que será mais detelhado no capítulo específico).
Curso Técnico em Análises Clínicas 
Hematologia I
4
Hemácias num esfregaço sanguíneo
· Leucócitos: também conhecidos por glóbulos brancos, são células produzidas na medula óssea e 
presentes no sangue, linfa, órgãos linfóides e vários tecidos conjuntivos. Um adulto normal possui entre 
4.000 e 11.000 mil leucócitos por microlitro (milímetro cúbico) de sangue. Os leucócitos (ou glóbulos 
brancos) têm a função de combater microorganismos causadores de doenças por meio de sua captura ou 
da produção de anticorpos. Uma quantidade muito pequena ou muito grande de leucócitos indica um 
distúrbio. A leucopenia, uma diminuição na quantidade de leucócitos para menos de 4.000 células por 
mililitro, torna uma pessoa mais suscetível à infecções. A leucocitose, um aumento na quantidade de 
leucócitos, pode ser uma resposta à infecções ou substâncias estranhas, ou ser resultante de um câncer, 
de um traumatismo, do estresse ou de determinadas drogas. A maioria dos distúrbios dos leucócitos 
envolve os neutrófilos, os linfócitos, os monócitos, os eosinófilos e os basófilos. Os monócitos, macrófagos 
e neutrófilos tem como função ingerir bactérias, células mortas, anormais ou infectadas. Os neutrófilos são 
os primeiros a atacar o agente invasor (principalmente em infecções bacterianas). Caso ele falhe, o 
monócito (que engloba os invasores) é acionado. A função do linfócito está relacionada com as reações 
imunitárias: a imunidade humoral ligada à produção de anticorpos (linfócitos B); e a imunidade celular 
ligada à proliferação de células efetoras. Os linfócitos são mais atuantes em infecções virais. Os basófilos 
e os eosinófilos combatem processos alérgicos. Os eosinófilos também estão envolvidos em infecções 
parasitárias.
Leucócitos
· Plaquetas: também chamadas de trombócitos, são fragmentos de células presentes no sangue,
formados na medula óssea. A sua principal função é a formação de coágulos, participando, portanto, do 
processo de coagulação sanguínea. Uma pessoa normal possui entre 150.000 e 450.000 plaquetas por 
mm³ de sangue. Sua diminuição ou disfunção pode levar a sangramentos, assim como seu aumento pode 
aumentar o risco de trombose. Trombocitopenia (ou plaquetopenia) é a diminuição do número de 
plaquetas no sangue, e a trombocitose (ou plaquetose) é o aumento do número de plaquetas no sangue. 
Plaquetas
Curso Técnico em Análises Clínicas 
Hematologia I
5
· Plasma: é o componente líquido do sangue, no qual as células sanguíneas estão suspensas. O 
plasma é um líquido de cor amarelada e é o maior componente do sangue, compondo cerca de 55% do 
volume total de sangue. O plasma contém água (92%), proteínas, sódio, fibrinogênio, globulinas, albumina
e outras substâncias dissolvidas, como gases, nutrientes, excretas, hormônios e enzimas. Entre as 
proteínas presentes no sangue, a mais abundante é a albumina. 
Tem como função transportar os elementos figurados e substâncias dissolvidas, como nutrientes, 
medicamentos, produtos tóxicos (como exemplo o dióxido de carbono que as células eliminam, entre 
outros). É também o plasma que transporta para todo o corpo os medicamentos que ingerimos. Um modo 
simples de separar as células presentes no sangue do plasma é através de centrifugação. 
A parte líquida do sangue também pode ser chamada de SORO, mas cuidado: em laboratório, 
denomina-se soro a porção líquida do sangue separada da parte sólida por centrifugação, após coleta 
sem anticoagulante. Já plasma, é a porção líquida de sangue separada da parte sólida por centrifugação, 
colhido com anticoagulante (EDTA, heparina, citrato de sódio ou demais anticoagulantes). Neste caso,
não ocorreu coagulação do sangue.
Imagens mostrando os constituintes do sangue
Curso Técnico em Análises Clínicas 
Hematologia I
6
EXERCÍCIOS DE FIXAÇÃO
1. Sabendo-se que o sangue é constituído por elementos figurados (células) e plasma, dê a função de 
cada constituinte do sangue.
a) Hemácias
b) Leucócitos
c) Plaquetas
d) Plasma
2. Explique os objetivos do estudo da Hematologia.
3. Defina Hematologia.
4. Fale sobre a constituição do sangue.
5. Explique como se divide a parte líquida e sólida do sangue.
6. Diferencie os termos “soro” e “plasma” usados em laboratório.
7. Classifique morfologicamente as hemácias.
8. Apresente a função dos glóbulos vermelhos do sangue.
9. Comente sobre o tempo de vida das hemácias.
10. Defina eritropoese.
11. Apresente de modo geral a função dos leucócitos.
12. Cite e dê a função específica de cada um dos leucócitos.
13. Diferencie Leucopenia e Leucocitose.
14. Aponte a quatidade específica de cada leucócito na corrente sanguínea.
15.Dê valor de referência, ou seja, a quantidade global de hemácias e leucócitos presentes em um 
indivíduo em condições normais.
Curso Técnico em Análises Clínicas 
Hematologia I
7
UNIDADE II
SISTEMA CIRCULATÓRIO
Sistema Circulatório
Esse sistema é formado basicamente: 
· Pelo sangue, que possui uma parte líquida, o plasma, onde estão dispersos os elementos 
figurados, entre eles as células sangüíneas; 
· Pelo coração ou estrutura equivalente, com paredes musculares que se contraem de forma 
rítmica impulsionando o sangue; 
· Pelos vasos sangüíneos, estruturas tubulares por onde o sangue circula. 
No distrito sangüíneo (ou sistema vascular sangüíneo) encontra-se o coração, que é o órgão central da 
circulação. O coração é um órgão muscular que impulsiona o sangue para vasos denominados artérias. 
Estas se ramificam em vasos cada vez mais finos, as arteríolas, e depois em capilares sangüíneos que 
conduzem o sangue às várias partes do corpo. Os capilares reúnem-se em vênulas, que se reúnem em 
vasos cada vez mais calibrosos, as veias, que são vasos que chegam ao coração. 
· Artérias: vasos que saem do coração, levando sangue para as diversas partes do corpo. 
· Veias: vasos que chegam ao coração, trazendo sangue de todas as partes do corpo. 
As artérias possuem musculatura lisa muito desenvolvida, capaz de suportar a pressão exercida pelo 
sangue e ajudar a impulsioná-Io. Nas veias a musculatura lisa é menos desenvolvida, sendo fundamental 
a participação da musculatura esquelética, principalmente a dos membros, na condução do sangue. Nas 
veias há válvulas que impedem o refluxo do sangue. 
