Buscar

EXERCÍCIOS_ ESTATÍSTICA APLICADA AULA 06 AO 10

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 22 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

EXERCÍCIOS AULA 06 A 10 – ESTATÍSTICA APLICADA
01 Considere as distribuições do tipo de combustível doméstico usado em 2 cidades:
Represente as informações contidas acima em um gráfico e responda através da análise gráfica qual cidade utiliza, proporcionalmente, mais gás.
Figura 1.1: Tipos de combustíveis usados nas cidades A e B.
Devemos observar que a Figura 1.1 nos fornece uma análise distorcida quando comparamos qual cidade utiliza mais gás. Isto acontece, pois o total de residências nas duas cidades não é o mesmo. Então, a construção do gráfico deve ser feita através da F.R. (%).
Figura 1.2: Tipos de combustíveis usados nas cidades A e B.
Pela Figura 1.2 observamos que, proporcionalmente, a cidade que utiliza mais gás é a cidade B, com 81,33% das suas residências.
Fr = f/N x100 67450/97700 x100 = 69,04%
02 Como podemos identificar o gráfico Pictórico? É a representação dos valores por meio de figuras. Explicação: Um pictograma é um gráfico semelhante a um gráfico de barras onde se utilizam símbolos apelativos em substituição das barras.
		03 (FCC) Foi feita uma pesquisa entre os eleitores de uma cidade para indicar sua preferência entre quatro candidatos à prefeitura. Metade dos eleitores apontou como escolha o candidato A, um quarto preferiu o candidato B, e os demais eleitores dividiram-se igualmente entre os candidatos C e D. Qual dos gráficos seguintes pode representar a distribuição da preferência da população pesquisada?
	
	
04 Uma pesquisa realizada recentemente perguntava as pessoas se elas acreditavam que as atividades humanas provocam o aquecimento global. Eram três alternativas possíveis e 1.400 participantes. Analisando as informações coletadas e representadas no gráfico a seguir, quantos participantes responderam ''NÃO SEI AVALIAR'' à pesquisa? (112) Entre 110 e 120.
05 A revista da Conjuntura Econômica da Fundação Getúlio Vargas publica mensalmente os dados sobre índices de preços ao consumidor - IPC. Estes dados servem para mostrar as mudanças, ao longo do tempo, nos preços dos bens e serviços pagos pelos consumidores. Assim, podemos afirmar que estes dados são:
Dados de serie temporal(é uma sequência de realizações de uma variável ao longo do tempo).
06 Um fabricante de peças especiais para aviões recebeu o gráfico abaixo demonstrando o total de peças vendidas entre os meses de janeiro a agosto. Pela análise do gráfico podemos afirmar que o total de peças vendidas no mês de agosto em comparação ao mês de janeiro: NÃO SOFREU ALTERAÇÃO 
07 O Sr José realizou uma pesquisa com 300 clientes de sua confeitaria sobre qual tipo de doce os clientes preferem. O resultado da pesquisa foi o gráfico abaixo. Pela análise do gráfico, podemos concluir que a quantidade de clientes que preferem o doce do tipo 1 é: 120
08 O Polígono de Frequência Acumulada ou Ogiva de Galton é um gráfico de linha em que são consideradas as frequências acumuladas. Anotamos a frequência nula para o limite inferior da primeira classe e os limites superiores de todas as classes, da primeira à última. O gráfico abaixo é uma Ogiva de Galton e nela temos a associação com a frequência acumulada de uma distribuição. Quanto as afirmativas a seguir, pode-se dizer que: 
		I - A frequência relativa da 3ª classe é 0,2.
II - A moda se encontra na 4ª classe.
III - A amplitude total é de 7 anos
	
	
TODAS SÃO VERDADEIRAS:
A frequência relativa da terceira classe é quociente encontrado entre a frequência simples da classe e o somatório de todas as frequências:
fr3 = (16 - 8) / 40 = 0,2
A moda se encontra na classe de maior frequência: 27 - 16 = 11
A amplitude total é a diferença entre o limite superior da última classe e o limite inferior da primeira classe:
10 - 3 = 7
09 Pesquisa realizada no RJ, em 2018, perguntava as pessoas sobre a preferência entre alguns esportes. Participaram da enquete 1.000 pessoas. Analisando as informações coletadas e apresentadas no gráfico a seguir, determine quantos participantes responderam ''Natação'' nesta pesquisa? 100
10 A Raquel fez um inquérito para a disciplina de Estudo Acompanhado sobre quantas horas os colegas estudavam por dia. Obteve o histograma seguinte:
Quantas classes formou a Raquel? 5
11 Verificando o histograma a seguir, podemos afirmar que a média aritmética vale: 2,5
Ma = (5*0,5 + 1,5*10 + 2,5*15 + 3,5*20) / (5 + 10 + 15 + 20) 
Ma = (2,5 + 15 + 37,5 + 70) / 50
Ma = 125 / 50
Ma = 2,5
12 Um gráfico Cartograma é: Um gráfico que mostra ilustrações relativas a cartas geométricas.
	13 Para uma variável qualitativa que tenha comparação, ou seja, uma série conjugada (geográfica ¿ cronológica) pode ser representada graficamente por: colunas múltiplas 
Explicação: Os diagramas em barras (ou colunas) são bastante utilizados quando trabalhamos com variáveis qualitativas (dados categóricos). No eixo horizontal especificamos os nomes das categorias e no eixo vertical construímos uma escala com a frequência ou a frequência relativa. As barras terão bases de mesma largura e alturas iguais à frequência ou à frequência relativa. 
O gráfico em barras, quando as barras estão dispostas no sentido vertical, também é chamado de gráfico em colunas.
 
14 O índice de confiabilidade na economia é um número entre 0 e 100 que mede a confiança dos empresários na economia brasileira. Os gráficos ilustram os valores desses índices para grandes e médios empresários, de outubro de 2002 a outubro de 2003, em dados trimestrais. 
		Assinale a opção correta,  acerca dos índices de confiabilidade na economia brasileira dos grandes e médios empresários, representados no gráfico anterior. O crescimento e decrescimento citados nas afirmações são relativos ao trimestre anterior. :Quando o índice dos médios empresários cresceu, ocorreu o mesmo com o índice do grandes empresários.
	
