Buscar

MECÂNICA DOS FLUIDOS E MÁQUINAS HIDRÁULICAS

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 54 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 54 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 54 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DO PARÁ 
DIRETORIA DE ENSINO/GERÊNCIA DE ENSINO TÉCNICO 
COORDENAÇÃO DE MECÂNICA 
 
MECÂNICA DOS FLUIDOS E MÁQUINAS HIDRÁULICAS 
 
Material apresentado à 
Coordenação de Mecânica, 
como parte integrante do 
conteúdo da disciplina 
Mecânica dos Fluidos e 
Máquinas Hidráulicas, do 
Curso de Técnico em 
Mecânica. 
 
 
Elaborada: Prof. Eng. Carlos Alberto Duarte Dias 
Revisão: Prof. Eng. Raimundo Valério Félix Lima 
 
Belém - PA 
2012 
 2 
COMPETÊNCIA GERAL DO COMPONENTE: 
 
Proporcionar conhecimentos sobre mecânica dos fluidos, conceitos e 
formulações sobre os principais fenômenos relacionados às máquinas de fluxos, 
sistemas e equipamentos utilizados no campo prático, facilitando a compreensão 
do funcionamento e análise do desempenho. 
 
1.FUNDAMENTOS DA MECÂNICA DOS FLUIDOS 
 
1.1 - Introdução 
Mecânica dos Fluidos é a ciência que estuda o comportamento físico dos fluidos, 
assim com as leis que regem esse comportamento. As bases lançadas pela 
Mecânica dos Fluidos são fundamentais para muitos ramos de aplicação da 
engenharia. Dessa forma, o escoamento de fluidos em canais e condutos, a 
lubrificação, os esforços em barragens, os corpos flutuantes, as máquinas 
hidráulicas, a ventilação, a aerodinâmica e muitos outros assuntos lançam mão 
das leis da Mecânica dos Fluidos para obter resultados de aplicação prática. 
 
1.2 - Conceitos fundamentais e definição de fluido 
A matéria apresenta-se no estado sólido e no estado fluido, este abrangendo os 
estados líquido e gasoso. 
O espaçamento e atividade intermoleculares são maiores nos gases, menores nos 
líquidos e muito reduzidos nos sólidos. 
A definição de fluido é introduzida, normalmente, pela comparação dessa 
substância com um sólido. A definição mais simples diz: Fluido é uma 
substância que não tem forma própria, assume o formato do recipiente. 
Entretanto, é possível introduzir uma outra que, apesar de ser mais complexa, 
permite construir uma estrutura lógica que será de grande utilidade para o 
estudo da Mecânica dos Fluidos. 
Essa definição está novamente ligada à comparação de comportamento entre um 
sólido em um fluido, por uma observação prática denominada “Experiência das 
Duas Placas”, que diz: Fluido é uma substância que se deforma continuamente, 
quando submetida a uma força tangencial constante qualquer, ou seja, fluido 
é uma substância que, submetida a uma força tangencial constante, não 
atinge uma nova configuração de equilíbrio estático. 
 
1.3 - Hidrostática: 
É o ramo da Física que estuda a força exercida por e sobre líquidos em repouso. 
Este nome faz referência ao primeiro fluido estudado, a água, assim por razões 
históricas se mantém este nome. Ao estudar hidrostática é de suma importância 
falar de densidade, pressão, Princípio de Pascal, Empuxo e o Princípio 
Fundamental da Hidrostática. 
 
1.3.1 - Massa Específica (ρ) 
Também conhecida como Densidade Absoluta, é a massa do fluido por unidade 
de volume: 
ρ = m 
 V 
 3 
Onde: 
m= massa fluida. 
V= volume do fluido 
ρ = massa específica 
 
Unidades: Sistemas MK*S ------- ρ= kgf . s2 = utm 
 m4 m3 
 SI ------- ρ= N. s2 = kg 
 m4 m3 
 CGS ------- ρ= dina.s2 = g 
 cm4 cm3 
 
1.3.2 - Peso Específico (γ) 
É o peso do fluido por unidade de volume. 
 
γ =W 
 V 
Onde: 
 
Unidades: Sistemas MK*S ------- γ= kgf 
 m3 
 SI ------- γ= N 
 m3 
 CGS ------- γ= dina 
 cm3 
 
Pode-se deduzir uma relação simples entre peso específico e massa específica 
 
γ= W; mas W = mg - γ= mg , como ρ= m ; então γ= ρg 
 V V V 
 
1.3.3 - Peso Específico Relativo ou Densidade para Líquidos: 
É a relação entre o peso específico do líquido e o peso específico da água em 
condições padrão (destilada / 40C). 
Como o peso específico e a massa específica diferem por uma constante, conclui-
se que o peso específico relativo e a massa específica relativa coincidem. 
 