Curso Técnico em Análises Clínicas 
Hematologia I
8
O sistema linfático é formado por vasos inicialmente muito finos, os capilares linfáticos, que pos-
suem fundo cego nos interstícios dos tecidos. Eles drenam o fluido intercelular, que passa a ser deno-
minado linfa a partir do momento em que entra nos capilares linfáticos. Os capilares linfáticos reúnem-se 
progressivamente em vasos de calibre cada vez maior, que desembocam nos ductos linfáticos. Estes 
levam a linfa para veias de grande calibre do distrito sangüíneo. Os vasos linfáticos possuem válvulas que 
impedem o refluxo da linfa. O sistema linfático, portanto, colabora na remoção de líquidos que possam 
ficar acumulados nos tecidos, especialmente nos membros. 
No trajeto dos ductos linfáticos há linfonodos (gânglios linfáticos), cuja função é filtrar a linfa, retirando 
bactérias e outros agentes que possam ser nocivos ao organismo. Além de vasos e linfonodos, participam 
desse sistema vários órgãos linfóides, como baço, timo, tonsilas palatinas (amígdalas), adenóides e 
medula óssea vermelha. 
O sistema vascular sanguíneo humano 
O esquema ao lado mostra o coração humano com alguns dos principais vasos sangüíneos e suas 
relações com alguns órgãos internos. 
O coração de uma pessoa adulta tem o volume aproximado da mão fechada do indivíduo e massa de 
cerca de 300 g, sendo capaz de impulsionar cerca de 70 mL de sangue a cada contração.
A circulação do sangue em humanos segue o padrão verificado nos demais mamíferos.
Ao átrio direito chegam a veia cava superior, que traz o sangue venoso da cabeça e dos membros 
anteriores, e a veia cava inferior, que traz o sangue venoso do restante do corpo. 
Curso Técnico em Análises Clínicas 
Hematologia I
9
Ao mesmo tempo, ao átrio esquerdo chegam 
às veias pulmonares transportando o sangue 
que foi oxigenado nos pulmões. 
Os dois átrios contraem-se e empurram o 
sangue para os ventrículos, que estão em diástole; 
as valvas pulmonar e aórtica são fechadas. 
Os dois átrios se contraem e o sangue passa para os ventrículos correspondentes: do átrio direito o 
sangue venoso passa para o ventrículo direito, e do átrio esquerdo o sangue arterial passa para o 
ventrículo esquerdo. A seguir, os dois ventrículos se contraem e o sangue venoso do ventrículo direito é 
Curso Técnico em Análises Clínicas 
Hematologia I
10
conduzido para a artéria pulmonar para ser oxigenado nos pulmões, e o sangue arterial do ventrículo 
esquerdo é conduzido para a artéria aorta e distribuído para todo o corpo. 
Entre o átrio direito e o ventrículo direito encontra-se a valva atrioventricular direita (ou válvula 
tricúspide), e entre o átrio esquerdo e o ventrículo esquerdo há a valva atrioventricular esquerda (ou 
válvula mitral). Essas valvas impedem que o sangue impulsionado com força e pressão pelos ventrículos 
retome para os átrios. 
Na abertura da artéria pulmonar no ventrículo direito há a valva pulmonar, e na abertura da aorta no 
ventrículo esquerdo encontra-se a valva aórtica. Elas impedem o retorno do sangue aos ventrículos. 
O funcionamento do coração ocorre segundo um ciclo que compreende a contração dos dois átrios, 
chamada sístole atrial, seguida da contração dos dois ventrículos, denominada sístole ventricular. Após 
cada uma dessas sístoles acontece o relaxamento da musculatura que corresponde à diástole atrial, 
seguida da diástole ventricular. O ciclo cardíaco está explicado na figura a seguir. 
Curso Técnico em Análises Clínicas 
Hematologia I
11
O controle dos batimentos cardíacos pode ser determinado por fenômenos miogênicos, que são os 
originados no próprio músculo cardíaco, ou por fenômenos neurogênicos, originados por estímulos 
nervosos. 
Nos vertebrados o batimento é miogênico, podendo, entretanto, haver alterações provocadas por 
estímulos nervosos. 
No coração humano, os batimentos cardíacos obedecem ao ritmo de impulsos provenientes de dois 
"nós" especiais do músculo cardíaco. Inicialmente o nó sinoatrial, atuando como marca-passo, determina a 
contração dos átrios. Deste nó partem impulsos em direção ao nó atrioventricular que transmite os im-
pulsos a fibras condutoras especiais; estas determinam a sístole do ventrículo. Observe o esquema ao 
lado. 
O coração dos vertebrados continua batendo por algum tempo mesmo quando suas inervações são 
cortadas, provando que o estímulo da contração é miogênico. 
Apesar desse automatismo da contração, os batimentos cardíacos têm mecanismos reguladores rela-
cionados com a Divisão Autônoma do Sistema Nervoso. Os nervos que atuam sobre o coração permitem 
ajustes nas freqüências cardíacas de acordo com as necessidades do organismo. Existem os que 
Curso Técnico em Análises Clínicas 
Hematologia I
12
provocam aumento da freqüência cardíaca e os que provocam diminuição dessa freqüência. Nessa 
regulação há também participação de hormônios produzidos pela glândula adrenal. 
O número de contrações realizadas pelo coração por minuto corresponde à freqüência cardíaca, que 
em uma pessoa normal, em repouso, é da ordem de 70 contrações por minuto. Essa freqüência oscila 
dentro de valores considerados normais, em função de variáveis como o sexo, a idade e a condição física. 
Vamos comentar agora um pouco sobre a circulação em todo o corpo. 
O sangue arterial transportado pela aorta passa por vasos cada vez menores até as redes capilares. 
Um dos sistemas de capilares ocorre associado ao intestino, onde o alimento digerido é absorvido e 
passado para o sangue. O sangue chega arterial ao intestino e sai venoso, carregando os produtos da 
digestão. Esse sangue é coletado pela veia portahepática e conduzido até o fígado. Uma nova rede de 
capilares se forma no fígado permitindo que os nutrientes do sangue passem para esse órgão, onde vão 
ser armazenados ou vão fazer parte de vários outros processos. O sangue venoso do fígado é recolhido 
pela veia hepática e conduzido até a veia cava inferior. 
Ao fígado chega sangue arterial a partir de uma artéria que parte da aorta e que também leva sangue 
arterial ao baço. Do baço o sangue sai venoso e é conduzido para o fígado pela veia porta-hepática. 
