Buscar

Processos Biológicos Básicos unidade 2

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 53 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 53 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 53 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

- -1
PROCESSOS BIOLÓGICOS
CAPÍTULO 2 - PRINCIPAIS ENGRENAGENS
DA MAQUINARIA CELULAR
Nícolas Murcia / Vinicius Canato Santana
- -2
Introdução
As células são as unidades estruturais e funcionais dos seres vivos. Esta constatação corrobora com o conceito da
“teoria celular”, que define que os seres vivos têm constituição celular. Nos tecidos corporais dos organismos
animais, cumprem inúmeras funções especializadas, as quais relacionam-se, principalmente, à reprodução, ao
desenvolvimento, à manutenção e à hereditariedade. Em comum, as células procarióticas e eucarióticas
apresentam características importantes, como a constituição de membranas biológicas que têm a extraordinária
função de proteger e regular a maioria das funções celulares. Além disso, no meio interno das células
eucarióticas, há inúmeras organelas que cumprem funções específicas e colaboram para a compreensão das
funções dos tecidos e sistemas de órgãos, assim como de disfunções orgânicas. Porém, as unidades biológicas da
vida não estão limitadas às estruturas e suas atividades. Em nível molecular, entendemos como os processos
biológicos de saúde e de doença podem estar relacionados com o genoma dos seres vivos, principalmente, nos
mecanismos de replicação, transcrição, tradução e regulação do material genético, característico de cada ser vivo.
Fique atento ao conteúdo didático deste capítulo e bons estudos!
2.1 Membranas biológicas
As células são compartimentadas externa e internamente por membranas, finas camadas com espessura que
variam de 7 nm a 10 nm. As membranas exercem atividades variadas e complexas nas células, entre as quais:
seleção de solutos, impedindo trocas aleatórias de compostos entre os meios intra e extracelulares; formação de
vesículas de transporte de substâncias nos processos de endo e exocitose; reconhecimento e adesão intercelular
através da matriz extracelular, e interação com substâncias sinalizadoras, como hormônios e
neurotransmissores, por meio de receptores.
2.1.1 Estrutura e função das membranas biológicas
Ao microscópio eletrônico, as membranas apresentam-se como camadas duplas. De origem lipídica, são
formadas basicamente por fosfolipídios, proteínas e colesterol. Observe nas figuras a seguir a estrutura das
membranas.
- -3
Figura 1 - Membrana celular: micrografia da membrana plasmática de hemácia, sendo que A mostra a membrana 
separando os meios intra (área escura) e extracelular (área clara), e B é a representação esquemática de 
membrana celular e seus componentes lipídicos e proteicos.
Fonte: ALBERTS et al., 2017, p. 565.
A seguir, você estudará sobre os componentes lipídicos da membrana.
Componentes lipídicos de membrana
Você sabia que os fosfolipídios têm propriedade anfipática? Isso significa que são moléculas que possuem
domínios hidrofílicos (cabeça polar) e domínios hidrofóbicos (cadeias hidrocarbonadas apolares). Para saber
mais sobre esse tema clique nas setas a seguir.
Esta característica dos fosfolipídios é crucial para a compreensão da organização das membranas nos
organismos vivos que são constituídos por grandes quantidades de água. O fosfolipídio mais abundante das
membranas é a fosfatidilcolina.
Outros tipos podem estar presentes em concentrações variadas, tanto na superfície das células quanto nas
organelas. Nas membranas, a composição por fosfatidilserina, fosfatidiletanolamina e fosfatidilinositol é mais
abundante na monocamada interna; por sua vez, esfingomielina e fosfatidilcolina são mais presentes na
monocamada externa da membrana plasmática.
Alguns fosfolipídios podem ainda estar ligados a carboidratos, formando, assim, glicolipídios.
- -4
Alguns fosfolipídios podem ainda estar ligados a carboidratos, formando, assim, glicolipídios.
Observe na imagem a seguir as partes típicas de uma molécula de fosfolipídio.
Figura 2 - Partes da fosfatidilcolina, respectivamente: esquema (A), fórmula química (B) e modelo de 
preenchimento espacial (C).
Fonte: ALBERTS et al., 2017, p. 567.
O colesterol, molécula anfipática, se encontra intercalado entre os fosfolipídios, atenuando a mobilidade e a
fluidez da membrana. Isso ocorre devido à sua estrutura rígida esteróide, que contribui com a característica de
barreira seletiva da bicamada.
Figura 3 - Estrutura do colesterol, respectivamente: fórmula química (A); esquema (B) e modelo de 
- -5
Figura 3 - Estrutura do colesterol, respectivamente: fórmula química (A); esquema (B) e modelo de 
preenchimento espacial (C).
Fonte: ALBERTS et al., 2017, p. 568.
Normalmente, as membranas possuem estrutura fluida, sendo variável de acordo com o grau de saturação dos
ácidos graxos das cadeias hidrocarbonadas (quanto mais insaturações, maior a fluidez; quanto mais saturações,
maior a rigidez). Veja na figura a seguir a movimentação de molécula lipídica na bicamada.
Figura 4 - Difusão transversal flip-flop na bicamada lipídica.
Fonte: ALBERTS et al., 2017, p. 570.
Por esta propriedade, os componentes da bicamada podem ser deslocados lateralmente pela superfície da
membrana, mas também de uma monocamada para outra. Esse tipo de movimento é denominado . flip-flop
Componentes proteicos de membrana
Além do fosfolipídios, as membranas celulares são constituídas por proteínas, cuja razão lipídio: proteína é
equilibrada, na maioria das vezes. Porém, há membranas nas quais as quantidades de lipídios e de proteínas são
bastante diferentes. Exemplos clássicos são as bainhas de mielina dos neurônios, ricas em lipídios de diversas
naturezas, e da membrana interna das mitocôndrias, em que são observadas grandes quantidades de proteínas
do complexo enzimático.
Proteínas de membrana
As proteínas de membrana podem ser classificadas como periféricas quando estão associadas à superfície
externa da célula, ou seja, às cabeças dos fosfolipídios da monocamada externa ou a proteínas integrais. As
proteínas classificadas como integrais recebem esta denominação por estarem inseridas na membrana,
atravessando a bicamada de um lado a outro (proteínas transmembrana). Porém, há proteínas que despontam
em uma das superfícies da membrana, a partir do cerne hidrofóbico da bicamada.
Observe na figura as moléculas das proteínas integrais, imersas na camada lipídica.
- -6
Figura 5 - Moléculas de proteínas integrais e da membrana plasmática.
Fonte: JUNQUEIRA; CARNEIRO, 2012, p. 84.
Proteínas e aminoácidos possuem duas extremidades características: terminal carboxila e terminal amina. Nas
membranas, esses terminais, geralmente, estão associados aos meios aquosos intracelulares (extremidade
carboxila) e extracelulares (extremidade amina), locais onde há predomínio de aminoácidos hidrofílicos. No
cerne da membrana, local em que estão dispostos os ácidos graxos dos fosfolipídios, grande quantidade dos
aminoácidos dessas proteínas são hidrofóbicos. Veja, na figura a seguir, formas de associação de proteínas à
bicamada lipídica.
Figura 6 - Proteínas à bicamada lipídica: única α-hélice (1); múltiplas α-hélices (2); folha β (3).
Fonte: ALBERTS et al., 2017, p. 577.
- -7
Fonte: ALBERTS et al., 2017, p. 577.
A organização estrutural das proteínas de membrana é variada. Algumas formam alças com curvas
exteriorizadas para os meios intra e extracelular. Já outras, têm conformação cilíndrica e oca, cujas funções são
de importância para o transporte de substâncias hidrossolúveis.
Glicoproteínas e glicolipídios 
Como lipídios e proteínas membranosas podem se associar a moléculas de carboidratos, formam
respectivamente glicolipídios e glicoproteínas.
Os resíduos de carboidratos dos glicolipídios e das glicoproteínas são observados na superfície externa das
membranas de organelas e da membrana plasmática. Nessa última, formam o glicocálice. Essas associações
cumprem diversas funções, tais como: proteção celular contra agentes nocivos mecânicos e químicos; adesão e
reconhecimento intercelular; determinação de grupos sanguíneos; proteção antigênica frente a agentes
infecciosos, e ação enzimática.
Na sequência, você conhecerá o modelo do mosaicofluido. Acompanhe!
2.1.2. O modelo do mosaico fluido explica a dinâmica das membranas 
biológicas
Fosfolipídios e proteínas de membrana têm como característica comum a capacidade de rotacionarem em torno
de seus próprios eixos e deslocarem-se lateralmente nas monocamadas das membranas. Imaginando essa
dinâmica dos constituintes da membrana em estado fluido é que se originou o modelo do mosaico fluido.
O modelo foi proposto em 1972, por Singer e Nicholson, que descreveram as membranas biológicas como um
mosaico de proteínas imersas em um fluido lipídico.
VOCÊ SABIA?
Os grupos sanguíneos do sistema ABO são determinados por certos oligossacarídeos muito
curtos e semelhantes, presentes na membrana plasmática das hemácias. Estes oligossacarídeos
somente diferem por seus monômeros terminais e são ligados a uma proteína transmembrana
ou a uma ceramida. Assim, nas hemácias pertencentes ao grupo A, o monossacarídeo terminal
da cadeia oligossacarídica é a N-acetilgalactosamina, e nas do grupo B é a galactose; quando
estes monossacarídeos terminais estão ausentes, as hemácias pertencem ao grupo sanguíneo
O.
- -8
Independentemente da explicação de Singer e Nicholson ser clara quanto ao estado fluido da membrana, é
importante salientar que proteínas membranosas não possuem plena mobilidade lateral. Elas podem estar
associadas a componentes do citoesqueleto ou junções oclusivas celulares que as imobilizam.
Se a membrana apresenta certa permeabilidade, há intercâmbio de substâncias entre os meios intra e
extracelulares e entre o citosol e o interior das organelas. Assim, é importante lembrar que os processos
dinâmicos de transporte de substâncias pela membrana ocorrem com ou sem consumo de energia. Dessa forma,
nos mecanismos de transporte passivo não há gasto de energia; já o transporte ativo dependente de energia.
2.1.3 Componentes das membranas envolvidos no transporte passivo e 
ativo
Para uma substância ser transportada sem consumo energético é necessário compreender as estruturas
moleculares da membrana. Para o transporte passivo é considerada a própria estrutura lipídica da membrana na
difusão simples. Já algumas categorias de proteínas transmembranas permitem a passagem dos solutos, como
canais iônicos e permeases (transportadores) na difusão facilitada. O transporte ativo ocorre por proteínas
VOCÊ O CONHECE?