	
15 O Gráfico de Pareto representa: as frequências simples ou relativas das classes ou dos valores analisados, de forma ordenada,  geralmente da classe de maior frequência para a de menor frequência. É considerado uma ferramenta para a Qualidade Total, no campo da gestão de empresas.
16 A Ogiva de Galton a seguir (gráfico de frequência acumulada) supõe o tempo de realização do ''check in'' em um aeroporto qualquer. Quantos as afirmativas podemos dizer que: 
Afirmativa I: Para calcular o número de pessoas que realizou o ''chech in'' em cada intervalo basta subtrair a frequência acumulada superior pela inferior em cada classe, daí, no intervalo entre 30 e 40 minutos confirmamos que temos o grupo com maior número: 76 - 44 = 32 pessoas.
Afirmativa II: Como o gráfico trata de frequência acumulada, 15 pessoas realizaram ''check in'' em ATÉ 20 minutos e não em 20 minutos.
Quanto a afirmativa III: O percentual de pessoas que ultrapassou 50 minutos para realização do ''check in'' foi de: 15/120 = 0,125 = 12,5% e não de 15%. Apenas a afirmativa I está correta.
17 Na figura a seguir, o examinando a curva B (simétrica), quanto as medidas de tendência central, concluímos que: 
Nas distribuições simétricas a média, a mediana e a moda se localizam na mesma posição, portanto: Média = Mediana = Moda.
18 Uma pesquisa realizada recentemente perguntava as pessoas sobre a preferencia entre alguns esportes. Participaram da enquete 3.000 pessoas. Analisando as informações coletadas e representadas no gráfico a seguir, quantos participantes responderam ''NENHUM'' à pesquisa? NENHUM (16%)
Logo, 16.3000/100 = 480
19 Para o lançamento de uma nova linha de produtos, uma empresa de alimentos fez uma pesquisa de mercado com 2383 consumidores para saber a preferência por sabores de pastas de queijo. A pesquisa forneceu como resultado o gráfico abaixo. Pela análise do gráfico, podemos afirmar que o total de pessoas que optaram pelo sabor cebola foi aproximadamente : 810
20 O __________________ representa frequências relativas ou simples sob a forma de setores de círculo (BRUNI, 2007). Esse gráfico é popular pelo seu formato de "pizza". : gráfico de setores
21 Analise o gráficoabaixo e responda:
Qual o tipo de gráfico, qual a variável em estudo e qual o tipo de variável?
 Histograma / variável: salário / tipo de variável: quantitativa contínua.
Quando os dados estão apresentados em intervalos de classes podemos representá-los graficamente através de um histograma ou do polígono de frequências. 
A variável em estudo é mostrada no título do eixo X - salário (R$) e se trata de uma variável quantitativa contínua. Variáveis contínuas: a variável é avaliada em números que são resultados de medições e, por isso, podem assumir valores com casas decimais e devem ser medidas por meio de algum instrumento.
22 É considerada uma falha na elaboração de gráficos: Eixo vertical comprimido
23 Gráfico construído a partir de figuras ou conjuntos de figuras representativas da intensidade ou das modalidades do fenômeno. Pictograma
24 (Enem-2005) No gráfico abaixo, mostra-se como variou o valor do dólar, em relação ao real, entre o final de 2001 e o início de 2005. Por exemplo, em janeiro de 2002, um dólar valia cerca de R$ 2,40. Durante esse período, a época em que o real esteve mais desvalorizado em relação ao dólar foi no: final de 2002. 
25 Foi feito um experimento com 3 tipos de produtos para eliminação de fungos. O resultado do experimento foi resumido no gráfico abaixo, onde o eixo vertical representa o percentual de fungos vivos e o eixo horizontal o tempo de exposição ao produto em horas. Pela análise do gráfico, podemos afirmar que ao utilizar o produto do tipo 3 foram eliminados exatamente 50% dos fungos : 2 a 3 horas
26 Como podemos identificar o gráfico de Setores? Representa as frequências relativas ou simples, sobre forma de setores de um círculo.
AULA 07
	
01 O erro padrão indica a propagação das medições dentro de uma amostra de dados. É o desvio padrão dividido pela raiz quadrada do tamanho da amostra de dados. A amostra pode incluir dados de medições científicas, resultados de testes, as temperaturas ou uma série de números aleatórios. Suponha que, numa população obteve-se desvio padrão de 2,24 com uma amostra aleatória de 64 elementos. Qual o provável erro padrão? 
Explicação: Para o cálculo do Erro Padrão da Amostra basta fazer uso da fórmula dada na questão:
Erro Padrão da Amostral = Desvio Padrão da amostra / Raiz quadrada do tamanho da amostra
EP = 2,24 / √64
EP = 2,24 / 8
EP = 0,28
02 Ao se obter uma amostra qualquer de tamanho n, calcula-se a média aritmética amostral. Provavelmente, se uma nova amostra aleatória for realizada, a média aritmética obtida será diferente daquela da primeira amostra. A variabilidade das médias é estimada pelo seu erro padrão que é o desvio padrão dividido pela raiz quadrada do tamanho da amostra de dados. Suponha que, numa população obteve-se desvio padrão de 1,75 com uma amostra aleatória de 25 elementos. Qual o provável erro padrão? 
Erro Padrão da Amostral = Desvio Padrão da amostra / Raiz quadrada do tamanho da amostra
EP = 1,75 / √25
EP = 1,75 / 5
EP = 0,35
03 Uma amostra de 36 empregados horistas selecionada de um grande número de empregados de uma fábrica, teve uma média da amostra de salários de R$ 788,00, com desvio padrão da amostra de R$ 42,00. Calcule o erro padrão da amostra. (Erro Padrão da Amostra = desvio padrão da amostra / raiz quadrada do tamanho da amostra = 7
04 Ao se obter uma amostra qualquer de tamanho n, calcula-se a média aritmética amostral. Provavelmente, se uma nova amostra aleatória for realizada, a média aritmética obtida será diferente daquela da primeira amostra. A variabilidade das médias é estimada pelo seu erro padrão que é o desvio padrão dividido pela raiz quadrada do tamanho da amostra de dados. Suponha que, numa população obteve-se desvio padrão de 2,59 com uma amostra aleatória de 49 elementos. Qual o provável erro padrão? = 0,37
05 Numa população obteve-se desvio padrão de 2,64 com uma amostra aleatória de 49 elementos. Qual o provável erro padrão? = 0,3771
06 O erro padrão indica a propagação das medições dentro de uma amostra de dados. É o desvio padrão dividido pela raiz quadrada do tamanho da amostra de dados. A amostra pode incluir dados de medições científicas, resultados de testes, as temperaturas ou uma série de números aleatórios. Suponha que, numa população obteve-se desvio padrão de 1,25 com uma amostra aleatória de 25 elementos. Qual o provável erro padrão? 0,25
07 Uma amostra de 64 empregados horistas selecionada de um grande número de empregados de uma fábrica, teve uma média da amostra de salários de R$ R$ 788,00, com desvio padrão da amostra de R$ 72,00. Calcule o erro padrão da amostra. = 9 
08 Uma amostra de 36 empregados horistas selecionada de um grande número de empregados de uma fábrica, teve uma média da amostra de salários de R$ 788,00, com desvio padrão da amostra de R$ 33,00. Calcule o erro padrão da amostra. 5,5 
09 Uma amostra de 64 empregados horistas selecionada de um grande número de empregados de uma fábrica, teve uma média da amostra de salários de R$ 788,00, com desvio padrão da amostra de R$ 44,00. Calcule o erro padrão da amostra. 5,5
10 O erro padrão indica a propagação das medições dentro de uma amostra de dados. É o desvio padrão dividido pela raiz quadrada do tamanho da amostra de dados. A amostra pode incluir dados de medições científicas, resultados de testes, as temperaturas ou uma série de números aleatórios. Suponha que, numa população obteve-se desvio padrão de 1,56 com uma amostra aleatória de 36 elementos. Qual o provável erro padrão? 0,26
11 Uma amostra de 25 caixas é selecionada aleatoriamente sem reposição, a partir de um lote de cerca de 5000 caixas de morango, abastecidas em cada jornada diária no entreposto do produtor. Se o desvio padrão do processo de abastecimento de morango for igual a 15 gramas, calcule o erro padrão da média aritmética? 3g
		12 Suponha que a média de uma grande população de elementos seja 150 e o desvio padrão desses valores seja 36. Determine o erro padrão de uma amostra de 81 elementos. = 4
	