Outro sistema de capilares ocorre nos rins. O sangue chega arterial aorim pela artéria renal, é filtrado 
e sai venoso pela veia renal, que se abre na veia cava inferior. 
Para os membros inferiores o sangue arterial chega a partir da divisão da aorta nas artérias ilíacas e o 
sangue retorna venoso para a veia cava inferior pelas veias femorais. 
Curso Técnico em Análises Clínicas 
Hematologia I
13
UNIDADE III
HEMATOPOIESE E ERITROPOIESE
Introdução
Eritrócitos ou glóbulos vermelhos são as células envolvidas na síntese, proteção e transporte da 
molécula de hemoglobina no organismo. Estas células são originadas na medula óssea através da 
diferenciação de um precursor eritróide (proeritroblastos), que após o processo de amadurecimento perde 
totalmente suas organelas. Portanto, os eritrócitos não podem dividir ou crescer, sendo as células-tronco a 
única forma possível de se obter mais eritrócitos.
Este elemento vivo é, aparentemente, diferenciado exclusivamente para o transporte de oxigênio 
aos tecidos (através da molécula de hemoglobina). No homem tem o diâmetro médio de 7,5 μ, espessura 
na borda de 2 μ e 1,2 μ no centro, sendo desprovido de núcleo em todos os mamíferos. Tem vida média 
de 120 dias na circulação, sendo as células senis (velhas) fagocitadas e digeridas pelo sistema monocítico 
fagocitário do fígado e baço.
Esta célula é um exemplo do perfeccionismo da evolução, levando em conta que eritrócitos de 
animais inferiores na escala zoológica são nucleados. Em mamíferos, com a perda do núcleo, aumentou o 
espaço para troca de gases, e diminuiu o consumo interno de energia. As enzimas que estão contidas em 
seu interior apresentam a função de produção de energia necessária para a manutenção da integridade da
membrana eritrocitária e manter o ferro da hemoglobina no estado reduzido, estado no qual este íon é 
fisiologicamente ativo para o transporte de oxigênio.
Hematopoiese ou hematopoese
É o processo de formação, desenvolvimento e maturação dos elementos do sangue (eritrócitos, 
leucócitos e plaquetas) à partir de um precursor celular comum e indiferenciado conhecido como célula 
hematopoiética pluripotente, ou célula-tronco, hemocitoblasto ou stem-cell. As células-tronco, que no 
adulto encontram-se na medula óssea, são as responsáveis por formar todas as células e derivados 
celulares que circulam no sangue.
Órgãos hematopoiéticos
São os órgãos que produzem no processo da Hematopoiese os elementos do sangue: leucócitos, 
hemácias e plaquetas. Esses órgãos são: medula óssea, linfonodos (gânglios linfáticos), baço e fígado.
Nas primeiras semanas de gestação (aproximadamente 19° dia), o saco vitelino é o principal local 
de hematopoiese. De seis semanas até seis a sete meses de vida fetal, o fígado e o baço são os principais 
órgãos envolvidos e continuam a produzir células sanguíneas até cerca de duas semanas após o 
nascimento.
A medula óssea dos ossos chatos (esponjosos), é o local mais importante a partir de seis a sete 
meses de vida fetal. As células em desenvolvimento estão situadas fora dos seios da medula óssea, 
enquanto as maduras são liberadas nos espaços sinusais e na microcirculação medular e, a partir daí, na 
circulação geral.
A medula óssea é o órgão mais importante da gênese das mais diversas células sanguíneas pois lá 
estão as células-tronco que dão origem às células progenitoras de linhagens mielocíticas, linfocíticas, 
megacariócitos e eritroblastos.
Diferenciação sanguínea
A "estirpe mielóide", compreende aos eritrócitos, plaquetas, leucócitos granulares (neutrófilos, 
basófilos e eosinófilos) e monócitos-macrófagos. O desenvolvimento de tais elementos se conhece como 
mielopoiese e parte de uma célula mãe precursora comum. A "estirpe linfóide", compreende unicamente 
Curso Técnico em Análises Clínicas 
Hematologia I
14
aos linfócitos, que podem ser de dois tipos: linfócitos B e linfócitos T (existe ainda um terceiro tipo,os 
linfócitos NK). O desenvolvimento destas células se denomina linfopoiese.
Abaixo temos um esquema da hematopoise mostrando a maturação e diferenciação das distintas 
linhagens de células sanguíneas:
Curso Técnico em Análises Clínicas 
Hematologia I
15
ERITROPOIESE
É denominado eritropoiese o processo de produção de eritrócitos, também denominados hemácias
ou glóbulos vermelhos do sangue. Em humanos adultos, a eritropoiese ocorre na medula óssea, mas em 
fetos e em situações especiais, como anemias severas, pode ocorrer em outros órgãos, principalmente, no 
fígado e no baço.
Ocorre à partir dos proeritroblastos, que são grandes células com nucléolos e citoplasma 
discretamente disformes. À partir desta célula originam-se, por reprodução celular, o eritroblasto 
basófilo, que após 24/48 horas se transforma, por maturação, em eritroblasto policromático, à partir 
desta classe de eritroblasto inicia-se o processo de formação da hemoglobina, daí o nome de 
policromático. O eritroblasto policromático, em 24 horas, se diferencia em eritroblasto ortocromático
que, 12 horas depois, perde o seu núcleo e dá origem ao reticulócito. O reticulócito é um eritrócito grande 
e imaturo, com RNA ribossômico em variáveis quantidades em seu citoplasma. O reticulócito tem um 
período de vida médio de 3 dias, após o qual se transforma em eritrócito e é liberado da medula óssea 
para o sangue circulante. 
Em condições normais um adulto produz cerca de 200 bilhões de hemácias por dia, substituindo 
número equivalente de células destruídas diariamente, para manter estável a massa total de hemácias do 
organismo.
Os precursores da linhagem eritróide constituem cerca de 1/3 das células da medula óssea. O 
proeritroblasto é o tipo celular mais imaturo que pode ser identificado como pertencente a essa linhagem. 
Os precursores eritróides têm capacidade proliferática intensa, assim, cada proeritroblasto origina 8-32 
eritroblastos ortocromáticos; estas células, por sua vez, não têm mais capacidade de dividir-se e, 
perdendo o núcleo, dão origem às hemácias maduras. 
Além da capacidade multiplicativa, os precursores eritróides caracterizam-se pela intensa síntese 
de porteínas. A principal proteína sintetizada e acumulada pelos eritroblastos é a hemoglobina.