Garth L. Nicholson (1º de outubro de 1943) – Instituto de Medicina Molecular de Huntington
Beach, (Estados Unidos) e Universidade de Newcastle (Austrália) – publicou mais de 650
artigos, incluindo a edição de 20 livros. Atuou nos conselhos editoriais de 30 revistas médicas
e científicas. Ganhou muitos prêmios, dentre os quais a Medalha Burroughs Wellcome da Royal
, Prêmio Stephen Paget da Sociedade de Pesquisa em Metástase, Prêmio Society of Medicine
do Instituto Nacional do Câncer dos EUA e Prêmio de MedicinaOutstanding Investigator 
Inovadora do Canadá.
Seymour Jonathan Singer (1924–2017) foi professor da Universidade da Califórnia e
pesquisador de estrutura das membranas celulares, incluindo proteínas da membrana celular
amiloide e presenilina na doença de Alzheimer. Ganhou o prêmio EB Wilson da American
, em 1991.Society for Cell Biology
Em 1972, esses cientistas publicaram um trabalho inovador em biologia celular sobre o
modelo do mosaico fluido da membrana celular. Esse fato, atualmente, explica uma ampla
gama de processos como sinalização célula-célula, divisão celular, brotamento de membranas
e fusão celular. Acesse o e leia o artigo que traz uma excelente atualização do modelo delink 
Singer-Nicholson. Disponível em: < >. Boa leitura!https://bit.ly/2MEs365
VOCÊ QUER LER?
Já que o assunto é membrana, leia o texto “Lipossomas e suas aplicações terapêuticas: estado
da arte” (BATISTA; CARVALHO; MAGALHÃES, 2007) e entenda o que são e para que servem os
lipossomas. Disponível em: < >. Boa leitura!http://www.scielo.br/pdf/rbcf/v43n2/02.pdf
- -9
difusão simples. Já algumas categorias de proteínas transmembranas permitem a passagem dos solutos, como
canais iônicos e permeases (transportadores) na difusão facilitada. O transporte ativo ocorre por proteínas
transportadoras, porém por uma dinâmica diversa.
Antes de continuar seus estudos, veja na animação a seguir os mecanismos de transportes através das
membranas.
Pela animação, você pode observar que moléculas pequenas e apolares podem se mover passivamente por
difusão simples, por canais ou transportadores. O transporte passivo permite que as moléculas se movam a favor
dos seus gradientes de concentração. Já no transporte ativo, o movimento é contrário ao gradiente de
concentração e exige aporte de energia.
Para aprender mais sobre o tema, clique nas abas abaixo.
Direcionamento de solutos
Direcionamento de solutos a partir da membrana
Um dos fatores que diferencia os dois tipos de transporte é o direcionamento dos solutos a partir da membrana.
Para que ocorra o movimento de solutos por difusão, seja ela simples ou facilitada, é necessária uma diferença de
concentração entre os meios intra e extracelular. Assim, os solutos se deslocam do meio de maior concentração
para o de menor concentração, a uma dada velocidade. Esta diferença é chamada de gradiente de concentração.
Além disso, há solutos carregados eletricamente, como íons (sódio) e Na+ K- (potássio), que podem ser
movimentados pelo gradiente de voltagem e de concentração, formando o gradiente eletroquímico. Dessa forma,
a difusão ocorre sempre a favor dos gradientes de concentração e do eletroquímico, sem gasto de energia
(transporte passivo). Pelo contrário, o transporte ativo vai de encontro aos gradientes de concentração e
eletroquímico, com gasto de energia.
Difusão simples 
Transporte passivo por difusão simples
As substâncias lipossolúveis (miscíveis nos fosfolipídios) atravessam o cerne hidrofóbico das membranas com
relativa facilidade.
Moléculas apolares e diminutas como (oxigênio), o (dióxido de carbono) e o (nitrogênio), da mesmaO
2
CO
2
N
2
forma que moléculas lipossolúveis com maior peso molecular, como ácidos graxos e o colesterol, podem difundir-
se pelas bicamadas lipídicas. Em contrapartida, há moléculas com natureza polar, como o glicerol e a ureia, que
também atravessam as membranas celulares por serem pequenas o suficiente e não estarem carregadas
eletricamente.
Difusão facilitada 
Transporte passivo por difusão facilitada
Para difusão das moléculas hidrossolúveis deve ser considerado seu tamanho, ou seja, se for grande, maior será
a dificuldade de transporte. São exemplos, dessas moléculas, os açúcares simples glicose e frutose, os
aminoácidos e os nucleotídeos. Outra característica importante é a presença de carga elétrica. Os íons, por
possuírem carga elétrica, encontram-se dissolvidos em solução aquosa e estabelecem associações com moléculas
de água, fator impeditivo ao transporte por difusão simples.
Da mesma forma, na difusão facilitada, a mobilização das partículas de soluto ocorre em função dos seus
gradientes de concentração e elétrico, sem consumo de energia. A principal diferença entre as duas modalidades
de transporte está centrada na necessidade de proteínas, canais iônicos e permeases, na difusão facilitada.
Observe, na imagem a seguir, como os íons inorgânicos e moléculas orgânicas polares atravessam a membrana
por transportadores ou canais.
- -10
Figura 7 - Íons inorgânicos e moléculas orgânicas polares atravessam a membrana por transportadores ou 
canais.
Fonte: ALBERTS et al., 2017, p. 386.
Na sequência, estudaremos os canais iônicos.
Canais iônicos
São proteínas transmembrana encontradas em todos os tipos de células, sendo específicos para os íons que
transportam (Na , K , Ca e Cl ). Lembrando que o transporte iônico é impulsionado pelo gradiente+ + 2+ -
eletroquímico, entende-se que há diferenças de voltagem entre os meios interno e externo à membrana.
Clique nas interações a seguir e aprenda mais sobre o assunto.
•
Diferença de eletronegatividade
Normalmente, a superfície intracelular da membrana plasmáticaestá carregada negativamente, e
a superfície extracelular, positivamente. Essa diferença de eletronegatividade facilita ou dificulta a
entrada e a saída de íons da célula pela membrana.
•
Concentração de íons
Considerando também as concentrações dos íons em ambos os lados das membranas, fica mais
fácil compreender o gradiente eletroquímico influenciando o transporte desses íons.
•
Gradiente de voltagem e concentração
Por exemplo, se for considerado o gradiente de voltagem para os íons , esse é um fator que seK+
opõe ao efluxo do íon (saída do íon) das células. Porém, ao ser considerado gradiente de
concentração, ou seja, no meio intracelular há maior concentração de íons esse será favorecido.K+
Quando estes fatores, no caso do de naturezas opostas se equilibram, o gradiente eletroquímicoK+
é nulo e o efluxo do é cessado. K+
Basicamente existem dois tipos de canais iônicos, os ligante-dependentes e os voltagem-dependentes. A maioria
dos canais iônicos possui um sistema de regulação da abertura e do fechamento ajustados pela variação do
potencial elétrico (dependentes de voltagem), ou por ligantes, como neurotransmissores (dependentes de
•
•
•
- -11
potencial elétrico (dependentes de voltagem), ou por ligantes, como neurotransmissores (dependentes de
ligantes). Assim, ficou claro que o transporte de solutos por proteínas em canais iônicos é influenciado pelo
gradiente eletroquímico e estímulos elétricos ou químicos.
Permeases
Cada permease possui locais de ligação específicos para um ou dois tipos de solutos, em um ou ambos lados da
bicamada, que se fixam à proteína e são transferidos para o lado oposto. Há diversos tipos de permeases que
estão relacionadas aos processos de transporte.
Clique nas abas a seguir para conhecê-las.
Uniportadores
Realizam transporte pela transferência de um único tipo de soluto e sentido, como no transporte de glicose pelas
proteínas GLUT 1 e GLUT 7.
Simportadores
Realizam a transferência de dois tipos de solutos em um único sentido, como no transporte de glicose e Na+ pela
SGLT1-SGLT2 no epitélio intestinal.
Antiportadores
Realizam a transferência de dois tipos de solutos em sentidos opostos de Cl- (cloreto) e HCO3- (bicarbonato) nas
hemácias.
Nos processos de cotransporte por simportadores e antiportadores, uma partícula depende da outra para ser
transportada.
Figura 8 - Cotransporte: no simporte, “a” e “b” são transportados no mesmo sentido. No antiporte, “a” e “b” são 
transportados em sentidos oposto.
Fonte: JUNQUEIRA; CARNEIRO, 2012, p. 91.
Na sequência, você estudará o transporte da glicose. Fique atento!
- -12
Transporte da Glicose
A glicose, por ser relativamente grande, conta com proteínas de membrana que auxiliam sua entrada nas células.
Essas proteínas, os Transportadores de Glicose (GLUTs), possuem diferenças estruturais especializadas. Você os
conhece? Clique nas abas e descubra!
GLUT3
O GLUT3 é o principal transportador de glicose do Sistema Nervoso Central (SNC), que possui
alta afinidade pela glicose e, mesmo em hipoglicemia, há absorção de glicose eficientemente.
GLUT4
O GLUT4 é encontrado nos tecidos adiposo e muscular. São ativados quando colocados, se
deslocam e ficam expostos na membrana, sob o estímulo da insulina (transportador sensível
à insulina).
GLUT2
Os GLUT2 das células β pancreáticas aportam glicose ao meio interno da célula, onde é
convertida, por processos metabólicos, em ATP. Com o aumento do ATP há um acúmulo de
íons positivos no interior da célula, despolarizando-a e promovendo a abertura de canais de 
Ca+2. Com o influxo de Ca+2 na célula, as vesículas de insulina se fundem com a membrana
das células, liberando-a para a corrente sanguínea. Nos tecidos adiposo e muscular, a insulina
estimula a absorção da glicose pelos GLUT4, fato que diminui os níveis de glicose sistêmica.
Além disso, há transportadores de glicose no intestino delgado e nos túbulos renais, que realizam cotransporte
da glicose com o sódio. Esses transportadores são chamados de SGLT (do inglês, ),sodium glucose transporters
sendo considerado transporte ativo secundário, e não difusão facilitada.
A seguir, aprenda mais sobre o transporte ativo.
Transporte ativo
Algumas substâncias transportadas pela membrana não obedecem aos gradientes de concentração e
eletroquímico e, para isso, há consumo de energia.
