Buscar

atividade 1 sistemas nervoso

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 19 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

- -1
SISTEMA NERVOSO
CAPÍTULO 1 - FORMAÇÃO DO SISTEMA 
NERVOSO, CARACTERÍSTICAS DO TECIDO 
NERVOSO E SUAS FUNÇÕES SINÁPTICAS
Carolinie Batista Nobre da Cruz
- -2
Introdução
Nesta unidade, iniciaremos o aprendizado sobre o sistema nervoso. Talvez você não tenha conhecido, mas no
início da década de 70 havia um jogo chamado “Pong”, considerado um dos melhores jogos de computador da
época. Milhares de pessoas passavam horas jogando, movimentando uma barra vertical para cima e para baixo
na tentativa de acertar um ponto branco em movimento, “a bola”, para envia-la para o outro jogador, seu
adversário. Relembramos aqui esse antigo jogo, para que você compare com os jogos de computador atuais, com
imagens realísticas, interatividade entre os adversários, jogabilidade fantástica. O que permitiu a evolução dos
jogos de computador? Esse salto só foi possível devido ao grande avanço na capacidade dos microcircuitos, que
aumentam a velocidade para os processadores, abrindo assim numerosas vias de programação.
Mas o que isso tem a ver com a temática do sistema nervoso? Esse exemplo serve para ilustrar o fato de que, se
compararmos os mais avançados supercomputadores com o sistema nervoso humano, eles ainda assim não
alcançarão a importância em funcionalidade e sofisticação do sistema nervoso humano, se tornam máquinas
rudimentares criadas pela mente humana, como o jogo “Pong”. Mesmo a sua própria capacidade de imaginar e
tentar estabelecer relações depende do seu sistema nervoso!
Você saberia descrever como os neurônios se comunicam? Quais seriam suas principais estruturas? Como o
tecido nervoso é organizado? Quais são os tipos de células nervosas e suas funções?
Tendo em conta a complexidade do sistema nervoso humano, delimitamos os diferentes aspectos de sua atuação
em quatro unidades conectadas. Essas conexões, conhecidas como sinapses, são os locais para onde as
informações são transportadas do primeiro neurônio, o neurônio pré-sináptico, para o neurônio alvo (o
neurônio pós-sináptico). Para melhor conhecer esse funcionamento, estudaremos aqui: o desenvolvimento
embrionário; a estrutura e função dos neurônios; a mielinização; a neuroplasticidade e a bioeletrogênese.
1.1 Ontogênese do sistema nervoso: desenvolvimento 
embrionário, defeitos de fechamento do tubo neural 
(anencefalia e mielomeningocele)
Após a fertilização, o sistema nervoso começa a se formar na terceira semana de desenvolvimento, continuando
muitos anos após o nascimento. O desenvolvimento neural, no embrião, organiza-se da seguinte forma:
• fase 1: nascimento e a diferenciação de neurônios precursores de células-tronco (neurogênese);
• fase 2: crescimento de axônios, a partir de neurônios e sua orientação em direção aos neurônios pós-
sinápticos;
• fase 3: geração de sinapses entre esses axônios dos neurônios pré-sinápticos e os neurônios pós-
sinápticos;
• fase 4: mudanças nas sinapses ao longo da vida, que são consideradas subjacentes à memorização e ao 
aprendizado.
Normalmente, esses processos de desenvolvimento neurológico podem ser amplamente divididos em duas
classes: mecanismos independentes de atividade e mecanismos dependentes de atividade. Quando os axônios
atingem suas áreas-alvo, mecanismos dependentes de atividade entram em ação. A atividade neural e a
experiência sensorial mediarão a formação de novas sinapses, bem como a plasticidade sináptica, que será
responsável pelo refinamento dos circuitos neurais nascentes.
•
•
•
•
- -3
1.1.1 Desenvolvimento embrionário
No final da segunda semana, uma estrutura chamada faixa primitiva aparece como uma ranhura na camada
epiblástica do disco bilaminar. As células dentro do epiblasto migram para baixo através da sequência primitiva,
dando origem a três das duas camadas iniciais. Essas três camadas germinais formam o disco embrionário
trilaminar, formando as seguintes camadas.
• Endoderma: camada mais interna
• Mesoderma: camada média
• Ectoderma: camada mais externa
O sistema nervoso é derivado do ectoderma, que é a camada mais externa do disco embrionário, como podemos
observar na seguinte figura.
Figura 1 - Sistema nervoso derivado do ectoderma
Fonte: Elaborada pela autora, 2020.
A formação das camadas germinativas primárias ocorre durante a terceira semana de desenvolvimento. Nessa
fase, o embrião tem apenas alguns milímetros de comprimento.
Na extremidade anterior, um sulco se forma no ectoblasto (sulco primitivo). A região craniana é fortalecida pelas
células epiblásticas e forma o poço primitivo. A cabeça do embrião se formará na extremidade do disco
embrionário próximo ao poço primitivo.
•
•
•
- -4
1.1.2 Neurulação
Na terceira semana de desenvolvimento, a notocorda aparece no mesoderma. A notocorda secreta fatores de
crescimento que estimulam a diferenciação do ectoderma sobrejacente em neuroectoderme - formando uma
estrutura mais espessa, conhecida como placa neural.
As bordas laterais da placa neural se elevam para formar dobras neurais e as dobras neurais se movem uma para
a outra e se encontram na linha média, fundindo-se para formar o tubo neural, precursor do encéfalo e da
medula espinhal (GILBERT, 2010).
Durante a fusão das dobras neurais algumas de suas células internas migram para formar uma população celular
distinta - conhecida como crista neural, dando origem a uma linhagem celular diversa - incluindo melanócitos,
cartilagem craniofacial e osso, músculo liso, neurônios periféricos e entéricos e glia.
A formação do tubo neural é conhecida como neurulação e é alcançada até o final da quarta semana de
desenvolvimento.
Figura 2 - Neurulação: a formação do tubo neural a partir de neuroectoderme
Fonte: Elaborada pela autora, 2020.
A flexão da placa neural envolve a formação de dobradiças, onde a placa neural está conectada aos tecidos
circundantes. As células localizadas na linha média da placa neural são conectadas a notocorda. Após uma
transição epitelial-mesenquimal essas células formam o sistema nervoso autônomo e certas células do sistema
nervoso periférico (WOLPERT, 1998).