A morfologia dos precursores eritróides reflete estas duas características fundamentais: a 
capacidade proliferativa e a intensa síntese de hemoglobina. Assim, a célula mais primitiva tem núcleo 
mais imaturo, volumoso e cromatina fina. À medida que amadurece, o núcleo vai diminuindo de volume e a 
cromatina fica mais condensada até o núcleo se tornar picnótico, correspondendo à célula que perdeu a 
capacidade de se dividir.
Do ponto de vista funcional, os precursores eritróides caracterizam-se pela presença de dois tipos 
de receptores essenciais para sua diferenciação: o receptor de eritropoietina e o receptor de transferrina.
Curso Técnico em Análises Clínicas 
Hematologia I
16
O reticulócito
O eritroblasto ortocromático perde o núcleo num processo aparentemente ativo de extrusão. O
núcleo perdido é rapidamente fagocitado por macrófagos da medula óssea. Com a perda do núcleo, o 
eritroblasto ortocromático se transforma em reticulócito, uma célula anucleada, que ainda conserva no 
citoplasma alguns resquícios de organelas: retículo endoplasmático, ribossomos (com RNA mensageiro) e 
mitocôndrias. Os reticulócitos são ligeiramente maiores que as hemácias maduras, e ainda retêm no 
citoplasma traços de basofilia, dando uma coloração com policromatofilia. O uso de corantes específicos, 
como o azul de cresil brilhante, revela estes restos de organelas no interior dos reticulócitos.
O reticulócito recém-formado permanece de um a três dias na medula óssea, sendo em seguida 
liberado para a circulação. Um ou dois dias depois de entrarem na circulação, os reticulócitos perdem 
todas as organelas, têm o volume ligeiramente reduzido e adquirem a coloração citoplasmática própria das 
hemácias maduras.Eritropoietina
A eritropoietina é o principal fator de crescimento que atua sobre a linhagem eritróide e regula a 
produção de hemácias. A principal fonte de eritropoietina no organismo é o tecido renal (em torno de 
90%), sendo os 10% restantes produzidos pelo fígado. 
A baixa da pressão parcial em oxigênio (pessoas que vivem em grandes altitudes), a diminuição do 
número de glóbulos vermelhos (ou hemácias) causada por uma hemorragia ou por uma destruição 
excessiva, o aumento da necessidade de oxigênio pelos tecidos, levam a uma secreção de eritropoietina. 
Ao contrário, o excesso de oxigênio nos tecidos diminui a sua secreção. Atua sobre as células 
eritroblásticas da medula óssea, isto é, as células precursoras dos glóbulos vermelhos por intermediação 
de receptores específicos.
Na medicina ela é utilizada nos seguintes casos: insuficiência renal crônica, doenças 
hematológicas, tumores sólidos, linfomas, mieloma múltiplo, programas de transfusão autóloga (transfusão 
efetuada com sangue do próprio indivíduo, coletado e conservado em data anterior). A aplicação varia de 
acordo com a necessidade e estado clínico do paciente. 
A eritropoietina pode ser utilizada para o aumento do desempenho dos atletas, sobretudo nas 
modalidades como o ciclismo, o atletismo ou esqui, uma vez que aumenta o nível de glóbulos vermelhos
no sangue, melhorando assim a troca de oxigênio e elevando a resistência ao exercício físico. Entretanto, 
o uso de eritropoietina para esse fim é proibido, caracterizando dopping.
Como os rins são os principais produtores de eritropoietina, uma insuficiência renal crônica leva 
geralmente a uma deficiência de eritropoietina, e por consequência, à uma anemia hipoplásica.
Abaixo, temos uma sinopse de cada tipo de célula jovem da medula óssea atuantes na 
eritropoiese.
· HEMOCITOBLASTO (ou célula-tronco da medula óssea ou stem-cell): é a denominação utilizada 
para designar a célula-tronco pluripotente da medula óssea. Capaz de se diferenciar em quaisquer 
células sanguíneas.
· PROERITROBLASTO: célula oval ou arredondada com 20 a 25μ de diâmetro, citoplasma 
reduzido. O núcleo ocupa cerca de 80% da célula, apresenta cromatina delicada e com a 1 a 2 
nucléolos.
· ERITROBLASTO BASÓFILO: célula geralmente com cerca de 16 a 18μ de diâmetro, citoplasma 
intensamente basófilo. O núcleo já não apresenta nucléolos visíveis, a cromatina se dispõe em 
conglomerados de formas diversas, freqüentemente pentagonais ou hexagonais, que se distribuem 
no núcleo em forma semelhante aos raios de uma “roda de carroça”, mais ou menos regulares, 
dando aspecto característico.
· ERITROBLASTO POLICROMÁTICO: neste estágio de maturação a hemoglobina está presente 
em grande quantidade, mas os ribossomas ainda persistem e conseqüentemente a coloração do 
citoplasma varia de azul a cinza. A célula mede cerca de 9 a 12μ de diâmetro, o núcleo ocupa 
Curso Técnico em Análises Clínicas 
Hematologia I
17
cerca de 25% da célula, cora-se mais intensamente, conservando sempre o aspecto característico 
das condensações cromatínicas dispostas como “ roda de carroça “.
· ERITROBLASTO ORTOCROMÁTICO: nesta fase há uma grande diminuição do diâmetro: a célula 
mede cerca de 8 a 9μ, atinge o fim de sua capacidade de síntese de DNA e é incapaz de atividade 
mitótica (divisão celular); o citoplasma é saturado de hemoglobina com conseqüente acidofilia, 
apresentando coloração mais parecida de uma hemácia madura. O núcleo é constituído por massa 
homogênea de cromatina, sem estrutura definida, de localização excêntrica, estágio que 
normalmente precede sua expulsão. 
· RETICULÓCITO: é a primeira etapa de maturação onde a célula é anucleada. Não é reconhecível 
em coloração por Giemsa e similares, embora apareça como eritrócito maior e com policromatofilia.
Com a coloração vital, (ex.: Novo Azul de Metileno ou o Azul de Cresil Brilhante) apresenta um 
retículo basófilo (RNAm) neste citoplasma.
· ERITRÓCITO: é um disco bicôncavo, anucleado, com cerca de 7μ de diâmetro, de coloração 
róseo-clara e com halo central mais claro.