	
13 Uma amostra de 81 empregados horistas selecionada de um grande número de empregados de uma fábrica, teve uma média da amostra de salários de R$ 788,00, com desvio pad10rão da amostra de R$ 90,00. Calcule o erro padrão da amostra. 10
14 Uma amostra de 36 empregados horistas selecionada de um grande número de empregados de uma fábrica, teve uma média da amostra de salários de R$ 788,00, com desvio padrão da amostra de R$ 42,00. Calcule o erro padrão da amostra. 7
15 Os pesos dos funcionários da empresa KHOMEBEN seguem uma distribuição normal com média 60 kg e desvio padrão 10 kg. Então, o valor padronizado de z (escore-z) de um funcionário que pesa 85 kg é: 
Explicação: Para obter o valor padronizado de z basta fazer uso da fórmula:
z = (xi - Média) / Desvio Padrão
z = (85 - 60) / 10
z = 25 / 10
z = 2,5
16 Uma amostra de 49 empregados horistas selecionada de um grande número de empregados de uma fábrica, teve uma média da amostra de salários de R$ R$ 788,00, com desvio padrão da amostra de R$ 56,00. Calcule o erro padrão da amostra. 8
17 Seja uma população infinita com média e desvio padrão, respectivamente, iguais a 60 e 18, Retirando-se uma amostra de 36 dados, o erro padrão da distribuição é de: 3
18 O erro padrão indica a propagação das medições dentro de uma amostra de dados. É o desvio padrão dividido pela raiz quadrada do tamanho da amostra de dados. A amostra pode incluir dados de medições científicas, resultados de testes, as temperaturas ou uma série de números aleatórios. Suponha que, numa população obteve-se desvio padrão de 1,86 com uma amostra aleatória de 36 elementos. Qual o provável erro padrão? 0,31
19 Considere obter uma amostra qualquer de tamanho n, e determinar a média aritmética amostral. Provavelmente, se uma nova amostra aleatória for obtida, e determinada a média aritmética para essa nova amostra, essa média aritmética será diferente daquela obtida com a primeira amostra. A variabilidade das médias é estimada pelo seu erro padrão. O erro padrão é dado pelafórmula a seguir, ou seja, é o desvio padrão (S) dividido pela raiz quadrada do tamanho da amostra de dados (n). Dado que em uma população obteve-se um desvio padrão de 1,20 com uma amostra aleatória de 36 elementos. Qual o provável erro padrão? 0,2
20 Ao se obter uma amostra qualquer de tamanho n, calcula-se a média aritmética amostral. Provavelmente, se uma nova amostra aleatória for realizada, a média aritmética obtida será diferente daquela da primeira amostra. A variabilidade das médias é estimada pelo seu erro padrão que é o desvio padrão dividido pela raiz quadrada do tamanho da amostra de dados. Suponha que, numa população obteve-se desvio padrão de 2,16 com uma amostra aleatória de 36 elementos. Qual o provável erro padrão? 0,36 
21 Ao se obter uma amostra qualquer de tamanho n, calcula-se a média aritmética amostral. Provavelmente, se uma nova amostra aleatória for realizada, a média aritmética obtida será diferente daquela da primeira amostra. A variabilidade das médias é estimada pelo seu erro padrão que é o desvio padrão dividido pela raiz quadrada do tamanho da amostra de dados. Suponha que, numa população obteve-se desvio padrão de 1,44 com uma amostra aleatória de 64 elementos. Qual o provável erro padrão? 0,18
22 O erro padrão indica a propagação das medições dentro de uma amostra de dados. É o desvio padrão dividido pela raiz quadrada do tamanho da amostra de dados. A amostra pode incluir dados de medições científicas, resultados de testes, as temperaturas ou uma série de números aleatórios. Suponha que, numa população obteve-se desvio padrão de 2,61 com uma amostra aleatória de 81 elementos. Qual o provável erro padrão? 0,29
AULA 08
01 Em uma dada semana, uma amostra de 30 empregados horistas é selecionada de um grande número de empregados de uma fábrica, teve uma média da amostra de salários de R$ 180,00, com desvio padrão da amostra de R$ 14,00. Estimamos a média dos salários para todos os empregados horistas na empresa com intervalo estimado de forma que podemos estar em 95% confiantes de que o intervalo inclui o valor médio da população da seguinte maneira:
a) 1ª Etapa – Calcular o Erro Amostral
b) 2ª Etapa – Identificar o Número de Unidades de Desvio Padrão a partir da Média
c) 3ª Etapa – Aplicar a fórmula do Intervalo de Confiança
GABARITO
a) δ x = 14 / √30 = 2,56
b) 95% ---------- 1,96
c) Xm + Z δ x = 180 + 2,56*1,96 = 185,02
Xm - Z δ x = 180 - 2,56*1,96 = 174,98 O Intervalo de Confiança será entre 174,98 e 185,02.
02 EM uma prova de AV1, uma amostra de 50 estudantes, uma média da nota de 6,5, com desvio padrão da amostra de 1,2, estimamos a média de notas de todos os alunos do EAD (Ensino a Distância)  com intervalo estimado de forma que podemos estar em 99% confiantes de que o intervalo inclui o valor médio da população da seguinte maneira:
a) 1ª Etapa – Calcular o Erro Amostral
b) 2ª Etapa – Identificar o Número de Unidades de Desvio Padrão a partir da Média
c) 3ª Etapa – Aplicar a fórmula do Intervalo de Confiança
GABARITO
a) δ x = 1,2 / √50 = 0,1697
b) 99% ---------- 2,58
c) Xm + Z δ x = 6,5 + 0,1697*2,58 = 6,94
Xm - Z δ x = 6,5 + 0,1697*2,58 = 6,06 O Intervalo de Confiança será entre 6,06 e 6,94.