1.1.3 Desenvolvimento anterior: estruturas do encéfalo
Na quinta semana de desenvolvimento, dilatações aparecem na extremidade craniana do tubo neural. Três
vesículas primitivas aparecem primeiro e, posteriormente, elas se desenvolvem em cinco vesículas secundárias.
- -5
Quadro 1 - Flexuras Encefálicas
Fonte: Elaborado pela autora, 2020.
Como é possível observar no quadro, as vesículas darão origem a todas as estruturas do encéfalo, bem como ao
sistema ventricular. Os neurônios migram pelo encéfalo e, uma vez atingidos seu destino final, desenvolvem os
dendritos, formando sinapses.
1.1.4 Defeitos de fechamento do tubo neural (anencefalia e 
mielomeningocele)
A anencefalia resulta da falha do fechamento do tubo neural na extremidade cefálica, levando à ausência parcial
do encéfalo e do crânio. A falta de estruturas cerebrais cruciais significa que essa é uma condição letal. Os recém-
nascidos com essa anormalidade congênita geralmente não sobrevivem mais do que algumas horas ou dias após
o nascimento.
A espinha bífida resulta do fechamento incompleto do tubo neural na extremidade caudal (mais comumente na
região lombar). Existem três tipos principais de espinha bífida, de gravidade crescente:
• Espinha bífida oculta - a forma mais branda, é caracterizada por um fechamento incompleto das 
vértebras, sem protrusão da medula espinhal. A maioria das pessoas com essa forma de espinha bífida 
não tem consciência disso e sua descoberta é frequentemente incidental.
• Meningocele (cisto meníngeo) - onde as meninges se projetam entre as vértebras posteriormente, mas a 
medula espinhal não está danificada.
• Mielomeningocele - a forma mais grave, onde uma porção da medula espinhal permanece sem fusão e se 
projeta posteriormente através de uma abertura entre as vértebras, em um saco formado pelas meninges. 
Isso está associado a uma incapacidade grave.
1.1.5 Medula espinhal
Enquanto a extremidade craniana do tubo neural forma as estruturas do encéfalo, a extremidadecaudal se
desenvolve para formar a medula espinhal. As células do lado dorsal formam a placa alar, que posteriormente se
torna o corno dorsal (posterior). As células na extremidade ventral formam a placa basal, que então se torna o
corno ventral (anterior) da medula espinhal.
•
•
•
- -6
Figura 3 - Cornos dorsal e ventral da medula
Fonte: Elaborada pela autora, 2020.
Após o nascimento, o desenvolvimento do sistema nervoso central continua por muitos anos. Forma sinapses e
novas conexões aparecem, aumentando em número ao longo da infância e na idade adulta. Somente sinapses e
caminhos usados sobrevivem até a idade adulta; o processo de poda sináptica permite eliminar sinapses não
utilizadas.
É importante relembrar que a notocorda desempenha um papel integral no desenvolvimento do tubo neural. A
dobra do tubo neural para formar um tubo real não ocorre de uma só vez. Em vez disso, começa
aproximadamente no nível do quarto somito, quando as bordas laterais da placa neural tocam na linha média e
se unem. Isso continua tanto cranialmente (em direção à cabeça) quanto caudalmente (em direção à cauda)
(MOORE, et al. 2008).
A falha no fechamento do neuróporo craniano (superior) e caudal (inferior) resulta em condições chamadas
anencefalia e espinha bífida, respectivamente.
VOCÊ QUER LER?
A embriologia é o ramo da ciência que se preocupa com o estudo de embriões e seu
desenvolvimento. Para estudar um pouco mais sobre os processos que ocorrem nas semanas
do desenvolvimento embrionário, sugerimos a leitura do artigo sobre o desenvolvimento do
encéfalo, no Atlas da Embriologia, disponível em: https://www.famema.br/ensino/embriologia
./sistemaneurologico2.php
https://www.famema.br/ensino/embriologia/sistemaneurologico2.php
https://www.famema.br/ensino/embriologia/sistemaneurologico2.php
- -7
1.2 Mielinização do sistema nervoso: envelhecimento e 
doença de Alzheimer
A mielina é uma substância lipídica que envolve as fibras nervosas e serve para aumentar a velocidade da
comunicação elétrica entre os neurônios. Embora a função da mielina tenha permanecida indescritível por
muitos anos, hoje os cientistas estão colocando seu conhecimento sobre essa substância isolante em uso,
investigando estratégias para proteger e reparar a mielina em doenças nas quais ela é comprometida como
esclerose múltipla (STADELMANN, et al. 2019, tradução nossa).
A comunicação entre neurônios depende da propagação de sinais elétricos e, assim como os fios precisam ser
isolados, o mesmo ocorre com os neurônios. A descoberta da mielina ocorreu em meados do século XIX, mas
quase meio século se passou antes que os cientistas descobrissem seu papel vital como isolante.
A mielina é produzida por dois tipos diferentes de células da glia, as células de suporte do tecido nervoso. No
sistema nervoso central (SNC), o encéfalo e a medula espinhal são formados por células chamadas
oligodendrócitos que se envolvem nas extensões ramificadas em torno dos axônios para criar uma bainha de
mielina.
No sistema nervoso periférico (SNP), isto é, nos nervos, as células de Schwann produzem mielina.
Independentemente de onde esteja no sistema nervoso, toda mielina desempenha a mesma função, permitindo a
transmissão eficiente de sinais elétricos.
A mielinização é caracterizada pela aquisição da camada de mielina altamente especializada em torno dos
axônios. O período de mielinização no ser humano é longo, começando principalmente no segundo trimestre da
gravidez e continuando na vida adulta. É durante esse período crítico que a mielina é inicialmente estabelecida
em praticamente todos os setores da substância branca. O último local que sofre mielinização são as fibras
intracorticais do córtex cerebral, onde a mielinização se estende de maneira constante até a terceira década.
1.2.1 Percepção do papel da mielina na saúde e na doença
O último local que sofre mielinização são as fibras intracorticais do córtex cerebral, onde a mielinização se
estende de maneira constante até a terceira década.