EXERCÍCIOS DE FIXAÇÃO 
1. Defina hemocitoblasto.
2. Diferencie: Hematopoese e eritropoese.
3. Num adulto, qual é o principal local da hematopoiese?
4. Quais as funções dos eritrócitos?
5. Sabe-se que a formação e maturação das células sangüíneas ocorrem na medula óssea e; 
tratando-se da maturação da série vermelha, isto é, produção de hemácias, encontramos na 
medula óssea diferentes tipos celulares decorrentes da maturação e diferenciação celular até a 
formação de hemácia madura. Com isso, diga à qual célula corresponde a seguinte característica:
a) eritrócitos (hemácias) jovens anucleados com presença de resquícios de material nuclear.
b) citoplasma já apresenta a coloração de uma hemácia madura devido a produção de hemoglobina e 
o núcleo dirige-se à periferia da célula pronto para ser ejetado da mesma. 
c) célula capaz de diferenciar-se em qualquer uma das linhagens de células sangüíneas.
6. Explique o que é eritropoietina e dê sua importância na eritropoiese.
7. Apresente a origem dos eritrócitos.
8. Explique qual finalidade da perda do núcleo pelas hemácias.
9. Qual a importância da célula trono sanguínea.
10. Cite os órgãos hematopoéticos.
11. Descreva o processo da hematopoese durante a gestação.
12. Sobre a diferenciação sanguínea responda: a que se refere as linhagens mielóide e linfóide.
13. Cite onde ocorre a hematopoese em adultos e em fetos humanos.
14. Apresente as fases da eritropoese bem como as características apresentados pelas células durante 
o processo de maturação celular.
15. Apresente a principal proteína sintetizada e acumulada pelos eritroblastos.
16. O que caracteriza o eritroblasto ortocromático.
17. O que caracteriza o reticulócito.
18. Qual a recomendação feita em relação ao processo de coloração e visualização dos reticulócitos.
19. Quais as principais organelas citoplasmáticas são encontradas nos reticulócitos?
20. Qual principal fonte de eritropoetina?
21. Quais fatores influenciam na secreção de eritropoetina?
22. Qual a importância terapêutica da eritropoetina. 
23. Qual finalidade da utilização da eritropoetina pelos atletas e qual significado disso nas competições.
24. Qual a consequência de uma insuficiência renal e hepática para uma pessoa.
Curso Técnico em Análises Clínicas 
Hematologia I
18
UNIDADE IV
ERITRÓCITOS – MORFOLOGIA E ALTERAÇÕES
A maioria dos eritrócitos normais tem forma de disco bicôncavo. Na distensão corada, apresentam 
um contorno aproximadamente circular, mostrando apenas pequenas variações quanto à forma e ao 
tamanho. O diâmetro médio é de cerca de 7,5 μ. No local da distensão em que as células formam uma 
camada única, uma área central mais pálida ocupa aproximadamente um terço da célula.
A forma e a flexibilidade normais do eritrócito dependem da integridade do citoesqueleto ao qual 
está ligada a membrana lipídica. O aparecimento de formas anômalas pode resultar de um defeito primário 
do citoesqueleto ou da membrana, ou decorrer de fragmentação eritrocítica ou de polimerização, 
cristalização ou precipitação da hemoglobina. A membrana do eritrócito é constituída de dupla camada 
lipídica, atravessada por várias proteínas transmembranas. 
Morfologicamente, em condições patológicas, os eritrócitos podem apresentar vários tipos de 
alterações: tamanho, cor, forma, presença de inclusões, que devem ser observados e relatados no laudo 
ao realizar o exame do sangue periférico. Além disso, o aparecimento de eritroblastos na circulação 
também deve ser relatado, e de forma quantitativa. Em muitos casos o aparecimento destas alterações é
de grande importância para elucidar a etiologia de uma anemia, por exemplo, drepanócitos (anemia 
falciforme), microcitose (anemias por perturbação na síntese da hemoglobina), macrocitose (deficiência de 
vitaminas B12 e/ou folatos). 
Certos termosusados para descrever a morfologia dos eritrócitos requerem definição. Para 
descrever as células normais são utilizados dois adjetivos: (i) normocítico, que são as células de tamanho 
normal, e (ii) normocrômico, quando as células contêm quantidade e concentração normais de 
hemoglobina, corando-se, portanto, normalmente. Outros termos descritivos pressupõem que a morfologia 
seja anormal e, por esse motivo, não devem ser empregados no hemograma para descrever uma variação 
fisiológica normal. Por exemplo, no caso do recém-nascido não se deve relatar a presença de eritrócitos 
“macrocíticos”, pois os eritrócitos do recém-nascido são, normalmente, maiores que os do adulto. Poucos 
laboratórios adotam a política de descrever cada distensão como normocítica e normocrômica; a maioria 
comenta a morfologia eritrocitária apenas quando é anormal, ou se a normalidade for particularmente 
Curso Técnico em Análises Clínicas 
Hematologia I
19
significativa para o caso. Qualquer política é aceitável, desde que seja aplicada com constância e desde 
que o corpo clínico esteja ciente da mesma.
Alterações no tamanho dos eritrócitos (Anisocitose eritrocítica)
São detectados através do Volume Globular Médio (VGM ou VCM) e pela hematoscopia.
Anisocitose
É um aumento da variabilidade do tamanho dos eritrócitos que excede a observada nos indivíduos 
normais e sadios. Ocorre pela presença de eritrócitos menores ou maiores do que os normais.
¨ Microcitose
É a diminuição do tamanho dos eritrócitos. Eritrócitos microcíticos são notados na distensão 
sanguínea quando o diâmetro é inferior a 7 μ. O núcleo do linfócito pequeno, com diâmetro de 8,5μm, é 
um guia útil na avaliação do tamanho dos eritrócitos. A microcitose poderá ser geral ou poderá existir uma 
parte da população composta de eritrócitos pequenos. Se todos (ou quase todos) os eritrócitos forem 
pequenos, haverá uma redução significativa do VGM, mas uma pequena população microcítica pode estar 
presente sem que o VGM se encontre abaixo dos limites de referência. 
Os eritrócitos das crianças são menores do que dos adultos, ao passo que os do recém-nascido 
são muito maiores, Dessa forma nota-se que o VGM deve ser interpretado de acordo com a idade do 
indivíduo. Microcitose é incomum no recém-nascido, mas pode ocorrer em distúrbios α-talassêmicos e na 
deficiência de ferro resultante de perda sanguínea intra-uterina. 
¨ Macrocitose
É o aumento do tamanho dos eritrócitos. Os eritrócitos do recém-nascido mostram uma acentuada 
macrocitose quando comparados com os do adulto. Uma discreta macrocitose é uma das características
fisiológicas da gravidez, também encontrada em idosos.
A macrocitose é notada na distensão sanguínea pelo aumento do diâmetro celular. Ela poderá ser 
geral, e nesse caso o VGM estará elevado, ou poderá afetar apenas uma parte da população de 
eritrócitos. Os macrócitos podem ter contorno oval ou arredondado, com significado diagnóstico diferente 
nas duas situações. 