03 Uma amostra de tamanho 15, extraída de uma população normal, fornece uma média amostral e Construir um intervalo de 90% de confiança para a média populacional.
Vamos usar o intervalo de confiança descrito no 2º CASO, pois temos uma população normal com desconhecido. Os dados são:
04 Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se que 144 peças sejam ensaiadas, fornecendo uma duração de vida média de 100 horas. Suponha-se que seja conhecido o desvio padrão igual a 6 horas, e que se deseje obter um intervalo de confiança de 95 % para a média (usar 1,96). Qual o intervalo de confiança?
[Limite Inferior do IC = Média - 1,96 . (desvio padrão dividido pela raiz quadrada da amostra)]
[Limite Superior do IC = Média + 1,96 . (desvio padrão dividido pela raiz quadrada da amostra)]
Explicação: 1ª passo - Cálculo do Erro Amostral: Erro Amostral = Desvio Padrão / Raiz quadrada da amostra
EP = 6 / √144
EP = 6 / 12
EP = 0,5
2º passo - Verificar na Tabela de Distribuição Normal o número de Unidades de Desvio Padrão a partir da média para uma confiança de 95%: 1,96
3º passo - Calcular os limites do Intervalo de Confiança fazendo: limites = média (+ ou -) desvio padrão x Erro padrão
limite inferior = 100 ¿ 1,96 x 0,5 = 99,02
limite superior = 100 + 1,96 x 0,5 = 100,98 O Intervalo de Confiança será entre 99,02 e 100,98 horas.
05 Do total de alunos de uma disciplina on line que realizaram a AV1, foi retirada uma amostra de 50 estudantes. Considerando que a média amostral foi de 6,5, com desvio-padrão da amostra de 0,95 e que, para uma proporção de 95% teremos z (Número de unidades do desvio padrão a partir da média) = 1,96, qual será o intervalo de confiança de 95% para o real valor da média geral da turma.
Explicação:
1ª passo - Cálculo do Erro Amostral: Erro Amostral = Desvio Padrão / Raiz quadrada da amostra
E = 0,95 / √50 = 0,95 / 7,07 = 0,134
2º passo - Verificar na Tabela de Distribuição Normal o número de Unidades de Desvio Padrão a partir da média para uma confiança de 95%: 1,96
3º passo - Calcular os limites do Intervalo de Confiança fazendo: limites = média (+ ou -) desvio padrão x Erro padrão
limite inferior = 6,5 ¿ 1,96 x 0,134 = 6,24
limite superior = 6,5 + 1,96 x 0,134 = 6,76 O Intervalo de Confiança será entre 6,24 e 6,76.
06 Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se que 256 peças sejam ensaiadas, fornecendo uma duração de vida média de 100 horas. Suponha-se que seja conhecido o desvio padrão igual a 8 horas, e que se deseje obter um intervalo de confiança de 95 % para a média (usar 1,96). Qual o intervalo de confiança? 99,02 a 100,98
07 Em uma prova de Estatística, uma amostra de 100 estudantes, com uma média da nota de 7,5  , e com desvio padrão da amostra de 1,4  , estimamos a média de notas de todos os alunos. Utilize um intervalo estimado de forma que podemos estar em 90% confiantes de que o intervalo inclui o valor médio da população.
O Intervalo de Confiança está compreendido de: 7,27 a 7,73
08 Em um dado mês, uma amostra de 30 colaboradores é selecionada de um grande número de empregados de uma fábrica, teve uma média da amostra de salários de R$ 788,00, com desvio padrão da amostra de R$ 144,00. Estimamos a média dos salários para todos os empregados horistas na empresa com intervalo estimado de forma que podemos estar em 95% confiantes de que o intervalo inclui o valor médio da população. Nestas condições, o intervalo de confiança é, aproximadamente: 736 e 839,00
09 Suponha que X represente a duração da vida de uma peça de equipamento. Admita-se que 256 peças sejam ensaiadas, fornecendo uma duração de vida média de 200 horas. Suponha-se que seja conhecido o desvio padrão igual a 12 horas, e que se deseje obter um intervalo de confiança de 95 % para a média (usar 1,96). Qual o intervalo de confiança? 198,53; 201,47
10 Uma amostra de 25 estudantes foi selecionada de um grande número de estudantes de uma Universidade. Uma vez consideradas as notas finais dos mesmos obteve-se uma média de notas 6,0, com desvio padrão da amostra de 1,25. Determine o intervalo de confiança de forma que possamos estar em 95% confiantes de que o mesmo inclui o valor médio da população 5,51; 6,49
11 A curva de Gauss, também conhecida como curva normal, tem um amplo emprego na estatística e tem como características: Ser mesocúrtica e assintótica.
12 Uma amostra de 36 estudantes foi selecionada de um grande número de estudantes de uma Universidade, e teve uma média de notas 6,0, com desvio padrão da amostra de 1,2. Determine o intervalo de confiança de forma que podemos estar em 95% confiantes de que o mesmo inclui o valor médio da população.5,61; 6,39
13 Uma distribuição de frequencia é a representação tabular utilizada para a apresentação dos dados estatísticos coletados na amostragem dada pelas variáveis quantitativas. Essa pode ser representada gráficamente de várias formas, entre os gráficos abaixo qual é utilizado para representá-la? histograma é semelhante ao diagrama de barras, porém refere-se a uma distribuição de frequências para dados quantitativos contínuos.
AULA 09
		01 Uma determinada variável contínua X possui média 13,52 e desvio padrão de 5,76. Qual o valor do escore z para X = 22,15 ? 1,4983
	