Pesquisadores procuraram descobrir o que acontece quando a mielina é interrompida e, na década de 1980,
usaram modelos animais para avaliar como os sinais nervosos elétricos são alterados após a retirada da mielina
dos axônios. Ao induzir quimicamente a perda de mielina na medula espinhal dos gatos, eles descobriram que os
sinais se moviam mais lentamente ao longo da fibra nervosa e geralmente não conseguiam chegar ao fim do
axônio (MILLER et al., 2012, tradução nossa).
Nessa mesma época, a ciência também avançou na identificação de muitos dos componentes da mielina, como os
principais elementos proteicos da bainha de mielina e os genes que os codificam, desenvolvendo modelos de
camundongos com proteínas mielínicas defeituosas, resultando em uma deficiência de mielina. Esses estudos
forneceram aos pesquisadores um modelo para estudar a função da mielina no sistema nervoso saudável e sua
disfunção em doenças desmielinizantes.
CASO
Uma jovem mulher grega, de 17 anos, foi internada na UTI devido a insuficiência respiratória
aguda que requer ventilação mecânica. Ela tinha história de doença febril um mês antes, início
agudo de paraplegia, diplopia, fraqueza progressiva do braço e dispnéia. Sua consciência não
foi prejudicada. Uma doença desmielinizante do sistema nervoso central (SNC), possivelmente
pós-encefalomielite infecciosa, era a condição subjacente. A ressonância magnética do encéfalo
- -8
A perda de mielina é um problema para muitos distúrbios do SNC, incluindo acidente vascular encefálico, lesão
medular e, principalmente, esclerose múltipla, que é uma doença crônica e incapacitante do SNC que afeta mais
de 2,3 milhões de pessoas em todo o mundo. Essa doença resulta do acúmulo de danos à mielina e às fibras
nervosas subjacentes que isolam e protegem, mas quando danificadas, fica comprometida a capacidade das
células nervosas do encéfalo e da medula espinhal de se comunicarem entre si e com os músculos. Isso leva a
uma variedade de sintomas imprevisíveis que variam de pessoa para pessoa (MILLER, et al., 2012).
Esses sintomas, que podem ser temporários ou permanentes, variam de fadiga, fraqueza e dormência à cegueira
e até paralisia.
1.2.2 O envelhecimento
O sistema nervoso é o centro de controle central do seu corpo. Ele controla o seu corpo: movimentos; sentidos;
pensamentos e memórias e, também ajuda a controlar órgãos como coração e intestinos. Os nervos são os
caminhos que transmitem sinais de e para o encéfalo e o resto do corpo, que se estendem do encéfalo e da
medula espinhal para todas as partes do corpo. A medula espinhal faz parte do sistema nervoso central e se
estende desde a base do encéfalo até a altura de aproximadamente o meio das costas.
Figura 4 - Estruturas neuronais de um encéfalo jovem
Fonte: Elaborada pela autora, 2020.
pós-encefalomielite infecciosa, era a condição subjacente. A ressonância magnética do encéfalo
revelou lesões cerebrais expandidas difusas, envolvendo o nervo óptico, núcleos base,
cerebelo, ponte e bulbo. Também houve envolvimento prolongado da parte cervical e torácica
da medula espinhal. A contagem de leucócitos foi elevada, com predominância de linfócitos. A
paciente necessitou de ventilação mecânica por dois meses, sendo transferida, então, para um
centro de reabilitação. Três anos depois, ela permanece paraplégica, mas desde então não
sofreu nenhum outro evento de desmielinização. As doenças desmielinizantes podem causar
insuficiência respiratória aguda quando a medula espinhal é afetada. (KATSENOS et al., 2013,
tradução nossa)
- -9
À medida que envelhecemos algumas estruturas do sistema nervoso passam por mudanças naturais. O encéfalo
e medula espinhal perdem células nervosas e peso (atrofia). As células nervosas podem começar a transmitir
mensagens mais lentamente do que no passado. Os resíduos podem se acumular no tecido cerebral à medida que
as células nervosas se decompõem. Isso pode causar alterações anormais no encéfalo chamadas placas e
emaranhados. Um pigmento marrom (lipofuscina) tambémpode se acumular no tecido nervoso.
Com o avanço da idade, a alteração nos nervos pode afetar os sentidos, fazendo com que os reflexos ou sensações
fiquem reduzidos ou perdidos, levando a problemas com o movimento. Também é parte normal do
envelhecimento retardar o pensamento e a memória, mas é importante lembrar que essas mudanças não são as
mesmas em todos. Algumas pessoas têm muitas alterações nos nervos e no tecido cerebral. Outras têm poucas
mudanças. Lembrando que essas transformações nem sempre estão relacionadas aos efeitos sobre sua
capacidade de pensar.
O delírio é uma confusão repentina que leva a mudanças de pensamento e comportamento. É geralmente devido
a doenças que não estão relacionadas ao encéfalo. Uma infecção, por exemplo, pode fazer com que uma pessoa
idosa fique severamente confusa. Até mesmo certos medicamentos podem causar confusão. Outro motivo que
pode provocar problemas de pensamento e comportamento é um quadro de diabetes mal controlado. Também
os níveis crescentes e decrescentes de glicose no sangue podem interferir no pensamento.
A descoberta de mielina há mais de um século avançou nossa compreensão de como o sistema nervoso funciona.
Os esforços contínuos de pesquisa financiados por instituições públicas e privadas em todo o mundo buscam
entender como a mielina é comprometida em doenças como a EM, revelando novas possibilidades de tratamento
e oferecendo esperança às milhares de pessoas afetadas por essas doenças.
1.2.3 A doença de Alzheimer
A doença de Alzheimer é a causa mais comum de demência entre adultos mais velhos. Por demência considera-
se a perda do funcionamento cognitivo - pensamentos, lembranças e raciocínio - e das habilidades
comportamentais a ponto de interferir na vida e nas atividades diárias de uma pessoa.
A doença recebeu esse nome em referência aos estudos desenvolvidos pelo Dr. Alois Alzheimer, em 1906,
quando o cientista detectou alterações no tecido cerebral de uma mulher que havia morrido de uma doença
mental incomum, descrevendo a doença como a perda de neurônios e sinapses no córtex cerebral e em certas
regiões subcorticais. Essa perda resulta em atrofia grosseira das regiões afetadas, incluindo degeneração no lobo
temporal e no parietal e em partes do córtex frontal e giro cingulado (WENK, 2000, tradução nossa).