Para conhecer outros aspectos relacionados ao transporte ativo, clique nas interações a seguir.
O transporte ativo também ocorre por meio de permeases, nesse caso chamadas bombas. Dentre as várias
categorias de bombas, Na+K+ ou Na+K+-ATPase são antiportadores importantes e estabelecem as diferenças nas
concentrações de Na+ eK+ entre os meios intra e extracelulares, garantindo a manutenção do potencial elétrico
da membrana plasmática. O transporte ativo tem por função promover o efluxo de Na+ e influxo K+ nas células.
A possui quatro subunidades de proteínas integrais da membrana. As subunidades α têm locaisNa+K+-ATPase 
específicos para fixação do Na+ em suas extremidades internas em contato com citoplasma e para fixação do K+
em suas extremidades externas, sendo a transferência de ambos os íons interdependentes (acopladas) contra os
seus gradientes.
VOCÊ QUER VER?
Assista à explicação da ação da insulina na captação de glicose nos transportadores GLUT4 dos
adipócitos e fibras musculares. Disponível em: <https://www.youtube.com/watch?
>.v=cFAa2DqQi7M
- -13
Como o aparato da bomba necessita de energia, esta é obtida na clivagem do ATP realizada pela Na+K+-ATPase
na presença de Mg2+. O ATP se associa ao seu sítio específico localizado na porção citosólica da subunidade
proteica e sua quebra promove o transporte de três Na+ para o meio extracelular e de dois K+ para o citoplasma.
Essa ação é eletrogênica, pois gera uma diferença de potencial elétrico entre ambos os lados da membrana
plasmática. O lado intracelular normalmente é eletronegativo em relação ao lado extracelular. Além disso, ciclos
de fosforilação e desfosforilação determinam alterações na conformação estrutural da bomba, as quais auxiliam
o bombeamento iônico.
Na imagem, a seguir, observe a atividade de uma .Na+K+-ATPase
Figura 9 - A bomba Na+K+-ATPase utiliza a energia da hidrólise do ATP para bombear Na+ para fora das células 
e K+ para dentro.
Fonte: ALBERTS et al., 2017, p. 392.
Quando ocorre a hidrólise do ATP, é liberado o ADP, e o fosfato inorgânico é transferido a um ácido aspártico de
uma das subunidades. Dessa forma, ocorre a fixação de três Na+no transportador. Em seguida, ocorre uma
alteração conformacional na estrutura da bomba, o que resulta no efluxo de Na+ da célula. Na sequência, dois K+ 
presentes no meio extracelular se associam às subunidades α, provocando uma desfosforilação (liberação do
fosfato). Por fim, a desfosforilação faz com que a bomba retome seu estado inicial, gerando influxo dos K+ para o
citoplasma.
- -14
Dando prosseguimento aos seus estudos sobre as membranas biológicas, você conhecerá o transporte em
quantidade. Acompanhe!
Transporte em quantidade
As células transferem para o meio interior grupos de macromoléculas e microrganismos por transporte em
bloco, que dependem de alterações morfológicas na superfície da célula. Observe, nos diagramas a seguir, os
tipos de transporte por quantidade.
VOCÊ SABIA?
A Na K -ATPase pode ser inativada por fármacos como digitoxina, um cardiotônico que+ +
melhora a capacidade funcional do coração, bloqueando o cotransporte de Na e K . A inibição+ +
da bomba ocorre porque os cardiotônicos, ao competirem com o K , impedem a liberação do+
fosfato ligado à subunidade α do transportador. Como consequência, o sistema é bloqueado e
diminui a saída de Na para o meio extracelular. Isto diminui, ainda, o rendimento de um+
contratransportador passivo de Na e Ca , mediante o qual entra Na na célula e sai Ca .+ +2 + +2
Tendo em vista a menor oferta de Na desde o líquido extracelular, o seu intercâmbio é inibido+
com o Ca , que é retido no citosol. Por fim, a maior concentraçãode Ca citosólico contrai as+2 +2
células musculares cardíacas com mais força.
- -15
Figura 10 - Três modalidades de endocitose das células animais: fagocitose, pinocitose e endocitose mediada por 
receptores.
Fonte: Designua, Shutterstock, 2019.
Na fagocitose são formados pseudópodos que englobam partículas sólidas que se fixam em receptores
específicos na membrana (mecanismo de defesa). Na pinocitose, a captação ativa de macromoléculas ocorre em
solução, ou seja, gotículas líquidas, formando-se pequenas vesículas que são levadas pelo citoesqueleto ao
citoplasma.
Osmose
Ao serem comparadas duas soluções, aquela que apresentar quantidade maior de solutos é a mais concentrada,
sendo denominada solução hipertônica. Em relação à hipotônica, é menos concentrada. Dessa forma, se essa
comparação for realizada entre meios diferentes separados por uma membrana semipermeável, ocorre a
osmose. Esse fenômeno consiste na passagem de água do meio hipotônico, de menor concentração, ao meio
hipertônico, de maior concentração. Veja no objeto a seguir essa tendência da água em diluir o meio mais
concentrado da solução.
Na figura, o exemplo mais clássico de osmose em células humanas é dado através das hemácias, quando
dispensadas em soluções de cloreto de sódio (NaCl).
- -16
Figura 11 - Hemácias em meio isotônico (NaCl 0,9%), em meio hipertônico (NaCl 1,5%) e em meio hipotônico 
(NaCl 0,6 e 0,4%). Em meio fortemente hipotônico, o eritrócito se rompe (hemólise).
Fonte: JUNQUEIRA; CARNEIRO, 2012, p. 83.
Para aprender sobre esse exemplo, clique nas abas a seguir.
Meio isotônico
Se a concentração de NaCl for igual à encontrada no interior das hemácias, meio isotônico, a mesma permanece
com forma de disco bicôncavo normal.
Meio hipertônico
Já quando as hemácias estiverem em contato com soluções altamente concentradas de NaCl, meio hipertônico, a
água difunde-se ao meio externo, a célula diminui de volume, e a membrana plasmática adquire aspecto
enrugado (crenação).
Solução hipotônica
Por outro lado, colocando hemácias em solução de concentração de NaCl inferior em relação ao meio
intracelular, solução hipotônica, a célula adquire água do meio externo, o que pode provocar seu rompimento
(hemólise).
Acompanhe, na sequência, um caso interessante sobre nosso tema de estudo.
- -17
Assista ao vídeo abaixo e aprenda sobre a importância da permeabilidade seletiva das membranas na
manutenção do equilíbrio e da homeostase celular.
https://cdnapisec.kaltura.com/p/1972831/sp/197283100/embedIframeJs/uiconf_id/30443981/partner_id
/1972831?iframeembed=true&playerId=kaltura_player_1550516080&entry_id=1_ezc5k198
Aquaporinas
São proteínas canais específicas para passagem de água em membranas celulares de hemácias e células
epiteliais, aumentando a permeabilidade à água. As aquaporinas são importantes para reabsorção de água nos
néfrons, pois aumentam a permeabilidade dos túbulos coletores e ramo ascendente da alça de Henle, pela sua
inserção na membrana apical das células.
CASO
Mulher, 39 anos, neta de imigrantes judeus poloneses, procura assistência médica pela queixa
de tosse produtiva crônica há pelo menos dois anos. Relata sintomas agravados no inverno
com quadros frequentes de sinusites tratadas com antibioticoterapia. A história pregressa
cursa sem infecções ou doenças graves infantis, tabagismo e etilismo. No entanto, tem histórico
familiar de doenças pulmonares diversas, como asma e tuberculose. Na ausculta pulmonar,
revela estertores crepitantes (sons intermitentes e intensos). No exame radiológico de tórax,
mostra bronquiectasias (alargamento das vias respiratórias). A espirometria evidencia o
distúrbio ventilatório obstrutivo leve, sem resposta ao broncodilatador. O médico também
solicitou a pesquisa direta de bacilo álcool ácido resistente no escarro e de cultura para
microbactérias, todas negativas. Além disso, obteve amostras positivas para Pseudomonas
 mucoide e teste do suor com concentração de cloreto elevada, acima de 60 mmolaeruginosa
/L, contribuindo para o diagnóstico de fibrose cística.
Lembre-se de que o transportador CFTR é uma proteína de membrana encontrado nos
epitélios que revestem a pele e dutos pulmonares, hepáticos, pancreáticos, intestinais e do
sistema reprodutor. A CFTR exporta íons cloreto, e a água acompanha esses íons, contribuindo
para formação de muco. Uma mutação pode alterar a estrutura da proteína, interrompendo o
transporte de íons cloreto. Em quantidade insuficiente de íons cloreto no meio extracelular e,
consequentemente, de água, se forma um muco espesso e aderente. No sistema respiratório,
esse muco obstrui vias aéreas, dificultando a ventilação. Além disso, as células ciliares que
revestem as vias aéreas não conseguem eliminar eficientemente microrganismos, sendo as
infecções recorrentes e persistentes. Esses sintomas caracterizam a fibrose cística, doença
genética sem cura, em que um indivíduo herda o gene mutante dos pais e que ocorre em 1 a
cada 3.300 nascimentos. O tratamento envolve suporte nutricional; broncodilatadores,
antibióticos e anti-inflamatórios; e fisioterapia respiratória. A fibrose cística ocorre
frequentemente em descendentes do norte da Europa, sendo a sexta mais comum mutação da
população judaica (BELTRAMI et al., 2011; DAVIES; ALTON; BUSH, 2007).Ashkenazi
- -18
A seguir, você estudará as organelas celulares. Fique atento e confira!
2.2 Organelas celulares
As organelas são classificadas como membranosas (retículo endoplasmático, mitocôndrias, lisossomos,
complexo golgiense), ou não membranosas (ribossomos, centrossomo e o citoesqueleto).
2.2.1 Componentes das células
Em geral, a composição das células animais (citosol e organelas) é bastante semelhante, embora sejam
reconhecidos diversos tipos celulares nos tecidos. As organelas podem ser classificadas como membranosas
(delimitadas por membrana lipoproteica, como retículo endoplasmático, mitocôndrias, lisossomos, complexo
golgiense) ou não membranosas (não possuem envoltório de membrana lipoproteica como ribossomos,
centrossomo e o citoesqueleto).
Clique nas abas abaixo e aprenda sobre o citosol, citoesqueleto e microtúbulos.
Citosol
Nas células eucarióticas, o citosol abriga constituintes comumente encontrados na região protoplasmática das
bactérias, como enzimas, ribossomos e ácidos nucleicos (RNAs ribossômicos, mensageiros e de transferência).