	
02 A Distribuição Normal é utilizada em Estatística em diversas pesquisas. Podemos conhece-la também por uma Distribuição relacionada a um grande Matemático. Logo, marque a opção correta: Distribuição Gaussiana
03 Na Distribuição Normal, a área total sob a curva normal vale 1. Isto significa que a probabilidade de ocorrer qualquer valor real é 1. A curva é simétrica em torno da média zero. Então a probabilidade de ocorrer valor menor do que zero é 0,5 e maior do que zero é 0,5. Qual probabilidade de ocorrer um valor maior que z = 1,5? (Na tabela da área sob a curva normal consta o valor 0,4332 para z=1,5). 6,68%
04 Consultando a Tabela da Distribuição Normal verifica-se que P(0 ≤ Z ≤ 3) = 0,4987. Sabendo disso, determine a probabilidade para Z ≥ 3. 
Como o valor tabelado fornece o valor (0 ≤ Z ≤ x), e deseja-se calcular o valor para Z ≥ x, fazemos a seguinte conta: 0,5 - 0,4987 = 0,0013. 
05 Na Distribuição Normal, a área total sob a curva normal vale 1. Isto significa que a probabilidade de ocorrer qualquer valor real é 1. A curva é simétrica em torno da média zero. Então a probabilidade de ocorrer valor menor do que zero é 0,5 e maior do que zero é 0,5. Qual probabilidade de ocorrer um valor MENOR que z = 1,1? (Na tabela da área sob a curva normal consta o valor 0,364 (36,4%) para z=1,1). 50 + 36,4 = 86,4%
06 Dada o valor da Tabela da Distribuição Normal onde se encontra a probabilidade de P(0 ≤ Z ≤ 2,60) = 0,4953. Determine a probabilidade para Z ≥ 2,60. 
Como o valor tabelado fornece o valor (0 ≤ Z ≤ x), e deseja-se calcular o valor para Z ≥ x, fazemos a seguinte conta: 0,5 - 0,4953 = 0,0047.
07 Na Distribuição Normal, a área total sob a curva normal vale 1. Isto significa que a probabilidade de ocorrer qualquer valor real é 1. A curva é simétrica em torno da média zero. Então a probabilidade de ocorrer valor menor do que zero é 0,5 e maior do que zero é 0,5. Qual probabilidade de ocorrer um valor maior que z = 1,7? (Na tabela da área sob a curva normal consta o valor 0,4554 para z=1,7). 4,46%
08 A mais importante distribuição de probabilidade contínua em todo o domínio da estatística é a distribuição normal. Seu gráfico, chamado de curva normal, é uma curva em forma de sino que, aproximadamente, descreve muitos fenômenos que ocorrem na natureza, indústria e pesquisa. A distribuição normal é muitas vezes chamada de? Distribuição de Gauss
09 Após analisar a Tabela da Distribuição Normal identificou-se que P(0 ≤ Z ≤ 0,51) = 0,1950. Em vista disso, a probabilidade de Z ≥ 0,51, em termos percentuais, é de: 30,50%
10 Na Distribuição Normal, a área total sob a curva normal vale 1. Isto significa que a probabilidade de ocorrer qualquer valor real é 1 (100%). A curva é simétrica em torno da média zero. Então a probabilidade de ocorrer valor menor do que zero é 0,5 (50%) e maior do que zero é 0,5 (50%). Qual probabilidade de ocorrer um valor MAIOR que z = 1,9? (Na tabela da área sob a curva normal consta o valor 0,471 (47,1%) para z=1,9). 2,9%
11 As alturas dos alunos de uma turma são normalmente distribuídas com média 1,55 m e desvio padrão 0,45 m. Encontre a probabilidade de um aluno ter estatura abaixo de 1,50 metros.
OBS: consultando a Tabela da Distribuição Normal verifica-se que:
P(0 ≤ Z ≤ 0,11) = 0,00438.
Explicação: Deseja-se calcular P (X ≤ 1,50).
Para isso, utilizamos a fórmula Z = (X - Média) / Desvio Padrão.
Z = (1,50 -1,55) / 0,45
Z = -0,05 / 0,45
Z = -0,11
Ou seja, P (X ≤ 1,50) = P (Z ≤ -0,11) O enunciado nos fornece que P(0 ≤ Z ≤ 0,11) = 0,00438.
Devido a simetria da Distribuição Normal temos que:
 P(-0,11 ≤ Z ≤ 0) = P(0 ≤ Z ≤ 0,11)
Como a curva é simétrica em torno da média, a probabilidade de ocorrer valor maior que a média é igual à probabilidade de ocorrer valor menor do que a média, isto é, ambas as probabilidades são iguais a 50%. Cada metade da curva representa 50% de probabilidade.
Então, para calcular a probabilidade de ter um aluno com estatura abaixo de 1,50 metros é preciso fazer 50% - 4,38% = 45,62%.
12 Seja X uma variável contínua com distribuição normal padrão. Se a probabilidade P para X pertencente ao intervalo [0; a] é tal que P (X) = 43%, então, a probabilidade P(X>a) será igual a:
Nas distribuições normais padronizadas a probabilidade de um valor estar acima de zero (média) é de 50%. Daí, para calcular a probabilidade de ter um valor acima de 43% é preciso fazer 50% - 43% = 7%.
13 Na Distribuição Normal, a área total sob a curva normal vale 1. Isto significa que a probabilidade de ocorrer qualquer valor real é 1. A curva é simétrica em torno da média zero. Então a probabilidade de ocorrer valor menor do que zero é 0,5 e maior do que zero é 0,5. Qual probabilidade de ocorrer um valor maior que z = 1,8? (Na tabela da área sob a curva normal consta o valor 0,4641 para z=1,8). 3, 59%
14 Dada o valor da Tabela da Distribuição Normal onde se encontra a probabilidade de P(0 ≤ Z ≤ 2,50) = 0,4938. Determine a probabilidade para Z ≥ 2,50. 0,0062
15 Consultando a Tabela da Distribuição Normal verifica-se que P(0 ≤ Z ≤ 2,70) = 0,4965. Sabendo disso, determine a probabilidade para Z ≤ 2,70.
Como o valor tabelado fornece o valor (0 ≤ Z ≤ x), e deseja-se calcular o valor para Z ≤ x, fazemos a seguinte conta: 0,5 + 0,4965 = 0,9965.
16 Consultando a Tabela da Distribuição Normal verifica-se que P(0 ≤ Z ≤ 2,80) = 0,4974. Sabendo disso, determine a probabilidade para Z ≤ 2,80. Como o valor tabelado fornece o valor (0 ≤ Z ≤ x), e deseja-se calcular o valor para Z ≤ x, fazemos a seguinte conta:  0,5 + 0,4974 = 0,9974.
17 Para uma variável contínua X, que admite uma distribuição normal de probabilidades, sabemos que a média é 100 e que o valor de z para x = 120 é 2,00. Assim, o desvio padrão dessa variável será: 10 
Com os dados da questão, para calcular o desvio padrão ¿s¿ iremos fazer uso da fórmula z = (xi - Média) / Desvio Padrão.
Substituindo na fórmula fica assim:
2 = (120 - 100) / s
2s = 20
s = 20 / 2
s = 10
18 As alturas dos alunos de uma turma são normalmente distribuídas com média 1,55 m e desvio padrão 0,45 m. Encontre a probabilidade de um aluno ter estatura acima de 1,80 metros.
OBS: consultando a Tabela da Distribuição Normal verifica-se que P(0 ≤ Z ≤ 0,56) = 0,2123
Explicação:
Deseja-se calcular P (X ≥ 1,80).
Para isso, utilizamos a fórmula Z = (X - Média) / Desvio Padrão.
Z = (1,80 -1,55) / 0,45
Z = 0,25 / 0,45
Z = 0,56
Ou seja, P (X ≥ 1,80) = P (Z ≥ 0,56) O enunciado nos fornece que P(0 ≤ Z ≤ 0,56) = 0,2123.