As placas amilóides e os emaranhados neurofibrilares são claramente visíveis por microscopia nos encéfalos
daqueles afetados pelo Alzheimer, formando depósitos densos, principalmente insolúveis, de peptídeo beta-
amilóide e material celular fora e ao redor dos neurônios. Emaranhados neurofibrilares são agregados da
proteína tau, associada ao microtúbulo que se tornou hiperfosforilada e se acumula dentro das próprias células.
VOCÊ SABIA?
Demência e perda severa de memória não fazem parte normal do envelhecimento. Eles podem
ser causados por doenças cerebrais, como a doença de Alzheimer, que os médicos acreditam
estar associada a placas e emaranhados que se formam no encéfalo e ao acúmulo de
lipofuscina. O delírio é uma confusão repentina que leva a mudanças de pensamento e
comportamento, geralmente, devido a doenças que não estão relacionadas ao encéfalo.
- -10
Figura 5 - Características das estruturas cerebrais e neuronais com a doença de Alzheimer
Fonte: Elaborada pela autora, 2020.
Um dos grandes mistérios da doença de Alzheimer é o motivo pelo qual ela atinge principalmente os idosos.
Pesquisas sobre envelhecimento normal do encéfalo estão explorando essa questão. Por exemplo, os cientistas
estão aprendendo como alterações no encéfalo relacionadas à idade podem prejudicar os neurônios e afetar
outros tipos de células cerebrais, contribuindo para os danos do Alzheimer. As mudanças relacionadas à idade
incluem atrofia (encolhimento) de certas partes do encéfalo, inflamação, dano vascular, produção de moléculas
instáveis chamadas radicais livres e disfunção mitocondrial (uma alteração na produção de energia dentro de
uma célula).
O envelhecimento é um importante fator de risco para as doenças neurodegenerativas mais comuns, incluindo
comprometimento cognitivo leve, demências como a doença de Alzheimer, doença cerebrovascular, doença de
Parkinson e doença de Lou Gehrig.
Pesquisas sugerem que o processo de envelhecimento está associado a várias alterações estruturais, químicas e
funcionais no encéfalo, além de uma série de alterações neurocognitivas. Relatórios recentes em organismos
modelo sugerem que, à medida que os organismos envelhecem, há mudanças distintas na expressão de genes no
nível de um único neurônio (KADAKKUZHA, et al. 2013).
VOCÊ QUER VER?
Muitas pessoas têm medo de tornarem esquecidas. Elas acham que o esquecimento é o
primeiro sinal da doença de Alzheimer. O filme “Para sempre Alice” conta a história de uma
renomada professora de Linguística, casada e com três filhos adultos, que começa a esquecer
as palavras, sendo diagnosticada com a doença de Alzheimer, que a acometeu precocemente.
Vale a pena acompanhar o drama dessa personagem, que vivencia uma ressignificação dos
laços familiares por conta de sua doença, lutando para se manter conectada com ela mesma.
- -11
1.3 Tecido nervoso e neuroplasticidade. Aprendizagem e 
memória.
Tecido nervoso é o termo usado para grupos de células organizadas no sistema nervoso, que é um sistema
orgânico que controla os movimentos do corpo, envia e transmite sinais para as diferentes partes do corpo e tem
um papel no controle de funções corporais, como a digestão, por exemplo.
O tecido nervoso é formado por dois tipos de células: neurônios e neuroglia (ou células da glia). Os neurônios
transmitem impulsos elétricos, enquanto a neuroglia tem muitas outras funções, incluindo apoiar e proteger os
neurônios.
Os neurônios são células que podem transmitir sinais chamados impulsos nervosos ou potenciais de ação. Um
potencial de ação é um rápido aumento e queda no potencial de membrana elétrica do neurônio, que transmite
sinais de um neurônio para o próximo. Os diferentes tipos de neurônios são:
• retransmitem informações do SNP para o SNC; diferentes tipos de neurônios sensoriais ou aferentes
neurônios sensoriais podem detectar estímulos distintos, como temperatura, pressão e luz;
• enviam sinais do SNC para o SNP; esses sinais são o comando de ação neurônios motores ou eferentes
para músculos e glândulas. Por exemplo, quando iniciamos o movimento de andar, através da contração 
muscular;
• conectam neurônios sensoriais e motores, que agem como conectores para formar interneurônios 
circuitos neurais e estão envolvidos com ações reflexas e funções cerebrais superiores, como a tomada de 
decisões.
Embora os neurônios possam ser especializados e parecerem muito diferentes uns dos outros, cada um deles
possui componentes em comum, tal como o soma, ou corpo celular, que contém o núcleo. Os dendritos, projeções
em forma de dedo que recebem impulsos nervosos, se ramificam do soma. Já o axônio é uma projeção maior que
se ramifica do soma.
Os impulsos nervosos viajam ao longo do axônio na forma de um potencial de ação. O axônio se divide em
terminais axônicos, que se ramificam para outros neurônios.
Os neurotransmissores são liberados das extremidades dos terminais do axônio e viajam pela fenda sináptica
para alcançar receptores nos dendritos de outros neurônios. Dessa maneira, os neurônios se comunicam e
podem enviar sinais que atingem muitos outros neurônios.
•
•
•
- -12
Figura 6 - Estruturas do neurônio
Fonte: Elaborada pela autora, 2020.
Os dendritos recebem sinais de entrada enquanto os axônios propagam sinais para longe do corpo da célula do
neurônio. A bainha de mielina envolve e isola o axônio.
Neuroglia, ou células da glia, são células que suportam neurônios, fornecem nutrientes e eliminam células
mortas e patógenos, como bactérias, uma outra importante função é o isolamento neuronal, permitindo que
sinais elétricos não sejam cruzados e favorecendo formação de conexões sinápticas entre os neurônios. Existem
vários tipos de neuroglia:
Os astrócitos são otipo mais numeroso de célula glial. De fato, são as células mais numerosas do encéfalo!
Astrócitos vêm em tipos diferentes e têm uma variedade de funções. Eles ajudam a regular o fluxo sanguíneo no
encéfalo, a manter a composição do fluido que circunda os neurônios e a regular a comunicação entre os
neurônios na sinapse.
Microglia estão relacionadas aos macrófagos do sistema imunológico e atuam removendo células mortas e
outros detritos.