Curso Técnico em Análises Clínicas 
Hematologia I
20
Alterações na cor dos eritrócitos (Anisocromia Eritrocítica)
São detectados pelo CHGM (ou CHCM) e hematoscopia. 
Anisocromia
Nos diferentes tipos de anemias, os eritrócitos podem sofrer variações em seu conteúdo de 
hemoglobina e, consequentemente, na intensidade da coloração. Este estado patológico constitui a 
anisocromia eritrocítica, que indica insuficiência da medula óssea. Ocorre pela presença de eritrócitos 
pobres ou ricos em hemoglobina (hipocrômicos ou hipercrômicos).
¨ Hipocromia
É a redução da coloração do eritrócito. Os eritrócitos hipocrômicos possuem tamanho normal ou 
reduzido; apresentam-se pálidos ou descorados, sobretudo na zona central, que passa a ocupar área 
superior a um terço do diâmetro do eritrócito. A hipocromia pode ser geral ou pode existir uma população 
de células hipocrômicas. Os eritrócitos das crianças sadias são frequentemente hipocrômicos, quando 
comparados com os dos adultos. A hipocromia ocorre, em geral, nas anemias por deficiência, falta de 
absorção ou de armazenamento de ferro.
¨ Hipercromia
É o aumento da coloração do eritrócito. Os eritrócitos hipercrômicos são células de grande 
tamanho, que aparecem intensamente coradas e, em muitos casos, sem a zona central clara, observada 
normalmente, em conseqüência de seu conteúdo hemoglobínico anormalmente intenso.
O termo hipercromia é raramente usado na descrição de distensões sanguíneas, uma vez que a 
mesma pode ser só aparente, por aumento do tamanho da célula. Alterações na forma, como esferócitos, 
causam colorações mais intensas do que nos eritrócitos normais. O CHGM pode estar aumentado, 
indicando que a hipercromia relaciona-se não apenas com a alteração na forma da célula, mas também 
com um verdadeiro aumento da concentração de hemoglobina. Alguns macrócitos são mais espessos do 
que os eritrócitos normais e, por isso, hipercrômicos, sem que exista um aumento na concentração de 
hemoglobina.
Curso Técnico em Análises Clínicas 
Hematologia I
21
¨ Policromatofilia
Eritrócitos policromatófilos são eritrócitos imaturos, geralmente maiores que os normais, cujo 
citoplasma tem afinidade pelos corantes ácidos e básicos. Coram-se, pelos corantes de Romanowsky, de 
róseo-azulado, devido à sua afinidade simultânea por eosina (pela hemoglobina) e corantes básicos (por 
RNA ribossômico).
Normalmente o número de eritrócitos policromatófilos é muito reduzido, cerca de 0,5% a 1,5%. O 
aumento desses elementos acima de 2% constitui a policromatofilia ou policromasia, que é sinal de 
regeneração eritrocítica, aparecendo, principalmente, na intoxicação pelo chumbo, na malária, nas 
anemias e leucemias.
Imagens de policromatofilia
ALTERAÇÕES NA FORMA DOS ERITRÓCITOS (POIQUILOICITOSE)
São detectados pela hematoscopia.
Poiquiloicitose (ou pecilocitose)
Normalmente os eritrócitos apresentam-se em forma de discos bicôncavos, circulares. Em 
condições patológicas, assumem formas irregulares: ovais, de foice, de alvo, esferas. Tais eritrócitos 
deformados são chamados poiquilócitos (ou pecilócitos), denominando poiquilocitose eritrocitária a 
presença destes elementos. É uma anormalidade comum, frequentemente inespecífica, encontrada em 
vários distúrbios hematológicos; pode resultar da produção de eritrócitos anormais pela medula óssea, ou 
de dano às células após liberação na corrente sanguínea. 
A morfologia das hemácias (ou estudo da forma das hemácias) é feita ao microscópio, analisando o 
esfregaço de sangue. Diversas alterações podem ser observadas:
Curso Técnico em Análises Clínicas 
Hematologia I
22
· Drepanócitos (forma de foice – sicle cell): aparece somente em pacientes com anemia falciforme.
· Esferócitos (forma esférica): em grande quantidade é comum na anemia esferocítica 
(esferocitose), em menores quantidades podem estar presentes em outros tipos de anemias 
hemolíticas. Parecem apresentar aumento de densidade de hemoglobina (“hipercromia”) em 
virtude de sua forma esférica.
· Eliptócitos (forma de charuto): em grandes quantidades comum na eliptocitose. Em menores 
quantidades podem aparecer em qualquer tipo de anemia.
Curso Técnico em Análises Clínicas 
Hematologia I
23
· Hemácias em alvo ou codócitos (células cujas membranas são grandes havendo uma palidez e 
um alvo central mais corado): aparece em hemoglobinopatias C, E ou S, nas síndromes 
talassêmicas e em pacientes com doença hepática.
· Dacriócitos (forma de lágrima ou forma de coxinha): em grande quantidade na mielofibrose. Em 
pequena quantidade podem aparecer em qualquer tipo de anemia.
· Esquisócitos (hemácias fragmentadas): aparecem quando nas hemácias há uma lesão mecânica, 
em casos de hemólise, ou em casos de pacientes que sofreram queimaduras.
Curso Técnico em Análises Clínicas 
Hematologia I
24
· Acantócitos (hemácias com pontas de diversos tamanhos):nas hepatopatias, hipofunção 
esplênica, esplenectomizados.
· Equinócitos ou Hemácias crenadas (hemácias com várias pontas pequenas): na uremia, quando 
o paciente faz tratamento com heparina, deficiência de piruvatokinase.
Ø OUTROS ACHADOS NÃO RELACIONADOS À FORMA
· Hemácias em Rouleaux (hemácias em rolos, formam pilhas de rolos de hemácias): aparece em
alta concentração de globulinas anormais, mieloma múltiplo e macroglobulinemia.
Curso Técnico em Análises Clínicas 
Hematologia I
25
Inclusões nas hemácias
· Corpúsculos de Howell-Jolly (aparecem como se fossem um botão azul escuro junto à 
membrana da hemácia, por fragmento nuclear ou DNA condensado): após esplenectomia, anemias 
hemolíticas severas.
· Hemácias com pontilhados basófilos: (vários pontos roxos dentro da hemácia, pela precipitação 
dos ribossomos ricos em RNA): aparecem na talassemia beta, intoxicação por chumbo, anemia 
hemolítica por deficiência de pirimidina-5-nucleotidase.