O citosol se estende do envelope nuclear à membrana plasmática. Dessa forma, ocupa o espaço localizado entre
as organelas. Além de enzimas e dos elementos da síntese de proteínas, estão presentes no citosol moléculas
sinalizadoras (mediadores intracelulares, hormônios e íons), chaperonas (proteínas que auxiliam no
dobramento das proteínas citoplasmática), proteassomas (enzimas que descartam moléculas peptídicas
disfuncionais) e inclusões (grânulos de glicogênio, gotículas lipídicas, pigmentos e cristais proteicos).
Você sabe o que é o citoesqueleto? Na sequência, estudaremos essa estrutura das células.
Citoesqueleto
É um sistema de estruturas fibrilares que auxiliam na manutenção da forma das células, bem como nos
movimentos celulares. Os componentes primários do citoesqueleto são os microtúbulos, filamentos
intermediários e microfilamentos, todos de origem proteica. Das funções dos microfilamentos e dos
microtúbulos, o direcionamento para moléculas de proteínas e organelas são as mais importantes.
Microtúbulos
Os microtúbulos são estruturas cilíndricas tubulares com cerca de 24 nm de diâmetro, formadas por tubulina.
Existem alguns tipos de tubulina, sendo as mais importantes as tubulinas alfa (α) e beta (β) que formam
heterodímeros (proteínas compostas por duas subunidades diferentes).
As extremidades dos microtúbulos são chamadas positivas (+), onde são polimerizados; e negativas (-), onde são
VOCÊ QUER VER?
Vamos conhecer mais sobre a ação das aquaporinas? Observe o vídeo Chemical Signalling:
 (ADH), animação que mostra a ação do hormônio antidiurético. ParaAntidiuretic hormone
assistir, acesse: < >.https://www.youtube.com/watch?v=r15H_xQqOd8Caso queira assistir à animação com legendas em português, clique sequencialmente em
detalhes → legendas → traduzir automaticamente → selecione o idioma “português”.
- -19
As extremidades dos microtúbulos são chamadas positivas (+), onde são polimerizados; e negativas (-), onde são
desmontados. Os microtúbulos promovem o transporte vesicular e de organelas, e compõem as fibras do fuso
que, tracionadas, deslocam cromossomos na divisão celular.
A figura abaixo apresenta detalhes de um microtúbulo. Acompanhe!
Figura 12 - Microtúbulos: subunidade de tubulina (um dímero αβ) na parede do microtúbulo (A); dímeros de 
tubulina agrupados na parede do microtúbulo (B e C); micrografia de secção transversal de microtúbulo com 
anel de 13 subunidades distintas (D); e micrografia de microtúbulo visualizado longitudinalmente (E).
Fonte: ALBERTS, et al., 2017, p. 572.
- -20
Centrossomos
São estruturas circunjacentes ao núcleo das células animais, constituídas por um par de centríolos, normalmente
perpendiculares, envoltos pelo material pericentriolar amórfico. Os centríolos são organelas que se assemelham
a tubos cilíndricos, constituídos de microtúbulos. Os microtúbulos nos centríolos são organizados por nove
trincas longitudinais, interligadas por uma proteína ligadora, ao redor do seu diâmetro.
Os centrossomos são conhecidos como os “centros organizadores dos microtúbulos” (MTOC do inglês, 
), cuja constituição é de tubulina gama (y). Na divisão celular, os centrossomos sãomicrotubule-organizing center
replicados e migram aos polos celulares. Com a formação do fuso mitótico, coordenam as fases da divisão.
Figura 13 - Centrossomo com matriz amorfa de proteínas e anéis de γ-tubulina (vermelho) (A); a extremidade (-) 
de cada microtúbulo está inserida no centrossomo, tendo crescido a partir de um complexo do anel de γ-
tubulina; a extremidade (+) se estende para o citoplasma (B).
Fonte: ALBERTS et al., 2017, p. 573
Dando sequência aos seus estudos, apresentaremos os cílios e flagelos. Fique atento!
Cílios e flagelos
VOCÊ SABIA?
O fármaco antineoplásico colchicina se liga aos microtúbulos, impedindo que organelas sejam
deslocadas nas células, a formação das fibras do fuso na divisão celular, ocasionando a morte
celular. A colchicina tem alta afinidade pela estrutura secundária da tubulina, prejudicando a
sua polimerização pelo dobramento incorreto da estrutura secundária da β-tubulina. É
bastante empregada para testes citogenéticos por suspender a mitose das células em estudo.
Um exemplo clássico de uso da substância foi o seu emprego em protocolos de cariotipagem.
- -21
Cílios e flagelos
Os cílios e os flagelos são projeções nas células, cuja principal diferença está no comprimento. Ambas são
estruturas móveis ativadas pela proteína motora dineína. Veja, na figura a seguir, os microtúbulos nos cílios e
flagelos, organizados em arranjos “9 + 2”.
Figura 14 - Microtúbulos nos cílios e flagelos: micrografia de flagelo em secção transversal com a organização “9 
+ 2” (A); corte transversal de flagelo com nove microtúbulos externos, apresentando duas colunas de moléculas 
de dineína (B).
Fonte: ALBERTS et al., 2017, p. 583.
Os cílios promovem a propulsão de muco sobre a superfície das mucosas; já os flagelos, estruturas
características dos espermatozoides, auxiliam no seu deslocamento. Ambos apresentam um eixo longitudinal
(axonema) envolto por um prolongamento de membrana, ancorado ao corpúsculo basal. Nos nove grupos da
região circunferencial são encontradas duplas de microtúbulos. Além dessa diferença, a estrutura possui
adicionalmente dois microtúbulos centrais.
Filamentos intermediários
São denominados intermediários, pois apresentam menor espessura quando comparados com os microtúbulos,
e, maior, quando comparados aos microfilamentos (diâmetro de aproximadamente 10 nm). Colaboram com a
manutenção da forma das células e da posição das organelas. São encontrados nas células que compõem tecidos
que suportam grandes variações de tensão. Filamentos intermediários ausentes ou defeituosos podem trazer
consequências como ruptura e formação de vesículas tegumentares.
A seguir, apresentaremos os microfilamentos.
Microfilamentos 
São longas fibras de actina com diâmetro entre 4 e 6 nm. A actina é abundante nas fibras musculares estriadas e,
nas demais células, fixam-se em diversos pontos do citoesqueleto. Estão presentes nas microvilosidades da
região apical das células epiteliais do intestino delgado (bordas estriadas) e túbulos contorcidos proximais dos
néfrons renais (bordas em escova), responsáveis por funções de absorção e secreção. São bastante
desenvolvidas nos lamelipódios, estruturas emitidas pela membrana nos movimentos por superfícies.
- -22
Figura 15 - Esquema e micrografia do polo apical de célula do intestino delgado: microvilosidades.
Fonte: JUNQUEIRA; CARNEIRO, 2012, p. 135.
A principal função das microvilosidades intestinais são prolongar o citoplasma através das membranas,
ampliando a área de absorção dos enterócitos.
2.2.2 Matriz extracelular
A matriz extracelular é o elemento intercelular dos organismos multicelulares. É constituída por substâncias
fluídicas como as glicoproteínas proteoglicanas e glicosaminoglicanas, e fibrosa como colágeno, fibronectina e
laminina.
Você sabe quais são as funções gerais da matriz extracelular? Clique nos itens e confira!
- -23
• 
Preencher espaços entre as células.
• 
Aumentar a resistência à compressão e ao estiramento tecidual.
• 
Fornecer o local de chegada e distribuição de nutrientes, rejeitos celulares e moléculas
sinalizadoras.
• 
Garantir a fixação e/ou a migração de diversos tipos celulares.
Para continuar seus estudos, a seguir, você conhecerá as organelas membranosas. Vamos lá?
2.2.3 Organelas membranosas
O processo de evolução das células eucariontes culminou com a aquisição de membranas que levaram à
formação de compartimentos individualizados, com diferentes composições químicas e funções específicas: as
organelas. Elas segregam e organizam os processos bioquímicos intracelulares, fornecendo a estrutura ao
desenvolvimento e a diferenciação celular.
Mitocôndrias
Produzir energia, ou seja, ATP (trifosfato de adenosina), através da fosforilação oxidativa é a função básica das
mitocôndrias. Além disso, são importantes para regulação da apoptose. Nas células eucarióticas, há grandes
quantidades de mitocôndrias, cujo número pode variar de uma centena até milhares. Quanto maior for a
demanda energética da célula, maior será a quantidade de mitocôndrias. Dessa forma, fica fácil entender por que
células muito ativas, e que consomem muita energia, como os neurônios e as fibras musculares estriadas
esqueléticas e cardíacas, possuem grandes quantidades de mitocôndrias. A maioria é alongada, com membrana
externa lisa; um espaço intermembrana; e uma membrana interna rica em proteínas e arranjada em muitas
dobras e, por isso, são chamadas cristas que delimitam um espaço denominado matriz mitocondrial.
•
•
•
•
- -24
Figura 16 - Mitocôndrias: micrografia em corte transversal com dobramento da membrana interna (A). 
Representação tridimensional mostra a membrana externa lisa (cinza) e a interna convoluta (vermelho) (B). 
Espaço interno da mitocôndria em laranja (C).
Fonte: ALBERTS et al., 2017, p. 17.
As mitocôndrias possuem genoma (DNA circular) e ribossomos próprios, fato que corrobora com sua possível
origem a partir de bactérias aeróbicas ancestrais. Curiosamente, o DNA mitocondrial, além de ser muito menor
que o DNA encontrado no núcleo, produz poucas – mas importantes – proteínas para fosforilação oxidativa.
- -25
A seguir, você aprenderá sobre o retículo endoplasmático.
Retículo endoplasmático
O retículo endoplasmático é uma organela membranosa, descrita como uma complexa rede de túbulos profusos
interligados com aspecto achatado ou cilíndrico. O retículo endoplasmático se origina a partir da membrana
externa do envelope nuclear (aspecto granular devido aos ribossomos). A membrana doretículo endoplasmático
rugoso (granular) é contínua, a partir do envelope nuclear, com aspecto granular característico pela presença
dos ribossomos. Na sequência, a superfície da organela vai se tornando lisa, sem ribossomos – retículo
endoplasmático liso (agranular).
Os retículos endoplasmáticos rugoso e liso cumprem diversas funções importantes para as células eucarióticas.