Como a curva é simétrica em torno da média, a probabilidade de ocorrer valor maior que a média é igual à probabilidade de ocorrer valor menor do que a média, isto é, ambas as probabilidades são iguais a 50%. Cada metade da curva representa 50% de probabilidade.
Então, para calcular a probabilidade de ter um aluno com estatura acima de 1,80 metros é preciso fazer 50% - 21,23% = 28,77%.
19 A representação gráfica da ___________________________ é uma curva em forma de sino, simétrica em torno da média, que recebe o nome de curva normal ou de Gauss (CRESPO, 2009). distribuição normal
20 As alturas de 50 funcionários de uma fábrica são normalmente distribuídas com média 1,60 m e desvio padrão 0,55 m. Encontre o número aproximado de funcionários com menos de 1,50 metros.
OBS: consultando a Tabela da Distribuição Normal verifica-se que P(0 ≤ Z ≤ 0,18) = 0,0714.
 Explicação:
Deseja-se calcular P (X ≤ 1,50).
Para isso, utilizamos a fórmula Z= (X - Média) / Desvio Padrão.
Z = (1,50 -1,60) / 0,55
Z = -0,10 / 0,55
Z = -0,18
Ou seja, P (X ≤ 1,50) = P (Z ≤ -0,18) O enunciado nos fornece que P(0 ≤ Z ≤ 0,18) = 0,0714.
Devido a simetria da Distribuição Normal temos que:
 P(-0,18 ≤ Z ≤ 0) = P(0 ≤ Z ≤ 0,18)
Como a curva é simétrica em torno da média, a probabilidade de ocorrer valor maior que a média é igual à probabilidade de ocorrer valor menor do que a média, isto é, ambas as probabilidades são iguais a 50%. Cada metade da curva representa 50% de probabilidade.
Então, para calcular a probabilidade de ter um funcionário com estatura abaixo de 1,50 metros é preciso fazer 50% - 7,14% = 42,86%.
O número de funcionários com altura inferior a 1,50 metros é de:
50 x 0,4286 = 21,43, ou seja, 21 funcionários.
21 Uma determinada variável contínua X possui média 13,52 e desvio padrão de 5,76. Qual o valor do escore z para X = 22,15 ? 1,4983
22 Na Distribuição Normal, a área total sob a curva normal vale 1. Isto significa que a probabilidade de ocorrer qualquer valor real é 1. A curva é simétrica em torno da média zero. Então a probabilidade de ocorrer valor menor do que zero é 0,5 e maior do que zero é 0,5. Qual probabilidade de ocorrer um valor MAIOR que z = 1,1? (Na tabela da área sob a curva normal consta o valor 0,364 (36,4%) para z=1,1) 13,6%
23 Na Distribuição Normal, a área total sob a curva normal vale 1. Isto significa que a probabilidade de ocorrer qualquer valor real é 1. A curva é simétrica em torno da média zero. Então a probabilidade de ocorrer valor menor do que zero é 0,5 e maior do que zero é 0,5. Qual probabilidade de ocorrer um valor MENOR que z = 1,1? (Na tabela da área sob a curva normal consta o valor 0,364 (36,4%) para z=1,1). 86,4%
AULA 10
01 Considere que um determinado professor anunciou que a média de nota de alunos em estatística foi de no mínimo 6,0 na AV1. Considerando um teste de hipótese com amostras de 50 elementos e um nível de significância de 5%, calcule:
a) Se após os dados relativos a 50 elementos encontrarmos a média de 6,2 e desvio-padrão de 0,8.
b) Se após os dados relativos a outra amostra com 50 elementos, encontrarmos a média de 5,7 e desvio-padrão de 1,2.
GABARITO
Etapa 1: H0 = 6,0 e H1<6,0
Etapa 2: Nível de Significância 5%
Etapa 3: De acordo com a Distribuição Normal Reduzida, o Z para nível de significância de 5% é de – 1,65
Etapa 4: Utilização da fórmula
Z = (6,2 -6) / (0,8/ √   50) = 0,2 / 0,1131 = 1,7678 Como 1,7678> - 1,65, a hipótese nula será aceita.
b) Etapa 1: H0 = 6,0 e H1<6,0
Etapa 2: Nível de Significância 5%
Etapa 3: De acordo com a Distribuição Normal Reduzida, o Z para nível de significância de 5% é de – 1,65
Etapa 4: Utilização da fórmula
Z = (5,7 -6) / (1,2/  √ 50) = -0,3 / 0,1131 = -2,6525
Como -2,6525 < -1,65, a hipótese nula será rejeitada.
Ou seja, a informação da amostra não nos permite confirmar uma média 6,0 na prova com nível de significância de 5%.
02 
03 Considere as frases: 1-A hipótese nada mais é do que uma possível explicação para o problema. 2-No jargão científico, hipótese equivale, habitualmente, à suposição de uma verdade, depois comprovada ou descartada pelos fatos, os quais hão de decidir, em última instância, sobre a verdade ou falsidade dos fatos que se pretende explicar. 3-A hipótese é a suposição de uma causa ou de uma lei destinada a explicar provisoriamente um fenômeno até que os fatos a venham contradizer ou afirmar. 4-Nos Testes de hipótese paramétricos, destacamos as hipóteses H0, conhecida como Hipótese nula e H1, conhecida por Hipótese alternativa. Considerando as 4 frases podemos afirmar que: todas são verdadeiras
04 Mega Pascal (MPa) é a medida de resistência utilizada para a cerâmica. Numa indústria cerâmica, sabe-se que certo tipo de massa cerâmica tem resistência mecânica aproximadamente normal, com média 60 MPa e desvio padrão 5 MPa. Após a troca de alguns fornecedores de matérias- primas, deseja-se verificar se houve alteração na qualidade. Uma amostra de 16 corpos de prova de massa cerâmica acusou média igual a 54 MPa. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra)
Considerando o valor da Estatística do Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra).
Resposta: (54- 60) / (5/4) = -6 / 1,25 = -4,8. Isso significa que a média da amostra retirada aleatoriamente está a -4,8 desvios-padrão da média alegada. Como o valor crítico para 5% é 1,96 desvios (Z tabelado), estamos na região de rejeição de Ho, ou seja, a hipótese nula será rejeitada.
05 Mega Pascal (MPa) é a medida de resistência utilizada para a cerâmica. Numa indústria cerâmica, sabe-se que certo tipo de massa cerâmica tem resistência mecânica aproximadamente normal, com média 55 MPa e desvio padrão 4 MPa. Após a troca de alguns fornecedores de matérias- primas, deseja-se verificar se houve alteração na qualidade. Uma amostra de 9 corpos de prova de massa cerâmica acusou média igual a 50 MPa. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) 
(50 - 55) / (4/3) = -5 / 1,33 = -3,75. Isso significa que a média da amostra retirada aleatoriamente está a - 3,75 desvios-padrão da média alegada. Como o valor crítico para 5% é 1,96 desvios (Z tabelado), estamos na região de rejeição de Ho, ou seja, a hipótese nula será rejeitada.
06 O tempo médio, por operário, para executar uma tarefa, tem sido 100 minutos, segundo a distribuição normal. Introduziu-se uma modificação para diminuir este tempo, e, após certo período, sorteou-se uma amostra de 16 operários, medindo-se o tempo de execução gasto por cada um. O tempo médio da amostra foi 90 minutos com desvio padrão de 12 minutos. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra)
