Grátis
185 pág.

Denunciar
Pré-visualização | Página 2 de 31
vectors to Σ. The difference δna only provides information about the change in the direction of the vectors, because they are normalised. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 Representation of two successive hypersurfaces and the displacement vector βµ (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4 Null coordinates construction. Tangent and normal vectors to the null hypersurfaces emanated from a time-like world tube Γ. . . . . . . . . . . 88 4.5 Space-time M foliated in 2D - null hypersurfaces Σ. (a) Null cones emanating from a central time-like geodesic. (b) Null cones as emanating from a central time-like world tube. . . . . . . . . . . . . . . . . . . . . . 89 4.6 Space-timeM foliated in 2D - null hypersurfaces Σ. Section showing the space-like for t constant and characteristic hypersurfaces corresponding to the retarded time u constant. . . . . . . . . . . . . . . . . . . . . . . . 90 5.1 Sketch of the world tube generated by the thin shell. Here we note the two regions (r < r0 and r > r0) in which the space-time is divided. . . . . 114 5.2 Metric variables as a function of the compactified coordinate s for a thin shell of r = r0, centred at the origin. (a) β0 := β0(s), (b) J0 := J0(s), (c) U0 := U0(s), (d) w0 := w0(s) . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.1 Binary system with the world tubes of each orbit extended along the direction of the retarded time, separating the space-time into three regions.122 xiii 6.2 Real part of some components of the metric functions ( l = m = 2 ) versus the compactified coordinate s (see the text) for a binary system with M1 = 1/2, M2 = 1. The angular velocity is computed by means of Kepler’s third law. Here r1 and r2 are referred to the center of mass of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3 Snapshots of the metric variables as seen from the equatorial plane (θ = π/2), as a function of s and φ for u = π/2. HereM1 = 16,M2 = 4/3, r1 = 1/13, r2 = 12/13, R0 = 1/2 and ν = 2 √ 13/3. (a) β(s, φ), (b) J(s, φ), (c) U(s, φ) and (d) W (s, φ) = w(s, φ)(1− s2)/(s2R20). . . . . . . . . . . . 128 6.4 (a) Eccentric binary system with the world tubes of their orbits extended along the central time-like geodesic. (b) Top view of the point particle binary system, where the angular position φ̃ is indicated. . . . . . . . . . 132 xiv LIST OF ABBREVIATIONS ADM – Arnowitt-Deser-Misner formalism IVP – Intial Value Problem CIVP – Characteristic Intial Value Problem WKB – Wentzel-Kramers-Brillouin BSSN – Baumgarte-Shapiro-Shibata-Nakamura xv LIST OF SYMBOLS Greek indices α, β, γ, · · · – run from 1 to 4 Capital Latin indices A,B,C, · · · – run from 3 to 4 Upper indices (i), i = 0, 1, 2, · · · – Indicates the perturbation order Gµν – Einstein’s tensor Tµν – Stress-energy tensor Rµν – Ricci’s tensor Rµνγδ – Riemann’s tensor of type (0, 4) Rµνδγ – Riemann’s tensor of type (1, 3) ,α or ∂α – Partial derivative ;α or ∇α – Covariant derivative :α or (0) ∇α – Covariant derivative referred to the background Γαβγ – Christoffel’s symbols of the first kind Γαβγ – Christoffel’s symbols of the second kind |A or 4A – Covariant derivative referred to qAB ‖A or ∇A – Covariant derivative referred to hAB qA – Dyads related to the vectors in TpS L – Legendrian operator ð – Eth operator ð – Eth bar operator sYlm – Spin-weighted spherical harmonic sZlm – Spin-weighted spherical harmonic xvii CONTENTS Page 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 LINEAR REGIME OF THE EINSTEIN’S FIELD EQUATIONS AND GRAVITATIONAL WAVES . . . . . . . . . . . . . . . . . . 