1.3.4 - Pressão (p) 
Defini-se pressão, como força por unidade de área, cuja fórmula é: 
 
P = F 
 A 
sendo: 
 
F = Força 
A = Área da seção 
 
 4 
Atmosfera Normal (AN): De acordo com a experiência de Torricelli, o valor da 
pressão atmosférica ao nível do mar é: p0= 10.328 kgf/m2 = 1,033 kgf/cm2; está 
é a atmosfera física ou atmosfera normal (AN), que equilibra uma coluna de 
mercúrio de 760 mm de altura, ou seja: 1 AN = 10.328 kgf/m2 = 1,033 kgf/cm2 = 
760 mmHg 
 
Atmosfera Técnica: Para simplificar, é costume adotar p0= 10.000 kgf/m2 = 
1kgf/cm2, que é a chamada Atmosfera Técnica. 1 atm = 10.000 kgf/m2 = 
1kgf/cm2 = 10 mca = 0,968 AN = 736 mmHg.Atmosfera Local: A pressão 
atmosférica diminui quando a altitude aumenta; a coluna de mercúrio desce, 
aproximadamente, 1 mm para cada 15m de aumento da altitude. 
As unidades de pressão podem ser divididas em três grupos: 
 
a) Unidades de pressão propriamente ditas, baseadas na definição (F / A). Entre 
elas, as mais utilizadas são: Kgf/m2; kgf/cm2; N/m2; Pa (Pascal); daN/cm2 = bar 
(decanewton por centímetro quadrado); lb/pol2 = psi (pounds per square 
inches=libras por polegada ao quadrado). 
A relação entre essas unidades é facilmente obtida por uma simples 
transformação: l kgf/cm2 = 104 kgf/m2 = 9,8 x 104 Pa = 0,98 bar = l4,2 psi 
 
b) Unidades de carga de pressão utilizadas para indicar pressão. Essas unidades 
são indicadas por unidade de comprimento seguida da denominação do fluido 
que produziria a carga de pressão (ou coluna) correspondente à pressão dada. 
Por exemplo: mmHg (milímetros de mercúrio); mca (metros de coluna de água); 
cmca (centímetros de coluna de água). Assim, na prática a representação da 
pressão em unidade de coluna do fluido e bastante prática, pois permite 
visualizar de imediato a possibilidade que tem certa pressão de elevar um fluido 
a certa altura. (veremos quando do estudo do Teorema de Stevin) 
 
c) Unidades definidas. Entre elas, destaca-se a unidade atmosfera (atm), que, 
por definição, é a pressão que poderia elevar de 760 mm uma coluna de 
mercúrio. Logo 1 atm = 760 mmHg = 101.230 Pa = 101,23 kPa = 10.330 kgf/m2 = 
1,033 kg/cm2 = 1,01 bar = l4,7 psi = 10,33 mca. 
 
1.3.5 - Pressão Efetiva e Pressão Absoluta 
 
A Pressão Efetiva pode ser: 
 
a) Positiva: quando é superior a p0; 
b) nula: quando for igual a p0; 
c) Negativa: quando é inferior a p0 (é o caso de depressão ou de vácuo parcial). 
 
A pressão efetiva é também conhecida como pressão manométrica, devido ser a 
pressão medida pelos manômetros. 
 
A pressão em um ponto também pode ser calculada a partir do zero absoluto 
(vácuo perfeito ou total), obtendo-se neste caso, a Pressão Absoluta. Agora a 
pressão nula corresponde ao vácuo total, e, portanto, a pressão absoluta é 
sempre positiva. Tem-se: 
 5 
pab = pef + p0 
 
 
 
 
1.3.6 - Medidores de Pressão: 
 
a)Manômetro: é um instrumento para medir a Pressão Efetiva. 
 
b)Vacuômetro: é um manômetro que indica Pressões Efetivas Negativas, bem 
como as positivas e nulas. 
 
c)Piezômetro: também chamado de Tubo Piezométrico, é a mais simples forma 
de manômetros. Consta de um tubo aberto nas duas extremidades, uma das 
quais irá coincidir com o ponto do liquido que se deseja medir a Pressão Efetiva. 
A outra extremidade aberta do tubo fica em contato com a atmosfera, razão 
porque os piezômetros não servem para medir a pressão dos gases. 
 
d)Barômetro: mede o valor absoluto da Pressão Atmosférica. 
 
e)Altímetro: é o barômetro construído especialmente para obtenção de 
altitudes, como, por exemplo, as de uma aeronave em relação ao nível do mar. 
 