(90 - 100) / (12/4) = -10 / 3 = -3,3. Isso significa que a média da amostra retirada aleatoriamente está a - 3,3 desvios-padrão da média alegada. Como o valor crítico para 5% é 1,96 desvios (Z tabelado), estamos na região de rejeição de Ho, ou seja, a hipótese nula será rejeitada.
07 O tempo médio, por operário, para executar uma tarefa, tem sido 100 minutos, segundo a distribuição normal. Introduziu-se uma modificação para diminuir este tempo, e, após certo período, sorteou-se uma amostra de 25 operários, medindo-se o tempo de execução gasto por cada um. O tempo médio da amostra foi 95 minutos com desvio padrão de 10 minutos. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) Como Z = - 2,5 , a hipótese nula será rejeitada.
08 O tempo médio, por operário, para executar uma tarefa, tem sido 95 minutos, segundo a distribuição normal. Introduziu-se uma modificação para diminuir este tempo, e, após certo período, sorteou-se uma amostra de 16 operários, medindo-se o tempo de execução gasto por cada um. O tempo médio da amostra foi 90 minutos com desvio padrão de 8 minutos. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) Como Z = - 2,5, a hipótese nula será rejeitada.
09 Uma determinada empresa anunciou que a média de salários em uma linha de produção nos últimos 3 meses foi de R$ 9.000,00. Uma empresa de pesquisa extraiu umaamostra aleatória de 50 colaboradores daquele grupo, encontrando um salário médio de R$ 8.200,00, com desvio-padrão de R$ 1.000,00. Teste a afirmação da empresa, contra a alternativa de que o salário médio é inferior a R$ 9.000,00, com um nível de significância de 5%. Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) 
(8200 - 9000) / (1000/7,07) = -5,66. Isso significa que a média da amostra retirada aleatoriamente está a - 5,66 desvios-padrão da média alegada. Como o valor crítico para 5% é 1,96 desvios (Z tabelado), estamos na região de rejeição de Ho, ou seja, a hipótese nula será rejeitada.
10 O tempo médio, por operário, para executar uma tarefa, tem sido 100 minutos, segundo a distribuição normal. Introduziu-se uma modificação para diminuir este tempo, e, após certo período, sorteou-se uma amostra de 16 operários, medindo-se o tempo de execução gasto por cada um. O tempo médio da amostra foi 90 minutos com desvio padrão de 12 minutos. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) 
90 - 100) / (12/4) = -10 / 3 = -3,3. Isso significa que a média da amostra retirada aleatoriamente está a - 3,3 desvios-padrão da média alegada. Como o valor crítico para 5% é 1,96 desvios (Z tabelado), estamos na região de rejeição de Ho, ou seja, a hipótese nula será rejeitada.
11 Uma fábrica de automóveis anuncia que seus carros consomem, em média, 11 litros por 100 Km, com desvio-padrão de 1 litro. Uma revista decide testar essa afirmação e analisa 25 carros dessa marca, obtendo 11,5 litros por 100 Km, como consumo médio. Admitindo-se que o consumo tenha distribuição normal, ao nível de significância de 5%, utilize o TESTE DE HIPÓTESES, para o cálculo do Valor da Estatística de Teste (t) e o que a revista concluirá sobre o anúncio da fábrica?
 Obs1: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra).
Obs2: Adote um nível de significância de 5%. O valor crítico para 5% é 1,96 desvios (Z tabelado)
Resposta: (11, 5 - 11) / (1/5) = 0,5 / 0,2 = 2,5. Isso significa que a média da amostra retirada aleatoriamente da fábrica de automóveis está a 2,5 desvios-padrão da média alegada em Ho que é 11. Como o valor crítico para 5% é 1,96 desvios (Z tabelado), estamos na região de rejeição de Ho (2,5 é maior que 1,96). Assim, Ho é rejeitada e a revista pode concluir que o anúncio não é verdadeiro.
12 Mega Pascal (MPa) é a medida de resistência utilizada para a cerâmica. Numa indústria cerâmica, sabe-se que certo tipo de massa cerâmica tem resistência mecânica aproximadamente normal, com média 54 MPa e desvio padrão 4 MPa. Após a troca de alguns fornecedores de matérias- primas, deseja-se verificar se houve alteração na qualidade. Uma amostra de 9 corpos de prova de massa cerâmica acusou média igual a 50 MPa. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) Como Z = - 3 , a hipótese nula será rejeitada.
13 Mega Pascal (MPa) é a medida de resistência utilizada para a cerâmica. Numa indústria cerâmica, sabe-se que certo tipo de massa cerâmica tem resistência mecânica aproximadamente normal, com média 56 MPa e desvio padrão 5 MPa. Após a troca de alguns fornecedores de matérias- primas, deseja-se verificar se houve alteração na qualidade. Uma amostra de 16 corpos de prova de massa cerâmica acusou média igual a 50 MPa. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra) Como Z = - 4,8 , a hipótese nula será rejeitada.
14 Uma fábrica de automóveis anuncia que seus carros consomem, em média, 11 litros por 100 Km, com desvio-padrão de 0,8 litro. Uma revista decide testar essa afirmação e analisa 16 carros dessa marca, obtendo 11,5 litros por 100 Km, como consumo médio. Admitindo-se que o consumo tenha distribuição normal, ao nível de significância de 5%, utilize o TESTE DE HIPÓTESES, para o cálculo do Valor da Estatística de Teste (t) e o que a revista concluirá sobre o anúncio da fábrica?
Obs1: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra).
Obs2: Adote um nível de significância de 5%. O valor crítico para 5% é 1,96 desvios (Z tabelado) 
(11, 5 - 11) / (0,8/4) = 0,5 / 0,2 = 2,5. Isso significa que a média da amostra retirada aleatoriamente da fábrica de automóveis está a 2,5 desvios-padrão da média alegada em Ho que é 11. Como o valor crítico para 5% é 1,96 desvios (Z tabelado), estamos na região de rejeição de Ho (2,5 é maior que 1,96). Assim, Ho é rejeitada e a revista pode concluir que o anúncio não é verdadeiro.
15 Para se tomar uma decisão estatística é necessário a formulação de hipóteses sobre as populações a serem estudadas. Com relação as hipóteses, podemos afirmar:
I ¿ As hipóteses estatísticas a serem estabelecidas devem ser sempre verdadeiras.
II ¿ As hipóteses são formuladas antes do início do experimento.
III ¿ As hipóteses são formuladas com o objetivo de aceita-las ou rejeitá-las.
Com base nas afirmações acima, podemos concluir:
Somente as afirmações  II e IIII são verdadeiras
SIMULADO
	"Uma pesquisadora da Faculdade Estácio resolveu estudar o efeito da nota média de cada aluno na sua média salarial 2 anos após sua formatura. Para tanto, poderiam ser incluídos na pesquisa todos os alunos da Faculdade, porém, destes, somente 100 foram entrevistados." O exemplo acima reflete uma estratégia constantemente adotada em estatística que é:
		