As células de Schwann, presentes no SNP e os oligodendrócitos presentes no SNC partilham de uma mesma
função que é a produção mielina, a substância isolante que forma uma bainha ao redor dos axônios de muitos
neurônios. A mielina aumenta a velocidade com que um potencial de ação viaja pelo axônio e desempenha um
papel crucial na função do sistema nervoso.
- -13
Figura 7 - Neurônios e células da glia no SNC e SNP
Fonte: Elaborada pela autora, 2020.
Outros tipos de glia (além dos quatro tipos principais) incluem células gliais satélite e células ependimárias, tipo
de célula de suporte neuronal (neuroglia) que forma o revestimento epitelial dos ventrículos (cavidades) no
cérebro e no canal central da medula espinhal.
As células gliais satélites cobrem os corpos celulares dos neurônios nos gânglios da SNP. Pensa-se que as células
gliais dos satélites apóiam a função dos neurônios e podem agir como uma barreira protetora, mas seu papel
ainda não é bem compreendido.
Conexões de neurônio a neurônio são chamadas de sinapses, ou seja, são os locais em que as informações são
transportadas de um neurônio, o neurônio pré-sináptico, para o neurônio alvo (o neurônio pós-sináptico).
As conexões sinápticas entre neurônios e células musculares esqueléticas são geralmente chamadas de junções
neuromusculares, e as conexões entre neurônios e células ou glândulas musculares lisas são conhecidas como
junções neuroefetoras. Na maioria das sinapses e junções, as informações são transmitidas na forma de
mensageiros químicos chamados neurotransmissores. As sinapses ocorrem, portanto, quando as informações
são transportadas do neurônio pré-sináptico para o neurônio alvo, pós-sináptico, desencadeando, assim, a
liberação de neurotransmissor pela célula pré-sináptica.
Assim, a função neuronal básica - a comunicação de informações às células-alvo - é realizada pelo axônio e pelos
terminais do axônio. Assim como um único neurônio pode receber informações de muitos neurônios pré-
sinápticos, ele também pode fazer conexões sinápticas com vários neurônios pós-sinápticos, por meio dos
diferentes terminais do axônio.
- -14
1.3.1 Neuroplasticidade
A neuroplasticidade refere-se à capacidade do encéfalo de se adaptar, ou seja, mudanças fisiológicas no encéfalo
que ocorrem como resultado de nossas interações com o meio ambiente. Desde o momento em que o encéfalo
começa a se desenvolver no útero até o dia em que morremos, as conexões entre as células de nosso encéfalo se
reorganizam em resposta às nossas necessidades. Esse processo dinâmico nos permite aprender e nos adaptar a
diferentes experiências. (KOLB, et al 2011, tradução nossa).
A neurogênese é a capacidade ainda mais surpreendente do encéfalo para desenvolver novos neurônios. Você
pode ver como a neurogênese é um conceito mais interessante. Uma coisa é trabalhar com o que já temos, mas o
potencial de realmente substituir os neurônios que morreram pode abrir novas fronteiras no tratamento e
prevenção de demência, recuperação de lesões cerebrais traumáticas e outras áreas que provavelmente nem
pensamos. O que sabemos agora é que existem dois tipos principais de neuroplasticidade:
• , na qual a estrutura dos neurônios ou das conexões entre eles se altera.Neuroplasticidade estrutural
• , que descreve as mudanças funcionais nas conexões entre neurônios, Neuroplasticidade funcional
geralmente devido ao aprendizado e desenvolvimento.
Esses dois tipos de neuroplasticidade têm provocado interessante, mas a neuroplasticidade estrutural é
provavelmente a mais entendida no momento; com isso já é possível saber que algumas funções podem ser
redirecionadas, reaprendidas e restabelecidas no encéfalo, mas as mudanças na estrutura real do encéfalo são
onde estão muitas das excitantes possibilidades.
A neuroplasticidade é a incrível capacidade do encéfalo de mudar e se adaptar, sendo, assim, um fator
importante na recuperação de uma lesão cerebral, uma vez que é a base de nossa capacidade de reabilitação
cognitiva e física. Parte da reabilitação cognitiva visa tentar reconstruir conexões entre as células nervosas. Essa
"religação" do encéfalo pode possibilitar que uma função previamente gerenciada por uma área danificada seja
assumida por outra área não danificada. Esse processo dinâmico nos permite aprender e nos adaptar a
diferentes experiências, a esperança é que essas informações ajudem as pessoas a se recuperarem melhor de
uma lesão cerebral.
1.3.2 Aprendizagem
A aprendizagem é um processo pelo qual integramos novos conhecimentos gerados como resultado de
experiências. O produto de tais experiências é convertido em memórias armazenadas em nosso encéfalo.
Basicamente, não há aprendizado sem memória.
Existem essencialmente duas maneiras pelas quais a aprendizagem ocorre: uma é chamada condicionamento
clássico e a outra condicionamento instrumental. Ambas as formas modificam a estrutura e a química do
encéfalo, mas o fazem com diferentes graus de consciência ou autocontrole. Por exemplo, quando aprendemos a
•
•
VOCÊ O CONHECE?
Santiago Ramón y Cajal (1852-1934) é conhecido como o "pai da neurociência moderna",
recebeu o Nobel de Fisiologia ou Medicina de 1906. Isso ocorreu porque o trabalho que ele
realizou em histologia e anatomia foi fundamental para descrever o funcionamento de nossas
redes neurais. Além disso, sua biografia é cheia de histórias relacionadas não apenas à ciência,
mas também à arte e até à atividade militar.
- -15
encéfalo, mas o fazem com diferentes graus de consciência ou autocontrole. Por exemplo, quando aprendemos a
dirigir, a repetição ou ensaio desse comportamento envolverá os sistemas perceptivo-motor e os lobos frontais.
Como o comportamento é memorizado, ele é gerenciado pelos núcleos de base.
Pessoas que apresentam lesões nos núcleos de base apresentam déficits graves em sua capacidade de aprender
por condicionamento instrumental, já que o processo pelo qual aprendemos novos comportamentos também é
amplamente influenciado por neurotransmissores específicos, especialmente a dopamina, que é conhecida por
reforçar ou recompensar comportamentos específicos.