Retículo endoplasmático rugoso
As principais funções são síntese de proteínas e armazenamento de substâncias. No organismo, é abundante em
células secretoras como as células acinosas pancreáticas (enzimas hidrolases), as células de Goblet ou
caliciformes nos epitélios (mucina, um componente do muco), pneumócitos II alveolares (surfactante),
fibroblastos (contêm protocolágeno), plasmócitos (contêm imunoglobulinas), entre outros.
Ribossomos
Os ribossomos das células eucarióticas são corpúsculos de dimensões que variam entre 15 a 20 nm (em
bactérias, são menores), responsáveis pela síntese de proteínas das células. São organelas não-membranosas,
eletrodensas, constituídas por ácido ribonucleico (RNA ribossômico ou RNAr) e proteínas. A estrutura dos
ribossomos das células eucarióticas é composta por duas subunidades, grande de 60S e pequena 40S,
classificadas de acordo com a velocidade de sedimentação em ultracentrífuga. Podem ser encontrados livres e
dispersos no citoplasma ou aderidos à membrana do retículo endoplasmático.
Ribossomos livres
Sintetizam a hemoglobina, proteína presente nas hemácias e que transporta oxigênio, e proteínas mitocondriais.
No retículo endoplasmático rugoso, produzem proteínas transmembrana, proteínas destinadas ao meio
extracelular, proteínas armazenadas no complexo golgiense, enzimas lisossomais, entre outras.
Retículo endoplasmático liso
Tem aspecto cilíndrico e, na superfície de suas membranas, não há ribossomos; dessa forma, não ocorre síntese
de proteínas. Porém, há produção de substâncias de origem lipídica importantes para o organismo, como nas
células da glândula adrenal (síntese de hormônios esteroides). No retículo endoplasmático liso são sintetizados
VOCÊ SABIA?
Os espermatozoides são os gametas masculinos e possuem na peça intermediária uma grande
quantidade de mitocôndrias. Na fecundação, acabam transferindo pouca ou nenhuma
quantidade de mitocôndrias para a célula-ovo e, por isso, as mitocôndrias das células dos
nossos tecidos e órgãos são quase que totalmente provenientes do óvulo materno. Como visto,
as mitocôndrias possuem aparato genômico próprio. Entretanto, sem um mecanismo de
reparo eficiente, as taxas de mutação no DNA mitocondrial são mais elevadas quando
comparadas às que ocorrem no genoma nuclear. Por isso, uma ampla gama de doenças
genéticas raras é conferida por mutações no genoma das mitocôndrias que, normalmente,
estão relacionadas à produção do ATP irregular. Um exemplo é a doença de Luft, causada por
mutações no genoma mitocondrial, que leva ao aumento da quantidade da organela no tecido
muscular esquelético (miopatia mitocondrial). Isso promove uma elevação do metabolismo
basal do indivíduo portador, numa condição bastante similar ao hipertireoidismo. Na doença, a
produção de ATP é inadequada, pois a fosforilação oxidativa não é eficiente, porém há
liberação de muito calor.
- -26
células da glândula adrenal (síntese de hormônios esteroides). No retículo endoplasmático liso são sintetizados
praticamente todos os lipídios de membranas, incluindo os fosfolipídios e o colesterol. Alguns desses lipídios são
inicialmente produzidos no retículo endoplasmático liso, porém são maturados no complexo golgiense
(esfingomielina e glicolipídios).
Além disso, o retículo endoplasmático liso tem a função de desintoxicar o organismo, metabolizando substâncias
como álcool e fármacos diversos, a exemplo dos barbitúricos. O uso continuado e abusivo dessas substâncias
leva ao aumento dessa organela, principalmente nos hepatócitos, o que pode contribuir para aumentar níveis de
tolerância ao uso. 
Células hepáticas, renais e pulmonares têm uma extraordinária capacidade de converter substâncias nocivas ao
organismo em compostos inócuos e facilmente eliminados como excretas. O mecanismo principal de
desintoxicação em nível celular ocorre através do citocromo P450, que promove reações de hidroxilação (ver
esquema na figura a seguir) da substância tóxica. A hidroxilação torna o tóxico solúvel em água, facilitando sua
eliminação do organismo.
Figura 17 - Esquema das reações de hidroxilação catalisadas pelo citocromo P450 e sua redutase. A redutase 
contém um grupamento Fe-S que recebe os elétrons do NAD ou do NADP e os transfere para o citocromo P450. 
Essas reações de oxidorredução levam à hidroxilação do substrato orgânico (RH) a R-OH, pela incorporação de 
um átomo de oxigênio (O2), e à formação de H2O.
Fonte: JUNQUEIRA; CARNEIRO, 2012, p. 215.
Grande quantidade de íons Ca+2 está associada a proteínas solúveis no retículo endoplasmático (chamado
sarcoplasmático nas células musculares), como a calsequestrina, principal ligadora de Ca+2 nas fibras
musculares estriadas esqueléticas, e a calreticulina, nas demais células do organismo. Nas fibras musculares
estriadas esqueléticas, a quantidade de Ca+2 citosólico, normalmente, é baixa, podendo aumentar quando a
acetilcolina (neurotransmissor) é liberada nas placas motoras das junções neuromusculares. Como resultado há
a abertura de canais deCa+2 do retículo e a liberação dos íons para sinalização da contração das miofibrilas. Ao
término do estímulo, os íons Ca+2 são retornados às cisternas do retículo, por bombas de Ca+2.
- -27
Complexo Golgiense
O complexo golgiense é formado por um conjunto de cisternas sobrepostas em número de três a oito sáculos. No
geral, suas funções são modificar, ordenar (empacotar) e enviar substâncias até seus destinos corretos nas
células. Além disso, atuam de forma complementar ao retículo endoplasmático rugoso. Dessa forma, vesículas de
proteínas se desprendem do retículo endoplasmático rugoso e se unem às cisternas cis do complexo. Na
sequência, as proteínas são transferidas por vesículas até a cisterna trans, de onde são transferidas aos
lisossomos. Algumas substâncias importantes para o organismo são processadas no complexo golgiense, como
as glicosaminoglicanas, a mucina presente no muco. Além disso, origina o acrossomo dos espermatozoides.
Os sáculos em posição convexa constituem a face cis (proximal), normalmente próxima ao núcleo e ao retículo
endoplasmático. A posição oposta e côncava constitui a face trans (distal), estando distante do núcleo e do
retículo endoplasmático, mas próximas da membrana plasmática. Medialmente, entre a face cis e trans, estão
localizadas as cisternas médias.
Proteínas originadas do retículo endoplasmático rugoso são encaminhadas ao complexo golgiense por vesículas
transportadoras, e se fundem com a membrana da região cis. As modificações das proteínas vão ocorrendo à
medida que são encaminhadas pelas cisternas, processo em que são determinados os destinos celulares corretos
nas células. Dessa forma, as vesículas que surgem da região trans contêm proteínas para serem incorporadas às
membranas, aos lisossomos ou para comporem secreções diversas.
Figura 18 - Esquema que mostra os vários compartimentos do complexo de Golgi, bem como sua relação com o 
VOCÊ QUER VER?
Assista ao vídeo e veja a liberação de Ca para contraçãoMuscle Contraction Process +2
muscular. Disponível em: < >.https://www.youtube.com/watch?v=ousflrOzQHc
- -28
Figura 18 - Esquema que mostra os vários compartimentos do complexo de Golgi, bem como sua relação com o 
retículo endoplasmático rugoso.
Fonte: JUNQUEIRA; CARNEIRO, 2012, p. 219.
Para aprender mais sobre as organelas celulares, assista ao vídeo abaixo.
https://cdnapisec.kaltura.com/p/1972831/sp/197283100/embedIframeJs/uiconf_id/30443981/partner_id
/1972831?iframeembed=true&playerId=kaltura_player_1550516384&entry_id=1_o68v12vz
As alterações pós-traducionais são responsáveis pelas alterações das característicasfuncionais das proteínas, o
que eleva a variedade dessas macromoléculas nas células.
As modificações que ocorrem no retículo endoplasmático rugoso, logo em seguida à síntese, influenciam a
conformação tridimensional. Porém, nas cisternas do complexo golgiense ocorrem atividades enzimáticas
relacionadas à glicosilação (glicosiltransferases), à sulfatação (sulfotransferases) e à fosforilação
(fosfotransferases) desses substratos.
As proteínas que serão incorporadas por lisossomos são diferentes daquelas que serão adicionadas às secreções
ou à estrutura das membranas plasmáticas. Elas podem ser alteradas por fosforilação do carbono 6 de um
resíduo do açúcar manose pela fosfotransferase, estando, dessa forma, marcadas por resíduos de manose--6--
fosfato. Essa marcação é importante para o reconhecimento de receptores que a direcionam para os lisossomos.
A seguir, você aprenderá sobre os lisossomos. Vamos lá?
Lisossomos
Os lisossomos são organelas membranosas com funções importantes para célula como renovação de estruturas
em desuso e que precisam ser eliminadas. Estão presentes em grande número em células com função secretória
e do sistema imunológico.
Para saber mais sobre os lisossomos, clique nas setas abaixo.
No meio interno dos lisossomos são encontradas enzimas como proteases, lipases, glicosidases, nucleases,
fosfolipases, fosfatases e sulfatases. Como são proteínas, as enzimas lisossomais são sintetizadas no retículo
endoplasmático rugoso. Logo, migram para o complexo golgiense, de onde serão armazenadas nos endossomos,
estruturas que irão formar lisossomos.
As enzimas lisossomais são ativas em meio ácido (pH próximo a 5), mantido pela presença de bombas de H+ que
importam moléculas de H+ ao lúmen da organela. Pela grande quantidade de enzimas, a membrana dos
lisossomos necessita de um sistema de proteção contra danos.
Esse mecanismo está relacionado com a densa constituição de glicoproteínas (proteínas glicosiladas) na porção
interna da membrana. Se a organela for rompida e houver a liberação das enzimas, a ação do pH praticamente
neutro do citosol, poderá inativá-las, reduzindo os riscos às células.
Em algumas doenças as enzimas lisossomais podem estar ausentes ou com ação incompleta, o que resulta no
acúmulo de substratos no lúmen da organela. Essa característica define as doenças de depósito lisossômico. Por
exemplo, a deficiência de alfa-galactosidase A provoca a doença de Fabry, enquanto a deficiência de beta-
glicocerebrosidade provoca a doença de Gaucher. Todas são doenças raras, graves e potencialmente fatais.
- -29
Outro exemplo é a doença de depósito lisossômico, denominada doença de Tay-Sachs, que provoca atraso no
desenvolvimento mental e cegueira.