	
	a coleta de dados quantitativos;
	
	a coleta inadequada de dados;
	
	a obtenção de uma população da amostra;
	
	a coleta de dados qualitativos;
	
	a coleta de uma amostra da população.
	
	
	Mediu-se a altura de 100 estudantes da Universidade XYZ:
Com base no resultado obtido, pode-se afirmar que:
		
	
	A frequência relativa dos alunos que medem entre 1,59 m e 1,64 mé de 23%.
	
	A frequência acumulada dos alunos que medem até 1,64 m é de 18%.
	
	A frequência dos alunos que medem menos de 1,77 m é de 92%.
	
	A frequência de alunos com mais de 1,70m é de 65%.
	
	A frequência dos alunos que medem mais de 1,82 m é de 100%.
	O valor que divide a distribuição em duas partes iguais é conhecido como
		
	
	Amplitude
	
	Mediana
	
	Moda
	
	Média
	
	Amplitude total
	Na análise da distribuição de uma variável, há grande interesse de determinarmos qual o valor que divide a distribuição em duas partes iguais, quatro partes iguais, dez partes iguais e cem partes iguais. A estes valores (separatrizes) chamaremos respectivamente de: Mediana, Quartis, Decis e  Percentis
O interesse no conhecimento das separatrizes decorre do fato de a partir delas poderemos introduzir os índices de Pearson
                                  PORQUE
O seu uso é muito prático na descrição de uma variável X.
A respeito dessas duas afirmações, é CORRETO afirmar que:
		
	
	As duas afirmações são verdadeiras, e a segunda não justifica a primeira.
	
	A primeira afirmação é falsa e a segunda é verdadeira
	
	As duas afirmações são falsas
	
	A primeira afirmação é verdadeira e a segunda é falsa;
	
	As duas afirmações são verdadeiras, e a segunda justifica a primeira
	
	
	O desvio padrão de uma distribuição é 25. Então a variância dessa distribuição é
		
	
	625 não tenho certeza dessa! Resultado só em dezembro
	
	125
	
	250
	
	25
	
	5
	Em uma competiçãode tiro ao alvo 6 competidores obtiveram a quantidade de acertos conforme o gráfico abaixo. Pela análise do gráfico podemos afirmar que a média de acertos foi
		
	
	10
	
	9
	
	8,67
	
	8
	
	9,33
	
	
	Suponha que a média de uma população de 2000000 de elementos seja 60 e o desvio pedrão desses valores seja 18. Determine o erro padrão de uma amostra de 36 elementos.
		
	
	4
	
	5
	
	2
	
	3
	
	6
	Um Intervalo de Confiança (IC) é uma amplitude de valores, derivados de estatísticas de amostras, que têm a probabilidade de conter o valor de um parâmetro populacional desconhecido. Devido à sua natureza aleatória, é improvável que duas amostras de uma determinada população irá render intervalos de confiança idênticos. Quanto ao Intervalo de Confiança podemos afirmar:
I - Se você repetir uma amostra várias vezes, uma determinada porcentagem dos intervalos de confiança resultantes conteria o parâmetro populacional desconhecido.
II - O uso do Intervalo de Confiança é para avaliar a estimativa do parâmetro populacional.
III - O Intervalo de Confiança é determinado calculando-se uma estimativa de ponto e, depois, determinando sua margem de erro.
IV - Quanto maior a margem de erro, maior é o intervalo, e menos certeza se pode ter sobre o valor da estimativa do ponto.
Com base nas afirmações acima, podemos concluir:
 
		
	
	Todas as afirmativas são verdadeiras (o resultado só sai em dezembro, mas acho que é essa)
	
	Somente as afirmações II e IV são verdadeiras
	
	Somente as afirmações III e IV são verdadeiras
	
	Somente as afirmações I e II são verdadeiras
	
	Somente as afirmações I e III são verdadeiras
	Na Distribuição Normal, a área total sob a curva normal vale 1. Isto significa que a probabilidade de ocorrer qualquer valor real é 1. A curva é simétrica em torno da média zero. Então a probabilidade de ocorrer valor menor do que zero é 0,5 e maior do que zero é 0,5. Qual probabilidade de ocorrer um valor maior que z = 1,3? (Na tabela da área sob a curva normal consta o valor 0,4032 para z=1,3).
		
	
	40,32%
	
	29,68%
	
	19,32%
	
	9,68%
	
	19,68%
	O tempo médio, por operário, para executar uma tarefa, tem sido 100 minutos, segundo a distribuição normal. Introduziu-se uma modificação para diminuir este tempo, e, após certo período, sorteou-se uma amostra de 25 operários, medindo-se o tempo de execução gasto por cada um. O tempo médio da amostra foi 90 minutos com desvio padrão de 10 minutos. Qual é a conclusão ao nível de significância de 5 %? Obs1: O valor crítico para 5% é 1,96 desvios (Z tabelado) Obs2: Para o cálculo do Valor da Estatística de Teste: (média da amostra - média da população) / (desvio padrão / raiz quadrada da amostra)
		
	
	Como Z = - 6 , a hipótese nula será rejeitada.
	
	Como Z = - 5 , a hipótese nula será rejeitada.
	
	Como Z = - 7 , a hipótese nula será rejeitada.
	
	Como Z = - 9 , a hipótese nula será rejeitada.
	
	Como Z = - 8 , a hipótese nula será rejeitada.

Continue navegando