A memória é normalmente descrita como de curto ou longo prazo. A memória de curto prazo também é chamada
memória de trabalho e pode durar de alguns minutos a algumas horas. Sabe-se que os lobos frontais
desempenham um papel muito importante na memorização de curto prazo, enquanto o hipocampo é crítico na
consolidação de informações em armazenamento de longo prazo.
1.3.3 Memória
Para entender as mudanças anatômicas que estão acontecendo no encéfalo como resultado do aprendizado ou
da criação de memórias, precisamos voltar à base do funcionamento do encéfalo: as conexões sinápticas.
O encéfalo é um mosaico composto de diferentes tipos de células, cada uma com suas diferentes propriedades.
As células cerebrais mais comuns são neurônios e células não neuronais chamadas glia. O encéfalo humano
adulto médio contém aproximadamente 100 bilhões de neurônios, e a mesma quantidade - se não mais - de glia.
Embora os neurônios sejam as células cerebrais mais famosas, são necessários neurônios e células da glia para o
bom funcionamento do encéfalo (AAMODT, 2007).
Ao contrário de outras células do corpo, a maioria dos neurônios no encéfalo humano só é capaz de se dividir
para formar novas células (um processo chamado neurogênese) durante o desenvolvimento fetal e por alguns
meses após o nascimento.
O processo de aprendizado e memorização desenvolve a eficiência neural fazendo novas conexões sinápticas ou
reforçando as existentes. Os neurocientistas chamam esse fenômenode plasticidade sináptica.
1.4 Bioeletrogênese: potencial de membrana em repouso, 
potencial de ação e transmissão sináptica; tipos de fibras 
nervosas, condução do impulso nervoso; doença de 
Parkinson
Os neurônios são células com algumas habilidades especiais. Essas células são excitáveis, devido às membranas
que estão em um estado polarizado. Cada neurônio tem uma membrana celular carregada, o que significa que há
uma diferença de voltagem entre a face interna e externa, processo denominado de bioeletrogênese.
Existem também diferentes tipos de canais iônicos na membrana celular, que são seletivamente permeáveis por
certos íons presentes na membrana do neurônio. Os íons devem passar pelos canais iônicos quando entram ou
saem dos neurônios. Esses canais de íons podem ser abertos, fechados ou inativos.
Sobre a bioeletrogênese, existem termos que é preciso conhecer, sendo eles:
• - É a diferença na carga total entre o interior da célula e o exterior da célula.potencial de membrana
• - É a diferença de voltagem na membrana celular em um estado potencial da membrana em repouso
de repouso. (Diz-se que um neurônio está em repouso quando não conduz nenhum impulso. Nesse 
estágio, a membrana axonal do neurônio é mais permeável aos íons potássio e não permeável aos íons 
sódio).
• - É uma mudança de curto prazo no potencial elétrico que viaja através da célula do potencial de ação
neurônio.
Vamos assistir a uma videoaula a seguir para entendermos melhor sobre a bioeletrogênese e os
•
•
•
- -16
Vamos assistir a uma videoaula a seguir para entendermos melhor sobre a bioeletrogênese e os
neurotransmissores. Acompanhe!
https://cdnapisec.kaltura.com/html5/html5lib/v2.81.1/mwEmbedFrame.php/p/1972831/uiconf_id/30443981
/ e n t r y _ i d / 1 _ h m h 9 e c 1 x ?
wid=_1972831&iframeembed=true&playerId=kaltura_player_1581711802&entry_id=1_hmh9ec1x
1.4.1 Potencial de membrana em repouso, potencial de ação e transmissão 
sináptica
O corpo humano tem nervos que conectam o encéfalo ao resto dos órgãos e músculos, assim como fios
telefônicos conectam casas em todo o mundo. Quando você quer que sua mão se mova, seu encéfalo envia sinais
através dos nervos para a mão, dizendo aos músculos para contrair. Mas seus nervos não dizem apenas "mão,
mova-se". Em vez disso, seus nervos enviam muitos impulsos elétricos (chamados potenciais de ação) para
diferentes músculos da sua mão, permitindo que você mova sua mão com extrema precisão.
Os gradientes de concentração são a chave por trás do funcionamento dos potenciais de ação. Em termos de
potenciais de ação, um gradiente de concentração é a diferença nas concentrações de íons entre o interior do
neurônio e o exterior do neurônio (chamado fluido extracelular). Os neurônios enviam mensagens
eletroquimicamente; isso significa que produtos químicos (íons) causam um impulso elétrico. Neurônios e
células musculares são células eletricamente excitáveis, o que significa que elas podem transmitir impulsos
nervosos elétricos.
Se tivermos uma concentração mais alta de íons carregados positivamente fora da célula, em comparação com o
interior da célula, haveria um grande gradiente de concentração. O mesmo também seria verdadeiro se houvesse
mais de um tipo de íon carregado dentro da célula do que fora. A carga do íon não importa, tanto os íons
carregados positiva quanto negativamente se movem na direção que equilibraria ou nivelaria o gradiente.
A membrana celular do neurônio é super permeável aos íons de potássio e, portanto, muito potássio vaza do
neurônio através dos canais de fuga de potássio (orifícios na parede celular). Já quanto aos íons de sódio ela é
parcialmente permeável, portanto, os átomos de sódio vazam lentamente para o neurônio através dos canais de
vazamento de sódio. A célula deseja manter um potencial negativo da membrana em repouso, por isso possui
uma bomba que bombeia, simultanemante, potássio de volta para a célula e sódio para fora da célula ao mesmo
tempo.
Neurônios são essencialmente dispositivos elétricos, o potencial de membrana não é estático. Está
constantemente subindo e descendo, dependendo principalmente das entradas provenientes dos axônios de
outros neurônios. Algumas entradas tornam o potencial da membrana do neurônio mais positivo (ou menos
negativo, por exemplo, de -70 mV a -65 mV), e outros fazem o oposto.
1.4.2 Condução do impulso nervoso
Os potenciais de ação - impulsos elétricos que enviam sinais ao redor do corpo - nada mais são do que uma
mudança temporária, de negativa para positiva, no potencial de membrana do neurônio. Essa mudança é
causada por íons que fluem repentinamente dentro e fora do neurônio. Durante o estado de repouso, todos os
canais de sódio e potássio são fechados. Esses canais fechados são diferentes dos canais de vazamento e só
abrem quando um potencial de ação é acionado. Dizemos que eles são dependentes de voltagem porque são
abertos e fechados dependendo da diferença de voltagem na membrana celular.