O próximo tópico de estudo abordará um interessante tema: o núcleo e o DNA. Fique atento!
2.3. Núcleo e DNA
O núcleo das células eucarióticas é delimitado por membrana que, no seu interior, encerra o genoma. É
importante compreender a estrutura e a dinâmica do núcleo e dos ácidos nucleicos, pois a partir daí são
elucidados os mecanismos de replicação do DNA e da transcrição e processamento do RNA, os quais serão
traduzidos em proteínas.
Fique atento à atividade abaixo.
Na sequência, você estudará a organização do núcleo e a estrutura dos ácidos nucleicos. Acompanhe!
2.3.1 Núcleo e ácidos nucleicos
O núcleo de células em interfase é visível, sendo possível identificar seus constituintes. Por exemplo, o envoltório
nuclear é um sistema de membrana que envolve e protege o núcleo.
VOCÊ QUER LER?
“Diretrizes para atenção integral às pessoas com doenças raras no Sistema Único de Saúde –
SUS” traz a Portaria GM/MS n.º 199, de 30/01/2014, sobre as doenças de Fabry e de Gaucher,
além de outras doenças raras. Disponível em: <http://bvsms.saude.gov.br/bvs/publicacoes
>. Boa leitura!/diretrizes_atencao_integral_pessoa_doencas_raras_SUS.pdf
- -30
Figura 19 - Corte de fígado observado por microscopia óptica, coloração hematoxilina-eosina.
Fonte: JUNQUEIRA; CARNEIRO, 2017.
A membrana nuclear é dupla, consistindo em membrana interna, com face voltada para o nucleoplasma, e
membrana externa, com face voltada para o meio extracelular. Ambas são separadas pelo espaço perinuclear e
apresentam aspecto crivado pela presença de poros nucleares. A face externa, ao contrário da interna, apresenta-
se frequentemente associada a ribossomos, sendo contínua e com o retículo endoplasmático rugoso.
A seguir, vamos conhecer mais sobre o envelope nuclear.
Envelope nuclear
O envelope nuclear separa o conteúdo nuclear do citoplasma e representa a barreira membranosa seletivamente
permeável, cujos poros nucleares permitem o intercâmbio de proteínas, ribonucleoproteínas e RNAs entre o
núcleo e o citoplasma.
As membranas do envelope nuclear são diferentes quanto às suas estruturas e funções. A membrana externa é
bastante semelhante e contínua à membrana do retículo endoplasmático rugoso, sendo ambas repletas de
polirribossomos associados. A membrana interna tem sua superfície suportada por uma rede de filamentos
intermediários de proteínas, denominado lâmina nuclear.
VOCÊ SABIA?
A avaliação do tamanho, forma e estrutura do núcleo das células é importante para
diagnosticar tumores. Ao final do ciclo vital, as células apresentam nítidas alterações
nucleares. Estas alterações podem incluir cariólise, ou seja, o desaparecimento do núcleo em
função da atividade da enzima DNAses e que degrada o DNA; picnose quando há condensação
da cromatina, levando à diminuição dos núcleos; e cariarrexe, ou seja, a fragmentação do
núcleo.
- -31
Figura 20 - Dissolução nuclear.
Fonte: PUC GOIÁS, [s.d.], p. 9.
Você sabe o que são os poros nucleares? Fique atento ao próximo tópico de estudo e aprenda mais sobre este
assunto.
Poros nucleares são pequenas aberturas do envelope nuclear
Os poros nucleares, aberturas de 70 a 80 nm, são formados da fusão das membranas interna e externa do
envelope nuclear.
Esta estrutura é semelhante a um diafragma e controla o intercâmbio de substâncias entre o núcleo e o
citoplasma bidirecionalmente. As proteínas ribossomais, como descrito, são montadas parcialmente nas
subunidades ribossômicas no nucléolo e, após, transportadas pelos poros nucleares ao citoplasma. Entretanto,
proteínas como histonas e lâminas são sintetizadas no citoplasma e transportadas através de poros nucleares
para o núcleo.
- -32
Figura 21 - Esquema de corte do complexo de poro, formado por dois anéis proteicos que se dispõem em um 
arranjo octogonal.
Fonte: JUNQUEIRA; CARNEIRO, 2012, p. 149.
Durante a divisão celular, o envelope nuclear é inicialmente rompido e reconstituído no final do processo.
Quando a célula inicia a divisão celular, quinases são ativadas e fosforilam as proteínas da lâmina nuclear,
tornando-as mais solúveis. Com isso, os lipídios da carioteca soltam-se das proteínas e formam vesículas. No
final do processo, quando as células-filhas estão prestes a complementarem o processo de duplicação, a
carioteca destas células começa a se organizar, uma vez que são ativadas fosfatases e removem resíduos de
fosfato do substrato proteico das proteínas da lâmina nuclear.
Concomitantemente, as vesículas lipídicas das membranas nucleares e os demais componentes proteicos da
VOCÊ QUER VER?
Assista ao vídeo e observe o que acontece com o núcleo dasActual Footage of Cell Division 
células no processo de divisão celular. Você seria capaz de descrever o processo com base
nessas lindas imagens? Disponível em: < >.https://www.youtube.com/watch?v=N97cgUqV0Cg
- -33
Concomitantemente, as vesículas lipídicas das membranas nucleares e os demais componentes proteicos da
membrana são organizados na superfície da lâmina nuclear, originado a carioteca de cada célula-filha.
Nucléolo
O nucléolo é uma região não membranosa do núcleo e local da síntese de RNA ribossômico (genes ativos para
RNAr), produção e organização inicial dos ribossomos. No núcleo tem tamanhos variados, sendo que em algumas
células podem ser observados mais de um nucléolo. São bastante desenvolvidosem células com atividade de
síntese de proteínas intensa e possuem três regiões distintas. Para conhecê-las, clique nas abas a seguir.
•
Centros fibrilares
Contêm genes de RNAr, RNA polimerase I e fatores de transcrição DNA dos cromossomos 13, 14,
15, 21 e 22.
•
Porção fibrilar
Contém genes ribossômicos, ativamente gerando transcritos de grandes quantidades de RNAr.
•
Porção granular
Representa o local da organização inicial do ribossomo a partir de partículas pré-ribossômicas.
Os genes envolvidos na síntese das subunidades ribossomais são transcritos pela enzima RNA polimerase I. Após
processamento adicional e modificação do RNAr por pequenos RNAs nucleolares (snoRNAs), as subunidades do
RNAr são montadas usando proteínas ribossômicas importadas do citoplasma. As subunidades ribossomais
parcialmente montadas (pré-ribossomos) são exportadas do núcleo através dos poros nucleares para maturação
dos ribossomos no citoplasma.
Cromatina
A cromatina, material nuclear organizado em duas categorias – eucromatina e heterocromatina –, contém DNA
associado a proteínas nucleares como as histonas; o nucléolo, regiões do núcleo. Normalmente escuras, são os
locais de síntese de RNAr, sendo compostas de DNA transcricionalmente ativos para esse tipo de RNAs, e
proteínas cujas funções estão relacionadas à regulação do ciclo celular e o nucleoplasma, onde repousam o
nucléolo, a cromatina e compostos dissolvidos (íons e nucleotídeos).
Geralmente as duas categorias de cromatina são encontradas no núcleo, sendo a forma condensada chamada
heterocromatina, e a forma dispersa denominada eucromatina. Para conhecer mais sobre essas categorias, clique
nas abas a seguir.
•
Eucromatina
Indica a cromatina ativa, ou seja, nela a informação genética do DNA pode ser reconhecida e
processada. Alguns exemplos de células com eucromatina abundante são hepatócitos e neurônios,
por apresentarem grande atividade metabólica.
•
Heterocromatina
Predomina em células metabolicamente menos ativas, como linfócitos circulantes.
•
•
•
•
•
- -34
Predomina em células metabolicamente menos ativas, como linfócitos circulantes.
Observe, na imagem abaixo, uma micrografia de secção do núcleo de um fibroblasto humano.
Figura 22 - Micrografia de secção do núcleo de um fibroblasto humano.
Fonte: ALBERT et al., 2017, p. 184.
A cromatina, como visto, é um complexo formado pelo DNA associados a proteínas estruturais, que tem um
comprimento total de aproximadamente 1,8 m, curiosamente 100.000 vezes maior que o diâmetro do próprio
núcleo. Essa intrigante característica pode ser explicada pelo perfeito dobramento, e compactação, do DNA no
núcleo das células.
Durante a divisão celular, a cromatina sofre compactações adicionais, originando os cromossomos. Cada espécie
de seres eucarióticos tem um conjunto de cromossomos característicos, que, às vezes, podem variar em número e
/ou forma. Na espécie humana, por exemplo, são normalmente contados 46 cromossomos.
- -35
Assista ao vídeo abaixo e conheça sobre os diferentes níveis de compactação do DNA.
https://cdnapisec.kaltura.com/p/1972831/sp/197283100/embedIframeJs/uiconf_id/30443981/partner_id
/1972831?iframeembed=true&playerId=kaltura_player_1550516275&entry_id=1_god1n72b
A seguir, você estudará os nucleossomas. Fique atento!
Nucleossomas
As unidades estruturais da cromatina são representadas pelos nucleossomas, isto é, associações entre o DNA e as
histonas (DNA “enrola-se” em torno de um núcleo da proteína), encontrados tanto na eucromatina como na
heterocromatina. Essas estruturas representam o primeiro nível de dobramento da cromatina, o que pode
encurtar o DNA em aproximadamente sete vezes em relação à molécula de DNA esticada. O núcleo do
nucleossoma consiste em octâmeros histonas, onde são enroladas as moléculas de DNA.
VOCÊ SABIA?
O Projeto Genoma Humano foi concluído em 2003, após cerca de 13 anos de trabalho. Mas,
mesmo antes, já havia preocupação de muitos profissionais com questões éticas envolvendo o
assunto. O genoma humano abrange o DNA, que contém as informações genéticas
armazenadas nos 46 cromossomos característicos da espécie. O genoma humano contém uma
sequência de nucleotídeos de 2,85 bilhões de pares de bases, organizados em cerca de 23.000
genes codificadores de proteínas.
Para saber mais, acesse: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-
>.88392000000300009
- -36
Figura 23 - Os nucleossomas contêm o DNA enrolado ao redor de um centro de proteínas com oito moléculas de 
histonas.
Fonte: ALBERTS et al., 2017, p. 186.