· Anel de Cabot (forma de uma anel ou em oito dentro da hemácia, por restos nucleares): em
anemias hemolíticas severas.
Curso Técnico em Análises Clínicas 
Hematologia I
26
EXERCÍCIOS DE FIXAÇÃO
1. Dê a função das hemácias.
2. Defina os seguintes termos usados em hematologia:
a) Hipocromia
b) Microcitose
c) Macrocitose
d) Anisocitose
e) Poiquiloicitose
2. Cite e defina as alterações morfológicas encontradas nas hemácias.
3. Cite e defina as alterações não morfológicas encontradas nas hemácias.
Curso Técnico em Análises Clínicas 
Hematologia I
27
UNIDADE V
O HEMOGRAMA
Hemograma é o exame laboratorial que tem por objetivo a avaliação qualitativa e quantitativa das 
hemácias e leucócitos do sangue periférico. É considerado como primeiro passo na avaliação da função 
hematológica do organismo, mostrando alterações de valor diagnóstico em doenças de quaisquer 
patogêneses. Além disso, é útil para o acompanhamento da evolução dos processos patológicos e da 
eficácia terapêutica administrada.
O hemograma completo inclui:
¨ A contagem dos eritrócitos (Hematimetria), a determinação da hemoglobina e do hematócrito e o 
cálculo dos índices hematimétricos (VGM, HGM, CHGM).
¨ A contagem dos leucócitos (Leucometria global) e de cada tipo de leucócito encontrado 
(Leucometria específica).
¨ A hematoscopia, que se define como a observação das eventuais alterações morfológicas das 
hemácias e dos leucócitos.
OBS.: Embora não seja consenso, alguns laboratórios também acrescentam a estimativa do 
número de plaquetas. 
Metodologia:
O hemograma pode ser feito por métodos manuais ou por contadores eletrônicos. Os métodos 
manuais utilizam a Câmara de Neubauer para as contagens de leucócitos e de hemácias, o tubo de 
Wintrobe ou tubos capilares para a determinação do hematócrito e o espectofotômetro para a leitura da 
hemoglobina. Os métodos semi-autimáticos utilizam vários tipos de tecnologia. Os dois principais tipos de 
contadores são aqueles que se baseiam nas modificações de impedâcia do fluxo elétrico e aqueles que 
utilizam as diferenças nas propriedades da dispersão da luz.
A automação e a computadorização dos laboratórios de hematologia iniciaram-se nos anos 50 e 
tornaram-se obrigatórios nos laboratórios de grande porte. Os métodos manuais precisam ser conhecidos 
pois são utilizados nos laboratórios de pequeno porte e mesmo nos maiores em situações de 
excepcionalidade, como quando as contagens excedem a linearidade do instrumento ou quando o mesmo 
não está funcionando.
A observação microscópica de extensões coradas é indispensável mesmo em laboratórios que 
possuem equipamentos automatizados de última geração.
Um fator importante a ser observado relaciona-se à exatidão e precisão da contagem, o que irá 
depender da diluição adequada da amostra sanguínea e da medição precisa. O sangue sempre deverá ser 
precisamente aliquotado e as células uniformemente distribuídas na amostra. O tipo de diluente utilizado 
depende do tipo de célula que se pretende contar. As células vermelhas requerem um meio isotônico, 
enquanto na contagem das células brancas utiliza-se um diluente que destrua a maioria das células 
vermelhas. Por tudo isso, torna-se óbvio concluir que os métodos automáticos são mais exatos e precisos 
que os manuais, minimizando estatisticamente os erros.
Exames que constituem o Hemograma:
II. Eritrograma, série vermelha ou hemograma parcial:
Os eritrócitos são as células mais numerosas do sangue, sendo essenciais à respiração 
tecidual, pois eu conteúdo hemoglobínico atua no transporte de O2 e CO2 .
¨ Hematimetria (Htm):
Curso Técnico em Análises Clínicas 
Hematologia I
28
É a contagem de hemácias por mm3 de sangue. É realizada manualmente através da 
contagem na Camara de Neubauer após diluição do sangue ou por contadores 
eletrônicos.
Valores normais:
Homens adultos: 5,3 +- 0,8 milhões/ mm3
Mulheres adultas: 4,7 +-0,7 milhões/ mm3
¨ Hemoglobina (Hb):
Os principais erros na dosagem de hemoglobina são inerentes aos erros de diluição ou 
à elevada turbidez da amostra, pela lise inadequada das células vermelhas, leucocitose 
ou níveis elevados de lipídeos no plasma.
Valores normais:
Homens adultos: 15,3 +- 2,5 g/dL
Mulheres adultas: 13,6 +- 2,0 g/dL
¨ Hematócrito (Htc):
Fornece o volume ocupado pelas hemácias em 100 mL de sangue após a 
centrifugação. É realizado enchendo o tubo de Wintrobe (macrométodo) ou o tubo 
capilar (micrométodo), centrifugando e fazendo a leitura do volume ocupado pelas 
hemácias, cujo resultado é dado em porcentagem.
Valores normais:
Homens adultos: 46 +- 7%
Mulheres adultas: 42 +- 6%
¨ Índices hematimétricos
São cálculos matemáticos feitos por meio da Htm, Hb e Htc que irão fornecer 
informações em relação ao tamanho da hemácia e concentração de hemoglobina. A 
análise dos índices hematimétricos no eritrograma é útil na classificação morfológica 
das anemias ( o que será visto com detalhes no capítulo referente às anemias).
a. Volume Globular Médio (VGM ou VCM)
O VGM fornece o volume médio (tamanho) das hemácias. Como a avaliação do 
tamanho das hemácias é uma chave para o diagnóstico de uma anemia, o VGM é o 
mais importante parâmetro dos índices hematimétricos. Mesmo quando o número de 
hemácias é normal, deve-se notar o valor do VGM no resultado do hemograma, 
porque uma anormalidade do tamanho das hemácias precede o aparecimento de 
anemia franca.
Cálculo: VGM= Htc/Htm x 10 
Valores normais: 80 a 98 fL
b. Hemoglobina Globular Média (HGM ou HCM)
É a medida do conteúdo hemoglobínico por hemácia, ou seja, é o peso de 
hemoglobina na hemácia.