O portão M (o portão de ativação) normalmente está fechado e abre quando a célula começa a ficar mais positiva.
O portão H (o portão de desativação) normalmente está aberto e fecha quando as células ficam muito positivas.
A porta N é normalmente fechada, mas abre lentamente quando a célula é despolarizada (muito positiva). Os
canais de sódio dependentes de tensão existem em um dos três estados:
• Desativado (fechado) - em repouso, os canais são desativados. O portão M está fechado e não permite a 
entrada de íons sódio.
• Ativado (aberto) - quando uma corrente passa e altera a diferença de tensão através de uma membrana, 
•
•
https://cdnapisec.kaltura.com/html5/html5lib/v2.81.1/mwEmbedFrame.php/p/1972831/uiconf_id/30443981/entry_id/1_hmh9ec1x?wid=_1972831&iframeembed=true&playerId=kaltura_player_1581711802&entry_id=1_hmh9ec1x
https://cdnapisec.kaltura.com/html5/html5lib/v2.81.1/mwEmbedFrame.php/p/1972831/uiconf_id/30443981/entry_id/1_hmh9ec1x?wid=_1972831&iframeembed=true&playerId=kaltura_player_1581711802&entry_id=1_hmh9ec1x
https://cdnapisec.kaltura.com/html5/html5lib/v2.81.1/mwEmbedFrame.php/p/1972831/uiconf_id/30443981/entry_id/1_hmh9ec1x?wid=_1972831&iframeembed=true&playerId=kaltura_player_1581711802&entry_id=1_hmh9ec1x
- -17
entrada de íons sódio.
• Ativado (aberto) - quando uma corrente passa e altera a diferença de tensão através de uma membrana, 
o canal é ativado e o portão M é aberto.
• Inativado (fechado) - à medida que o neurônio despolariza, o portão H se fecha e bloqueia a entrada de 
íons sódio na célula.
Os canais de potássio dependentes de tensão estão abertos ou fechados. Existem três eventos principais que
ocorrem durante um potencial de ação:
Ocorre um evento desencadeador que despolariza o corpo da célula. Esse sinal vem de outras células conectadas
ao neurônio e faz com que íons carregados positivamente fluam para o corpo da célula. Os neurotransmissores
são liberados pelas células próximas aos dendritos, geralmente como resultado final de seu próprio potencial de
ação! Esses íons recebidos aproximam o potencial da membrana a 0, conhecido como despolarização. Um objeto
é polar se houver alguma diferença entre áreas mais negativas e mais positivas. À medida que os íons positivos
fluem para a célula negativa, essa diferença e, portanto, a polaridade da célula, diminui.
A condução do impulso nervoso possui as seguintes etapas:
• Despolarização: um estímulo inicia a despolarização da membrana. A despolarização, também conhecida 
como "aumento”.
• Repolarização: uma vez que o gradiente elétrico atingiu o limiar da excitação, começa o "declínio" da 
repolarização. Os canais positivos de íons de sódio se fecham, enquanto os canais de íons positivos de 
potássio se abrem. Disso resulta a liberação de íons de potássio com carga positiva do neurônio. Essa 
expulsão atua para restaurar o potencial negativo localizado na membrana da célula, trazendo-a de volta 
à sua voltagem normal.
• Hiperpolarização ou fase refratária: ocorre em curto período de tempo após o estágio de despolarização.A bomba de sódio-potássio retorna íons de sódio para o exterior e íons de potássio para o interior.
Os neurônios conversam entre si através de sinapses. Quando um potencial de ação atinge o terminal pré-
sináptico, causa a liberação do neurotransmissor do neurônio na fenda sináptica, um intervalo de 20 a 40 nm
entre o terminal do axônio pré-sináptico e o dendrito pós-sináptico.
1.4.3 Revestimento dos nervos
No sistema nervoso periférico, os axônios dos neurônios são agrupados para formar nervos. Os axônios são
delimitados por várias camadas de tecido conjuntivo, sendo elas:
• Endoneuro - envolve o axônio de um neurônio individual.
• Perineuro - envolve um fascículo, que é uma coleção de neurônios.
• Epineuro - envolve todo o nervo, formado por uma coleção de fascículos.
Ele contém numerosos pequenos vasos sanguíneos, que suprem as fibras nervosas. O epineuro aparece no nervo
quando sai do forame intervertebral. É criado pela fusão de aracnóide e pia-máter, que são camadas das
meninges.
1.4.4 Doença de Parkinson
A doença de Parkinson é um distúrbio progressivo causado pela degeneração das células nervosas na chamada
substância negra, localizada no encéfalo, que controla o movimento. Essas células nervosas morrem ou ficam
comprometidas, perdendo a capacidade de produzir uma substância química importante chamada dopamina.
Estudos mostraram que os sintomas de Parkinson se desenvolvem em pacientes com uma perda de 80% ou mais
de células produtoras de dopamina na substância negra (PEREIRA; GARRETT, 2010).
Normalmente, a dopamina opera em um delicado equilíbrio com outros neurotransmissores para ajudar a
coordenar os milhões de células nervosas e musculares envolvidas no movimento. Sem dopamina suficiente,
esse equilíbrio é interrompido, resultando em tremor (nas mãos, braços, pernas e mandíbula); rigidez membros,
lentidão de movimento; e equilíbrio e coordenação prejudicados - os sintomas característicos do Parkinson.
A causa da doença de Parkinson permanece essencialmente desconhecida. Entretanto, teorias envolvendo danos
•
•
•
•
•
•
•
•
- -18
A causa da doença de Parkinson permanece essencialmente desconhecida. Entretanto, teorias envolvendo danos
oxidativos, toxinas ambientais, fatores genéticos e envelhecimento acelerado têm sido discutidas como possíveis
causas da doença (PEREIRA; GARRETT, 2010). Em 2005, os pesquisadores descobriram uma única mutação no
gene da doença de Parkinson (identificada pela primeira vez em 1997), que é responsável por 5% dos casos
herdados.
Os sintomas mais reconhecíveis da doença de Parkinson estão relacionados ao movimento. Sintomas não
motores, que incluem disfunção autonômica, problemas neuropsiquiátricos (humor, cognição, alterações
comportamentais ou de pensamento) e sensoriais (principalmente olfato alterado), assim como dificuldades
para dormir, também são comuns.