A compactação gera nucleossomas adjacentes, separados por pequenos segmentos da fita de DNA a cada 2 nm. A
extensa cadeia de nucleossomas é enrolada e gera uma fibrila de cromatina com 30 nm. Longos trechos de
fibrilas de cromatina de 30 nm são ainda organizados em domínios em alça, os quais são ancorados em uma
matriz de cromossomo ou matriz nuclear composta de proteínas não-histona. Na heterocromatina, as fibras da
cromatina são compactadas e dobradas umas nas outras. Já na eucromatina, as fibrilas da cromatina são
dispostas de forma mais dispersa.
- -37
Figura 24 - O empacotamento do DNA ocorre em vários níveis nos cromossomos.
Fonte: ALBERTS et al., 2017, p. 187.
Dando sequência aos seus estudos, você verá outros aspectos da cromatina. Vamos lá?
Cromatina condensada origina os cromossomos?
Nas células em divisão, a cromatina vai sendo condensada e organizada em cromossomos. Cada cromossomo é
formado por duas cromátides, estruturas unidas pelos centrômeros. Essa conformação em cromátides se deve à
fase de síntese (S) que precede a divisão mitótica, na qual o DNA é replicado em antecipação. Nos cromossomos,
cada extremidade é chamada de telômero, que encurtam a cada divisão celular.
Figura 25 - A estrutura da cromatina varia ao longo de um único cromossomo interfásico.
Fonte: ALBERTS et al., 2017, p. 190.
- -38
Dando sequência aos seus estudos deste capítulo, a seguir, apresentaremos os ácidos nucleicos. Fique atento e
amplie seus conhecimentos sobre esse tema.
2.3.2 Ácidos nucleicos (DNA e RNA)
Os ácidos nucleicos são moléculas orgânicas muito importantes para manutenção da vida dos organismos e suas
gerações de células futuras. São representados pelo Ácido Desoxirribonucleico (ADN ou DNA) e pelo Ácido
Ribonucleico (ARN ou RNA), macromoléculas constituídas por unidades monoméricas conhecidas como
nucleotídeos. Como descrito, o DNA compõe, com proteínas nucleares, a cromatina. Nas células eucarióticas se
encontra armazenado e protegido no núcleo, mas também em organelas, como nas mitocôndrias. Além disso, o
material genético das células eucarióticas é organizado em fragmentos lineares, ou seja, em cromossomos. Os
cromossomos são as estruturas nucleares que contêm milhares de genes, sendo estes os responsáveis por
armazenar as informações para síntese de proteínas nas células. Ao contrário, nas células procarióticas, o DNA
não tem uma estrutura membranosa de proteção (carioteca), e esse está localizado em uma região específica
conhecida como nucleoide. Os cromossomos procarióticos, em comparação aos eucarióticos, são menores e
normalmente circulares.
Unidades monoméricas dos ácidos nucleicos são os nucleotídeos de DNA e RNA
Tanto o DNA quanto o RNA são considerados biopolímeros, cuja constituição monomérica (unidade constitutiva)
é feita por nucleotídeos. Os nucleotídeos se associam ordenadamente em cadeias polinucleotídicas. Esse
processo de polimerização será detalhado, na sequência, nos processos de replicação do DNA e transcrição de
genes.
Os nucleotídeos são constituídos por três estruturas distintas: base nitrogenada, estrutura cíclica, que contém
átomo de nitrogênio; pentose, monossacarídeo (açúcar simples) de cinco carbonos; e grupo fosfato. A pentose
ocupa a região central do nucleotídeo, estando a ela associada a base nitrogenada e o grupo fosfato.
VOCÊ SABIA?
Em um cariótipo, os cromossomos são classificados de acordo com o tamanho, forma e
fluorescência emitida. Em citogenética, sãoutilizadas técnicas como o FISH (fluorescence in
), procedimento de hibridização fluorescente , que permite visualizar ositu hybridization in situ
espalhamento cromossômico em microscópio de fluorescência e câmeras controladas por
computador para captura de imagens. Um software de processamento de imagem é usado para
classificar os pares de cromossomos de acordo com sua forma e para determinar o cariótipo.
Atualmente, uma variedade de sondas moleculares é usada em testes citogenéticos para
diagnosticar distúrbios causados por anormalidades cromossômicas, como não-disjunções,
transposições, deleções e duplicações de genes específicos nos cromossomos, além da
determinação do sexo pré-natal e rastreamento de doenças genéticas.
- -39
Figura 26 - Nucleotídeos constituem o DNA e o RNA.
Fonte: ALBERTS et al., 2017, p. 76.
Na imagem, os componentes estão presentes no DNA e RNA e incluem o açúcar (desoxirribose ou ribose), o
grupo fosfato e a base nitrogenada. As bases são bases pirimidinas (citosina, timina no DNA e uracila no RNA, um
anel) e as bases purinas (adenina e guanina, dois anéis). O grupo fosfato está ligado ao carbono 5'. O carbono 2'
liga-se a um grupo hidroxila na ribose, mas nenhuma hidroxila (apenas hidrogênio) na desoxirribose.
Bases nitrogenadas
No total são conhecidas quatro categorias de bases nitrogenadas nas moléculas de DNA e que são sempre
lembradas por suas letras iniciais A, G, C e T. Assim, “A” é atribuído à adenina, “G” à guanina, “C” à citosina e “T” à
timina. Além disso, as bases adenina e guanina são classificadas como purinas, uma vez que apresentam,
estruturalmente, dois anéis de carbono e nitrogênio. Já as bases citosina e timina são pirimidinas, sendo
constituídas por um anel de carbono e nitrogênio. Observe, na imagem a seguir, as diferentes bases nitrogenadas.
- -40
Figura 27 - Bases purinas e pirimidinas.
Fonte: ALBERTS et al., 2017, p. 76.
No RNA, há nucleotídeos como bases adenina, guanina e citosina, porém não timina, mas sim outra pirimidina,
uracila, na qual é referida a letra “U”.
Pentoses
Como citado anteriormente, o monossacarídeo de cinco carbonos no DNA é a desoxirribose e no RNA é a ribose,
ambos com estrutura bastante parecidas. Diferem pelo ligante do carbono dois ser uma hidroxila na ribose e um
hidrogênio na desoxirribose.
Figura 28 - Pentose dos nucleotídeos de DNA e RNA.
Fonte: ALBERTS et al., 2017, p. 76.
Os carbonos da pentose são numerados como na figura. Dessa forma, a pentose tem a base associada ao seu
carbono 1', e o fosfato ao carbono 5'. Ao serem incorporados à cadeia polinucleotídica nascente do DNA ou do
RNA, os fosfatos unem o carbono 3 da pentose de um nucleotídeo com o carbono 5 da pentose de um próximo
nucleotídeo.
Fosfato
Nos nucleotídeos há um grupo fosfato, variando para grupos de três fosfatos naqueles que serão incorporados à
cadeia polinucleotídica nascente. Ao serem associados à cadeia do DNA ou do RNA, os dois grupos acabam
perdendofosfato. Nestas ligações, os fosfatos unem o carbono 3 da pentose de um nucleotídeo com o carbono 5
da pentose do próximo nucleotídeo.
- -41
Figura 29 - Fosfatos estão normalmente ligados à hidroxila C5 da ribose ou desoxirribose (especificado como 5’). 
Os mais comuns são mono-, di- e trifosfatos.
Fonte: ALBERTS et al., 2017, p. 76.
Cadeias polinucleotídicas
As cadeias de polinucleotídeos vão sendo originadas quando nelas são incorporados nucleotídeos. Dessa forma, a
estrutura da cadeia tem extremidades diferentes. Sendo assim, na extremidade 5' há um grupo fosfato, e na
extremidade 3', uma hidroxila. Por isso, no DNA, a orientação da direção é dita 5' para 3'. A hidroxila do carbono
3 da pentose de um nucleotídeo se associa ao grupo fosfato, ligado ao carbono 5 de outro por ligação fosfodiéster.
- -42
Figura 30 - Exemplo de como se forma a ligação fosfodiéster.
Fonte: ALBERTS et al., 2017, p. 7.
Estrutura da dupla hélice do DNA
As cadeias de DNA são dispostas em uma estrutura de dupla hélice, com duas fitas complementares associadas,
sendo que as pentoses e os fosfatos localizam-se na porção externa da hélice, formando um esqueleto de açúcar-
fosfato. Já as bases nitrogenadas são projetadas para o interior da molécula e, dessa forma, lembram degraus de
uma escada em caracol. Pareadas, as bases nitrogenadas são mantidas unidas entre si por interações
intermoleculares do tipo ponte de hidrogênio (ligações hidrogênio).
- -43
Figura 31 - Quatro unidades de nucleotídeos do DNA. Cada uma é composta de açúcar-fosfato ligado à base (A). 
Os nucleotídeos são ligados em cadeias polinucleotídicas com uma cadeia principal de açúcar-fosfato de onde as 
bases se projetam (B). DNA tem duas cadeias unidas por ligações de hidrogênio entre a bases (C). DNA 
organizado em dupla-hélice (D).
Fonte: ALBERTS et al., 2017, p. 173.
Essa configuração da molécula de DNA, permite que as informações genéticas permaneçam armazenadas em
sequências lineares para serem codificadas em proteínas. Para saber mais sobre esse tema, clique nas setas a
seguir.
Dessa forma, o código genético nada mais é do que a relação entre uma sequência de bases definidas pelas letras
A, C, T e G no DNA com aminoácidos correspondentes e que originam estruturas primárias de proteínas.
Além disso, foi de grande contribuição para compreensão da estrutura do DNA estabelecer uma proporção entre
as quantidades das bases nitrogenadas. Assim, o número de adeninas é igual ao número de timina (A = T). Ao
passo que o número de citosinas é igual ao número de guaninas (C = G). Em consequência, a quantidade de bases
- -44
as quantidades das bases nitrogenadas. Assim, o número de adeninas é igual ao número de timina (A = T). Ao
passo que o número de citosinas é igual ao número de guaninas (C = G). Em consequência, a quantidade de bases
purinas é sempre igual à quantidade de bases pirimidinas (A + G = C + T).
Em 1953, James Watson e Francis Crick divulgaram um modelo para explicar a estrutura DNA, mediante
diversas evidências prévias. Nesse modelo, defenderam que as moléculas de DNA são constituídas por duas
cadeias polinucleotídicas helicoidais com rotação voltada para direita (dupla hélice) em torno do mesmo eixo.