5 2.1 First Order Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Higher Order Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Green’s Functions for the Flat Background and Perturbations of First Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Multipolar Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Gravitational Radiation from Point Particle Binary System . . . . . . . . 29 3 THE Eth FORMALISM AND THE SPIN-WEIGHTED SPHERICAL HARMONICS . . . . . . . . . . . . . . . . . . . . . 33 3.1 Non-conformal Mappings in the Sphere . . . . . . . . . . . . . . . . . . . 34 3.2 Stereographic Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Decomposition of the Metric of the Unit Sphere . . . . . . . . . . . . . . 38 3.4 Transformation Rules for Vectors and One-forms . . . . . . . . . . . . . . 40 3.5 Transformation Rules for the Dyads and Spin-weight . . . . . . . . . . . 41 3.6 Spin-weighted Scalars and Spin-weight . . . . . . . . . . . . . . . . . . . 43 3.7 Raising and Lowering Operators . . . . . . . . . . . . . . . . . . . . . . . 45 3.8 Transforming the Coordinate Basis . . . . . . . . . . . . . . . . . . . . . 47 3.9 Legendrian Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.10 The ð and ð in Spherical Coordinates . . . . . . . . . . . . . . . . . . . . 60 3.11 Integrals for the Angular Manifold . . . . . . . . . . . . . . . . . . . . . 61 3.12 Spin-weighted Spherical Harmonics sYlm . . . . . . . . . . . . . . . . . . 69 3.13 Spin-weighted Spherical Harmonics sZlm . . . . . . . . . . . . . . . . . . 74 4 THE INITIAL VALUE PROBLEM AND THE NON-LINEAR REGIME OF THE EINSTEIN’S FIELD EQUATIONS . . . . . 77 4.1 The Initial Value Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Arnowitt-Desser-Misner Formulations (ADM) . . . . . . . . . . . . . . . 78 4.2.1 (ADM) formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.2 The Baumgarte-Shibata-Shapiro-Nakamura (BSSN) Equations . . . . . 85 xix 4.3 Outgoing Characteristic Formulation . . . . . . . . . . . . . . . . . . . . 87 4.3.1 The Bondi-Sachs Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.2 Characteristic Initial Value Problem . . . . . . . . . . . . . . . . . . . 89 4.3.3 The Einstein’s Field Equations . . . . . . . . . . . . . . . . . . . . . . 90 4.4 The Einstein’s Field Equations in the Quasi-Spherical Approxi-mation . 91 4.5 The Einstein’s Field equations Using the Eth Formalism . . . . . . . . . 94 5 LINEAR REGIME IN THE CHARACTERISTIC FORMULA- TION AND THE MASTER EQUATION SOLUTIONS . . . . . 97 5.1 Einstein’s Field Equations in the linear . . . . . . . . . . . . . . . . . . 98 5.2 Harmonic Decomposition and Boundary Problem . . . . . . . . . . . . . 99 5.3 The Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4 Families of Solutions to the Master Equation . . . . . . . . . . . . . . . . 103 5.4.1 The Minkowski’s Background . . . . . . . . . . . . . . . . . . . . . . . 104 5.4.2 The Schwarzschild’s Background . . . . . . . . . . . . . . . . . . . . . 107 5.5 Families of Solutions for l = 2 . . . . . . . . . . . . . . . . . . . . . . . . 109 5.6 Thin Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.1 Point Particle Binary System with Different Masses . . . . . . . . . . . . 121 6.1.1 Gravitational Radiation from the Binary System . . . . . . . . . . . . 128 6.2 Eccentric Point Particle Binary System . . . . . . . . . . . . . . . . . . . 131 6.2.1 Gravitational Radiation Emitted by the Binary . . . . . . . . . . . . . 134 7 CONCLUSIONS, FINAL REMARKS AND PERSPECTIVES . 137 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 Appendix A - Explicit Form for the ð and ð Operators in Stereographic Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 155 Appendix B - Angular Operators ∂θθ, ∂θφ and ∂φφ in terms of ð and ð 159 xx 1 INTRODUCTION The high complexity of the Einstein’s field equations, given their non-linearity, makes impossible to find analytical solutions valid for all gravitational systems. However, in addition