Conclusão
Concluímos a unidade introdutória relativa ao Sistema Nervoso. Agora você já conhece o desenvolvimento
embrionário do Sistema Nervoso.
Nesta unidade, você teve a oportunidade de:
• Aprender a estrutura e função dos neurônios e a importância da mielinização;
• Compreender melhor como ocorre a neuroplasticidade e a bioeletrogênese;
• Conhecer melhor os casos de anencefalia e a espinha bífida, compreendendo suas causas e 
consequências;
• Entender como a remoção de mielina compromete a comunicação neural;
• Aprofundar seu conhecimento sobre a doença de Alzheimer, que é a causa mais comum de demência 
entre adultos mais idosos;
• Estudar as células nervosas (neurônios) – que formam a base funcional do sistema nervoso, responsável 
por transmitir informações através de sinais elétricos ou químicos.
Bibliografia
PEREIRA, D; GARRET, C. Factores de risco da doença de Parkinson: um estudo epidemiológico. Acta Médica
, Lisboa, v. 23, n. 1, p.15-24, 2010.Portuguesa
GILBERT, S.f.. 6. ed. Sunderland (ma): Sinauer Associates, 2000. Disponível em: <Developmental Biology. 
https://www.ncbi.nlm.nih.gov/books/NBK9983/>. Acesso em: 21 jan. 2020.
MILLER, D.; HANNON, C; GANETZKY, B. A mutation in Drosophila Aldolase Causes Temperature-Sensitive
Paralysis, Shortened Lifespan, and Neurodegeneration. , [s.l.], v. 26, n. 3-4, p.317-327,Journal Of Neurogenetics
13 ago. 2012. Informa UK Limited.. Disponível em: <http://dx.doi.org/10.3109/01677063.2012.706346>.
Acesso em: 21 jan. 2020.
KADAKKUZHA, B. M et al. Age-associated bidirectional modulation of gene expression in single identified R15
neuron of Aplysia. , [s.l.], v. 14, n. 1, p.880-890, 2013. Springer Science and Business Media LLC..Bmc Genomics
Disponível em: <http://dx.doi.org/10.1186/1471-2164-14-880>. Acesso em: 21 jan. 2020.
KATSENOS, C. et al. A 17 year-old girl with a demyelinating disease requiring mechanical ventilation: a case
report. , [s.l.], v. 6, n. 1, p.1-1, 18 jan. 2013. Springer Science and Business Media LLC..Bmc Research Notes
Disponível em: <http://dx.doi.org/10.1186/1756-0500-6-22>. Acesso em: 21 jan. 2020.
KOLB, B. et al. Brain plasticity and recovery from early cortical injury. Developmental Medicine & Child
, [s.l.], v. 53, p.4-8, set. 2011. Disponível em: <Neurology http://dx.doi.org/10.1111/j.1469-8749.2011.04054.x>.
Acesso em: 21 jan. 2020.
PARA Sempre Alice. Direção: Richard Glatzer e Wash Westmoreland. Drama. EUA. Telefilms, 2015. 105 min., son.,
•
•
•
•
•
•
https://www.ncbi.nlm.nih.gov/books/NBK9983/
https://www.ncbi.nlm.nih.gov/books/NBK9983/
http://dx.doi.org/10.3109/01677063.2012.706346
http://dx.doi.org/10.3109/01677063.2012.706346
http://dx.doi.org/10.1186/1471-2164-14-880
http://dx.doi.org/10.1186/1471-2164-14-880
http://dx.doi.org/10.1186/1756-0500-6-22
http://dx.doi.org/10.1186/1756-0500-6-22
http://dx.doi.org/10.1111/j.1469-8749.2011.04054.x
http://dx.doi.org/10.1111/j.1469-8749.2011.04054.x
- -19
PARA Sempre Alice. Direção: Richard Glatzer e Wash Westmoreland. Drama. EUA. Telefilms, 2015. 105 min., son.,
color.
STADELMANN, C. et al. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiological
, [s.l.], v. 99, n. 3, p.1381-1431, 1 jul. 2019. American Physiological Society. Disponível em: <Reviews http://dx.
doi.org/10.1152/physrev.00031.2018>. Acesso em: 21 fev. 2020.
WENK, G. L. et al. No interaction of memantine with acetylcholinesterase inhibitors approved for clinical use. Life
, [s.l.], v. 66, n. 12, p.1079-1083, fev. 2000. Elsevier BV.. Disponível em: <Sciences http://dx.doi.org/10.1016
(00)00411-2/s0024-3205 >. Acesso em: 21 jan. 2020.
http://dx.doi.org/10.1152/physrev.00031.2018
http://dx.doi.org/10.1152/physrev.00031.2018
http://dx.doi.org/10.1152/physrev.00031.2018
http://dx.doi.org/10.1016/s0024-3205(00)00411-2
http://dx.doi.org/10.1016/s0024-3205
http://dx.doi.org/10.1016/s0024-3205
	Introdução
	1.1 Ontogênese do sistema nervoso: desenvolvimento embrionário, defeitos de fechamento do tubo neural (anencefalia e mielomeningocele)
	1.1.1 Desenvolvimento embrionário
	1.1.2 Neurulação
	1.1.3 Desenvolvimento anterior: estruturas do encéfalo
	1.1.4 Defeitos de fechamento do tubo neural (anencefalia e mielomeningocele)
	1.1.5 Medula espinhal
	1.2 Mielinização do sistema nervoso: envelhecimento e doença de Alzheimer
	1.2.1 Percepção do papel da mielina na saúde e na doença
	1.2.2 O envelhecimento
	1.2.3 A doença de Alzheimer
	1.3 Tecido nervoso e neuroplasticidade. Aprendizagem e memória.
	1.3.1 Neuroplasticidade
	1.3.2 Aprendizagem
	1.3.3 Memória
	1.4 Bioeletrogênese: potencial de membrana em repouso, potencial de ação e transmissão sináptica; tipos de fibras nervosas, condução do impulso nervoso; doença de Parkinson
	1.4.1 Potencial de membrana em repouso, potencial de ação e transmissão sináptica
	1.4.2 Condução do impulso nervoso
	1.4.3 Revestimento dos nervos
	1.4.4 Doença de Parkinson
	Conclusão
	Bibliografia

Outros materiais