Prévia do material em texto
WWW.EXERCITANDO.COM.BR http://www.exercitando.com.br Notícias e Conteúdos para Concursos Públicos – Material de Estudo 115 A conversão da taxa nominal em efetiva é feita ajustando-se o valor da taxa nominal proporcionalmente ao período de capitalização. Isto pode ser feito através de uma regra de três simples e direta. Ex: Juros de 72% ao ano capitalizados mensalmente. 72% -----12 meses x = 72 = 6% a.m. x%--------1 mês 12 Ex: Taxa de 24% ao ano capitalizados bimestralmente. 24% -----12 meses x = 24.2 = 4% a.b. x%--------2 mês 12 5. EQUIVALÊNCIA DE TAXAS A JUROS COMPOSTOS Dizemos que duas taxas são equivalentes quando, aplicadas a capitais iguais, por prazos iguais, produzem juros também iguais. Ex: Qual a taxa trimestral de juros compostos equivalentes à taxa composta de 20% a.m.? Queremos encontrar uma taxa trimestral (it) equivalente a uma taxa mensal dada (im = 0,20) Como 1 trimestre equivale a 3 meses, teremos 1 e 3 como expoentes. (1+ iat )1 = (1+ iam )3 = (1 + 0,20)3 = 1,23 = 1,728 1 + iat = 1,728 ⇒ iat = 1,728 – 1 = 0,728 ⇒ iat = 72,8% 6. TAXA REAL E TAXA APARENTE Consideremos que um banco tenha oferecido uma determinada aplicação pagando uma taxa efetiva de 10% a.a. Se no mesmo período for registrada uma inflação de 6% a.a., então diremos que a taxa de 10% a.a. oferecida pelo banco não foi uma taxa real de remuneração do investimento, mas sim uma taxa aparente, pois os preços, no mesmo período, tiveram um aumento de 6%. Vamos comparar dois investimentos de R$ 100,00, o primeiro remunerado a 10% a.a. e o segundo recebendo apenas a correção monetária devida à inflação: Montante de 10%a.a.: 100,00 . 1,10 = R$ 110,00 Montante de 6%a.a.: 100,00 . 1,06 = R$ 106,00 O ganho real do investidor foi de = R$ 4,00 Observe que o ganho real de R$ 4,00 foi em relação a R$ 106,00, ou seja: 4 = 0,0377... ou 3,77...% 106 Sejam as taxas unitárias e referentes a um mesmo prazo: iR = Taxa real iI = Taxa de inflação iA = Taxa aparente Poderíamos chegar ao mesmo resultado utilizando a relação: Ex: iA = iI + iR + (iI . iR ) 0,10 = 0,06 + iR + 0,06iR 0,10 – 0,06 = 1,06iR iR = 0,04 = 0,0377... ou 3,77...% 1,06 TESTES – JUROS COMPOSTOS 01. Um comerciante consegue um empréstimo de R$ 60.000,00 que deverão ser pagos, ao fim de um ano, acrescidos de juros compostos de 2% ao mês. Quanto o comerciante deverá pagar ao fim do prazo combinado? a) R$ 74.400,00 b) R$ 76.094,40 c) R$ 78.084,00 d) R$ 80.562,00 e) R$ 82.324,00 C = 60.000 / i = 2% a.m. = 0,02 / t = 12 meses M = C (1 + i)t = 60000(1 + 0,02)12 = 60000 . 1,0212 M = 60000 x 1,26824 ⇒ M = R$ 76.094,40 (B) 02. Qual o Montante de um Capital de R$ 10.000,00 aplicado a juros compostos de 6% a.a. durante 8 anos e 4 meses? a) R$ 12.456,30 b) R$ 13.234,00 c) R$ 14.527,00 d) R$ 16.257,27 e) R$ 17.204,40 C = 10.000 / i = 6% a.a. = 0,06 / t = 8 . 1/3 OBS: Quando t não é inteiro, calcula-se o montante pela Convenção Linear: 1° Calcula-se o montante composto normalmente usando a parte inteira de t. 2° Acrescentar ao resultado da 1ª os juros simples proporcionais à parte fracionária de n, calculados sobre o montante obtido na 1ª etapa. M = C (1 + i)t = 10000(1 + 0,06)8 = 10000 . 1,068 M = 10000 x 1,59385 ⇒ M = R$ 15.938,50 Se em 1 ano.....temos 6% de juros Em 4 meses(1 quad = 1/3)............temos 2% de juros M = 15938,50 . 1,02 ⇒ M = R$ 16.257,27 (D) 03. Qual o capital que aplicado à taxa composta de 2% a.m. daria origem a um montante de R$ 3.656,97 ao fim de 10 meses? a) R$ 2.600,00 b) R$ 2.800,00 c) R$ 3.000,00 d) R$ 3.200,00 e) R$ 3.250,00 M = 3656,97 / i = 2% a.m. = 0,02 / t = 10 M = C (1 + i)t ⇒ C = M ⇒ C = 3656,97 (1 + i)t (1,02)10 C = 3656,97 ⇒ C = R$ 3.000,00 (C) 1,21899 04. Quanto tempo leva um capital de R$ 8.000,00, aplicado a uma taxa composta de 12% a.a., para gerar um montante de R$ 15.790,56? a) 6 anos b) 5,5 anos c) 5 anos d) 4,5 anos e) 3 anos C = 8000 / M = 15790,56 / i = 12% a.a. = 0,12 / t =? M = C (1 + i)t ⇒ 15790,56 = 8000 (1,12)t (1,12)t = 15790,56 = 1,97382 8000 (Na tabela 1, na coluna 12%, você achará 1,97382 correspondente a ⇒ t = 6 anos) (A) 05. Certa loja anunciou um aparelho de som por R$ 466,56 com pagamento somente após 60 dias da compra, sem entrada. Porém, se o comprador resolvesse pagar à vista, o mesmo aparelho sairia por R$ 400,00. Qual a taxa de mensal de juros compostos praticada pela loja? a) 4% b) 5% c) 6% d) 7% e) 8% C = 400 / M = 466,56 / t = 2 meses M = C (1 + i)t ⇒ 466,56 = 400 (1 + i)2 (1 + i)2 = 466,56 = 1,1664 400 (Na tabela 1, na linha 2, você achará 1,1664 correspondente a ⇒ i = 8%) (E) 06. Qual o montante de um capital de R$ 5.000,00 aplicado por 2 anos a um taxa de 32% ao ano capitalizados trimestralmente? a) R$ 8.456,30 b) R$ 6.234,50 c) R$ 8.527,30 d) R$ 9.254,65 e) R$ 7.204,40 32%-----12 meses ie = 32 . 3 = 8% a.t. ie %----- 3 meses 12 t = 2 anos x 4 = 8 trimestres. C = 5000 / i = 8% a.t. = 0,08 / t = 8 trimestres M = C (1 + i)t ⇒ M = 5000 (1,08)8 = 5000 . 1,85093 M= R$ 9.254,65 (D) 07. A taxa efetiva anual correspondente a 40 % ao ano com capitalização semestral é: a) 40% b) 42% c) 44% d) 48% e) 56% 40%-----12m ie = 40 . 6 = 20%a.s. ie%------6m 12 iA = iI + iR + (iI . iR)