Curso Técnico em Análises Clínicas 
Hematologia I
29
Cálculo: HGM = Hb/Htm x 10
Valores normais: 26 a 34 pg
Nas anemias, em que a síntese de hemoglobina é prejudicada, a massa de 
hemoglobina por hmácia diminui, levando ao decréscimo de HGM. A HGM poderá 
estar falsamente elevada pela hiperlipidemia ou pela leucocitose, pois o aumento da 
turbidez plasmática poderá elevar a medida da hemoglobina. Para isto, a 
centrifugação da amostra para eliminar a turbidez seguida da determinação da 
hemoglobina pelo método manual poderá permitir a correção do valor da HGM.
c. Concentração da Hemoglobina Globular Média (CHGM ou CHCM)
Fornece a medida da concentração média de Hb das hemácias, ou seja, a 
proporção de massade hemoglobina em relação ao volume em que ela está contida.
Cálculo: CHGM = Hb/Htc x 100
Valores normais: 31 a 36 %
III. Leucograma, série branca
Os leucócitos são os glóbulos brancos do sangue, formados basicamente pela medula óssea, 
apresentam a função de defesa do organismo.
¨ Leucometria Global:
É a contagem total dos glóbulos brancos ( leucócitos) do sangue. Neste caso não é feita 
a distinção entre os tipos de células presentes (neutrófilos, eosinófilos, basófilos, 
linfócitos e monócitos).
Intervalo de referência paraadultos: 4.000 a 11.000 leucócitos/ mm3
¨ Leucometria específica:
É a contagem específica dos leucócitos realizado em extensões sanguíneas coradas 
pelos corantes hematológicos. Após a lâmina secar, baseado nos caracteres 
morfológicos, contamos, no mínimo, 100 leucócitos, classificando-os.
Curso Técnico em Análises Clínicas 
Hematologia I
30
Curso Técnico em Análises Clínicas 
Hematologia I
31
EXERCÍCIOS DE FIXAÇÃO
1. Qual a importância diagnóstica do hemograma?
2. Cite as metodologias empregadas para a realização do hemograma? Explique em que consiste 
cada uma delas.
3. Em que se baseia a citometria de fluxo e a impedância?
4. Cite os interferentes que podem comprometer a qualidade desse exame.
5. Quais exames constituem o hemograma?
6. Quais equipamentos podemos usar para as contagens manuais de hemácias, leucócitos e 
plaquetas?
7. Quais retículos da câmara de Neubauer usamos para contar hemácias, leucócitos e plaquetas?
8. O que pode interferir na dosagem da hemoglobina?
9. Qual a importância da medida do hematócrito?
10. Como pode ser realizada a medida do hematócrito?
11. O que são e qual a função dos índices hematimétricos no hemograma?
12. Quais as fómulas utilizamos para calcularmos os índices hematimétricos?
Curso Técnico em Análises Clínicas 
Hematologia I
32
UNIDADE VI
HEMOGLOBINA
A hemoglobina é o principal componente dos eritrócitos, constituindo aproximadamente 35% de 
seu peso. Trata-se de uma proteína conjugada, que serve de veículo para o transporte do oxigênio 
(levando-o dos pulmões aos tecidos de todo o corpo), do dióxido de carbono, nutrientes e excretas. O 
tempo médio de vida dos glóbulos vermelhos é de aproximadamente 120 dias, após este período, eles se 
degeneram no baço ou no sistema circulatório, sendo o ferro reintegrado aos novos eritrócitos (glóbulos 
vermelhos) que se formam na medula óssea. 
Sua molécula, de estrutura quaternária, é um tetrâmero: contém 4 cadeias polipeptídicas (cadeias 
de globina) e um grumo heme ligado a cada uma das cadeias de globina, sendo duas cadeias do tipo alfa 
e duas cadeias do tipo beta. Isso permite a existência de diferentes combinações entre essas cadeias, 
determinando os 6 tipos de hemoglobinas produzidos na fase pré-embrionária e após o nascimento. A 
cada fase de desenvolvimento a síntese de hemoglobina vai se adaptando às mudanças sofridas pelo 
corpo. O grupo heme é um pigmento contendo ferro que se combina com o oxigênio, e confere à molécula 
sua capacidade de transportar oxigênio e outros gases. A hemoglobina é capaz de transportar oxigênio 
numa quantidade superior a vinte vezes seu volume. Entretanto, quando se une ao monóxido de carbono
(ligação irreversível), ela perde sua capacidade de se combinar com o oxigênio, o que implicará na perda 
de sua função e, consequentemente, em possíveis danos ao organismo.
Molécula de hemoglobina
A principal função da hemoglobina é transportar o oxigênio dos pulmões para os tecidos. Isso 
ocorre graças à capacidade de seus átomos de ferro de se ligar com o oxigênio, reversivelmente.
Curso Técnico em Análises Clínicas 
Hematologia I
33
O ferro chega até a molécula de hemoglobina por meio de seu transportador, uma proteína 
chamada transferrina. Através de receptores específicos, o complexo ferro-transferrina se liga à membrana 
da hemácia, que se invagina em alguns pontos, formando algumas vesículas com o ferro que penetrou e 
se desligou da transferrina, que, por sua vez, volta ao plasma para poder transportar outro átomo de ferro. 
A produção do grupo Heme começa após a entrada de ferro na hemácia, contando com a participação de 
muitas enzimas. Quando há defeitos na produção dessas enzimas, podem surgir várias patologias, 
chamadas porfirias. A formação da hemoglobina acontece no citoplasma dos eritroblastos.
Cada molécula de hemoglobina combina-se de forma reversível com 4 moléculas de oxigênio. Nos 
alvéolos pulmonares o oxigênio do ar difunde-se para os capilares sanguíneos e penetra nas hemácias, 
onde se combina com a hemoglobina, enquanto o gás carbônico (dióxido de carbono) é liberado para o ar 
(processo chamado hematose). Nos tecidos ocorre um processo inverso: o oxigênio dissocia-se da 
hemoglobina e difunde-se pelo líquido tissular, atingindo as células. O monóxido de carbono liberado pela 
combustão incompleta de combustíveis fósseis e pela fumaça dos cigarros, entre outros, combina-se com 
a hemoglobina de uma maneira mais estável do que o oxigênio. Dessa forma a hemoglobina fica 
impossibilitada de transportar o oxigênio, podendo levar à morte por asfixia.
EXERCÍCIOS DE FIXAÇÃO
1. Sobre a molécula de hemoglobina, dê sua constituição e função.
2. Explique o metabolismo do ferro para a constituição da molécula de hemoglobina.
3. Descreva a importância do ferro para a hemoglobina.
4. Cite os tipos de hemoglobinas existentes como e quando são sintetizadas.
5. Cite a proteína de transporte e a proteína de armazenamento do ferro.
6. Fale sobre as ligações da hemoglobina com o Oxigênio e com o Monóxido de Carbono.

Continue navegando