As cadeias duplas são antiparalelas, o que dessa forma depreende-se que as ligações fosfodiéster teriam sentidos
opostos. As duas cadeias são mantidas associadas e estabilizadas por pontes de hidrogênio entre os pares de
bases.
Entre as bases A e T são estabelecidas duas pontes de hidrogênio, e entre C e G, três pontes de hidrogênio. As
cadeias são ditas antiparalelas, pois o esqueleto açúcar-fosfato de uma está orientado no sentido 3' → 5', ou seja,
do carbono 3' de um nucleotídeo na extremidade de uma cadeia ao carbono 5' do nucleotídeo contíguo. Na fita
complementar ocorre o contrário, no sentido inverso, do carbono 5' ao 3' (5' → 3').
A seguir, no próximo tópico, você estudará sobre os genes e a síntese de proteínas.
2.4. Genes e síntese de proteínas
Quando o genoma humano foi finalmente mapeado, houve uma considerável surpresa ao se verificar que
continha apenas cerca de 30.000 genes e não 50.000, ou mais, como se esperava. A explicação pode ser dada pela
existência de um grande número de mRNA, em torno de 85.000.
Confira na figura a seguir o dogma central da vida pela ótica molecular.
- -45
Figura 32 - Nas células vivas, a informação genética flui do DNA para o RNA (transcrição), e do RNA para a 
proteína (tradução) – uma sequência conhecida como dogma central.
Fonte: ALBERTS et al., 2017, p. 3.
Agora, fique atento, pois estudaremos sobre os genes. Vamos lá?
2.4.1 Genes
Gene é definido como um segmento da sequência de DNA correspondente a uma única proteína, ou grupo de
variantes proteicas alternativas, ou uma única molécula de RNA catalítica, reguladora ou estrutural. As
informações sobre estrutura e regulação dos genes estão cada vez mais detalhadas. Nas células eucarióticas, as
regiões dos genes que determinam as orientações para a síntese de proteínas são encontradas nos éxons,estando separadas por outras regiões, aparentemente inativas, denominadas íntrons.
- -46
Figura 33 - Sequências codificadoras de proteínas com genes eucarióticos (éxons) e sequências não codificadoras 
(íntrons). Os promotores de transcrição estão indicados em verde.
Fonte: ALBERTS et al., 2017, p. 234.
O início da transcrição gênica ocorre através de um promotor, região onde se associam a enzima RNA polimerase
e seus cofatores. Essa região, normalmente, contém uma sequência alternada de nucleotídeos de timidina (T) e
adenina (A), originando o box TATA que promove o início da transcrição. Além disso, adiante da sequência
promotora encontram-se elementos de regulação, como as sequências intensificadoras e supressoras. A
sequência do gene posicionada antes do ponto de iniciação da transcrição é denominada região flanqueadora 5',
sendo a sequência que sucede a região da transcrição, onde termina, conhecida como região flanqueadora 3'.
A transcrição do DNA para RNA nos genes ocorre com a separação das duplas fitas de DNA em fitas senso
(codificadora) e antissenso (molde). Dessa forma, a sequência de nucleotídeos da fita senso é semelhante à
sequência transcrita para mRNA, porém o RNA não possui as bases timina (T), mas sim uracila (U). Já a
sequência antissenso é oposta e complementar à senso, sendo reconhecida pela RNA-polimerase, que sintetiza o
transcrito no sentido 5’ para 3’ no molde de DNA (observe o esquema hipotético abaixo) para a tradução em
proteínas:
(5’) CTATAGCGTTT (3’) – DNA fita senso (codificadora)
(3’) GATATCGCAAA (5’) – DNA fita antissenso (molde)
(5’) C A AGCG (3’) – RNAm (transcrito)U U UUU 
Observe, na figura a seguir, as etapas da transcrição.
Para dar início à transcrição, a RNA-polimerase II eucariótica necessita de um conjunto de fatores gerais de
transcrição. Esses fatores de transcrição são denominados TFIIB, TFIID – e assim por diante.
Dessa forma no núcleo, a partir do DNA, forma-se por transcrição um pré-mRNA e, dele, os íntrons e, às vezes,
alguns éxons são descartados por processamento pós-transcricional. Assim, o mRNA final, que é encaminhado
para o citoplasma e que codifica as proteínas, é constituído somente de éxons. Os íntrons de alguns genes são
eliminados por estruturas de junção, denominadas spliceossomos. Já outros íntrons são eliminados por auto
junção ou .self-splicing
Por causa dos íntrons e formas junção, é possível que um gene seja transcrito para mais de um mRNA. A adenina
no ponto de forquilha, localizada no íntron, ataca o sítio 5’ de e corta a cadeia principal de açúcar-fosfatosplicing
do RNA nesse ponto. Neste processo, a extremidade 5’ cortada do íntron é covalentemente ligada ao grupo 2’-OH
da ribose do nucleotídeo A para formar uma estrutura em forquilha. A seguir, a extremidade 3’-OH livre, da
sequência do éxon, reage com a sequência inicial do éxon seguinte, o que une os dois éxons em uma sequência
codificadora contínua e libera o íntron, sob a forma de um laço, o qual é então degradado no núcleo.
- -47
Figura 34 - Um íntron, em uma molécula de pré-mRNA, forma uma estrutura ramificada durante o splicing do 
RNA.
Fonte: ALBERTS et al., 2017, p. 235.
Dando sequência aos seus estudos, você estudará sobre a síntese das proteínas. Vamos lá?
2.4.2 Síntese de proteínas
A síntese de proteínas envolve etapas como a transcrição, a modificação pós-transcricional, a tradução e a
modificação pós-tradução. A transcrição gênica inicia quando o mRNA recebe um quepe ou capuz pelo acréscimo
do trifosfato de 7-metilguanosina à sua extremidade 5', estrutura necessária para ligação adequada aos
ribossomos. Além disso, uma cauda de adeninas (A) chamada poli(A) é acrescentada na sequência não-traduzida
na extremidade 3'.
- -48
Figura 35 - RNA eucariótico possui um quepe ou capuz na extremidade 5’, e uma cauda poli(A) na extremidade 
3’.
Fonte: ALBERTS et al., 2017, p. 233.
A seguir o pré-mRNA acrescido do capuz e da cauda poli(A) é processado para retirada dos íntrons por ,splicing
como descrito. Essa modificação pós-transcricional torna o mRNA maduro, sendo então transferido para o
citoplasma. Quando o mRNA maduro chega a um ribossomo, inicia a formação de uma cadeia polipeptídica com a
inserção sequencial de aminoácidos por ligações peptídicas.
Os aminoácidos que estão presentes no citosol combinam-se com adenilato e uma molécula específica de tRNA.
Há pelo menos um tRNA para cada um dos 20 aminoácidos encontrados em grandes quantidades nas proteínas
corporais dos animais; sendo que alguns aminoácidos têm mais de um tRNA.
O complexo formado tRNA-aminoácido-adenilato é fixado ao mRNA, um processo que ocorre nos ribossomos. O
tRNA reconhece o ponto correto onde deve ligar-se ao mRNA, visto que possui, em sua extremidade ativa, um
conjunto de três bases complementares a um conjunto de três bases em um determinado ponto da cadeia do
mRNA. O código genético é formado por essas trincas, ou seja, sequências de três bases ou códons, que
representam um aminoácido específico.
VOCÊ QUER LER?
Você sabia que a anemia falciforme é causada por mutações? Faça a leitura do texto e tente
relacioná-la ao processo de síntese de proteínas que estamos estudando. Disponível em: <
>http://www.scielo.br/pdf/jbpml/v39n1/v39n1a10
- -49
Figura 36 - O código genético é traduzido pela atuação conjunta de dois adaptadores: aminoacil-tRNA-sintetases 
e tRNAs.
Fonte: ALBERT et al., 2017, p. 243.
Agora, observe, na figura a seguir, a relação de códons e seus aminoácidos para a síntese de proteínas.
Figura 37 - Relação de códons e seus aminoácidos para síntese de proteínas.
Fonte: ALBERTS et al., 2017, p. 239.
A sequência nucleotídica de um mRNA, como observado, é traduzida para a sequência de aminoácidos de uma
proteína pelo uso de um código genético.
- -50
A tradução começa nos ribossomos, com uma sequência AUG, transcrita a partir de ATG no gene e que codifica a
metionina. O aminoácido aminoterminal é acrescentado, e o alongamento da cadeia é efetuado pelo acréscimo de
outros aminoácidos. O mRNA liga-se à subunidade 40S do ribossomo durante a síntese proteica. Já a cadeia
polipeptídica nascente liga-se à subunidade 60S. À medida que os aminoácidos vão sendo associados à sequência
do código, o ribossomo desloca-se ao longo da molécula de mRNA. A tradução termina em um dos três códons de
terminação ou (UGA, UAA ou UAG), com liberação da cadeia polipeptídica.non-sense
VOCÊ SABIA?
Os aminoácidos essenciais não são sintetizados pelo organismo humano, sendo necessária a
aquisição através da dieta. São eles: a leucina, isoleucina, valina, triptofano, metionina,
fenilalanina, treonina e lisina. Já os aminoácidos não-essenciais como alanina, arginina, ácido
aspártico, cisteína, ácido glutâmico, glutamina, glicina, prolina, serina e asparagina podem ser
sintetizados no organismo e, da mesma forma que os essenciais, participam de funções
importantes para o organismo. Dica: converse com um profissional de saúde sobre a
importância dos aminoácidos para saúde.
- -51
Figura 38 - Códons específicos no mRNA sinalizam, para o ribossomo, os pontos de início e final da síntese 
proteica.
Fonte: ALBERTS et al., 2017, p. 247.
As moléculas de tRNA e mRNA são reutilizadas pela maquinaria de síntese. Com frequência, existem vários
ribossomos em uma mesma cadeia de mRNA. A cadeia de mRNA, mais o seu conjunto de ribossomos, é visível ao
microscópio e é denominada polirribossomo (polissoma).
- -52
Assista ao vídeo abaixo e aprenda sobre o processo de mutações às modificações na estrutura das proteínas.
https://cdnapisec.kaltura.com/p/1972831/sp/197283100/embedIframeJs/uiconf_id/30443981/partner_id
/1972831?iframeembed=true&playerId=kaltura_player_1550516183&entry_id=1_eslvdfbp
Embora o mRNA seja formado no núcleo, filamentos individuais de mRNA podem deslocar-se ao longo do
citoesqueleto, dirigindo-se para várias partes da célula. Na presença de ribossomos apropriados, esses mRNA
sintetizam proteínas no local, dentro da célula.

Outros materiais