1.3.7 - Classificação dos Manômetros: 
 
a) Manômetros de Líquido: São tubos transparentes e recurvados, geralmente 
em forma de “U”. Os tuboscontêm o líquido manométrico (líquido destinado a 
medir a pressão do fluido). Para grandes pressões, usa-se o Hg como líquido 
manométrico; para pequenas pressões, os líquidos de pequena densidade (óleo, 
etc.) 
 6 
 
 
a.1) Piezômetro (coluna piezométrica): Consiste em um simples tubo de vidro 
que, ligado ao reservatório, permite medir diretamente a carga de pressão. 
 
 
a.2) Manômetros Diferenciais: Os manômetros de tubo em “U”, ligados a dois 
reservatórios, em vez de ter um dos ramos abertos à atmosfera, chamam-se 
manômetros diferenciais. 
 
 
 
b) Manômetros Metálicos: São os mais utilizados nas indústrias (pressões 
elevadas). Medem as pressões dos fluidos através da deformação de um tubo 
metálico recurvado (a) ou de um diafragma (membrana) que cobre um 
recipiente hermético de metal(b). O manômetro metálico é também conhecido 
como aneróide, barômetro de Vidi ou de Bourdon. 
 7 
 
 
1.3.8 - Outras Propriedades: 
 
a) Tensão superficial: Na interface entre um líquido e um gás, ou entre dois 
líquidos imiscíveis, parece que se forma uma película ou camada especial no 
líquido, aparentemente devido à tração das moléculas abaixo da superfície. É 
uma experiência simples colocar uma pequena agulha na superfície da água em 
repouso e observar que a mesma é sustentada pela película. A atração capilar 
(capilaridade) é causada pela tensão superficial e pela relação entre a adesão do 
líquido e a coesão do líquido. Um líquido que “molha” o sólido tem uma adesão 
maior que a coesão. A ação da tensão superficial, neste caso, obriga o líquido a 
subir dentro de um pequeno tubo (capilar) vertical que esteja parcialmente 
imerso nesse líquido. Para líquidos que não “molham” o sólido, a tensão 
superficial tende a rebaixar o menisco num pequeno tubo vertical. 
 
 
b) Adesão: É a propriedade de o líquido aderir às paredes do recipiente que o 
contém. 
 
Efeito da adesão e capilaridade 
 8 
 
c)Coesão: Manifesta-se na formação de uma gota do líquido e responsável pela 
atomização líquida, conhecida como efeito spray. 
 
1.3.9 - Teorema ou Lei de Stevin: 
A diferença de pressão entre dois pontos de um fluido em repouso, é igual ao 
produto do peso específico do fluido pela diferença de cotas dos dois pontos. 
 
p2 – p1 = γ h 
 
onde: 
p1= pressão efetiva no ponto 1 
p2= pressão efetiva no ponto 2 
h = diferença de profundidade ou de cota entre os pontos 1 e 2. 
 
Se o ponto 1 estiver na superfície livre: p1= pa ou p0 (pressão atmosférica), 
passando o p1 para o segundo membro -> p2 = pa + γ h, onde h, seria a 
profundidade ou cota do ponto 2. 
 
Considerando a profundidade ou cota tomada em relação à superfície livre, a 
pressão manométrica ou efetiva do ponto, fica: p= γ h 
 
O que é importante notar nesse teorema é que: 
 
a) Na diferença de pressão entre dois pontos não interessa a distância entre eles, 
mas a diferenças de cotas; 
b) a pressão dos pontos em um mesmo plano ou nível horizontal é a mesma; 
c) o formato do recipiente não importa para o cálculo em algum ponto. (vasos 
comunicantes) 
 9 
 
 
Vasos comunicantes 
 
 
1.3.9.1 - Pressão Lateral e Pressão na Base: 
A pressão lateral e da base depende apenas da altura e do peso específico do 
líquido, qualquer que seja o formato do recipiente. 
 
 
 
 10 
1.3.10 - Lei de Pascal: 
 
“A pressão aplicada em um ponto de um fluido em repouso 
transmite-se em igual intensidade a todos os pontos do fluido.” 
 
Essa lei apresente sua maior importância em problemas de dispositivos que 
transmitem e ampliam uma força através da pressão aplicada num fluido, como, 
por exemplo, as prensas hidráulicas. 
 
Entre dois pontos, a equação fica representada: 
 
Pressão no ponto 1-> p1= F1/A1 
 
Pressão no ponto 2-> p2= F2/A2, de acordo com Pascal p1 = p2, então: 
 
F1/A1 = F2/A2, ou F2 = F1 A2/ A1, ou ainda F1 = F2 A1/ A2 
 
 
 Desenho esquemático de uma Prensa Hidráulica 
 
1.3.11- Principio de Arquimedes (Empuxo): 
Um corpo imerso o flutuando em um fluido, está sujeito a uma força vertical de 
baixo para cima, com intensidade igual ao peso do volume deslocado chamada de 
Empuxo. A aplicação do Empuxo ocorre no Centro de Carena (CC) 
 
E=γV 
 
onde: 
E= empuxo; 
γ= peso específico do fluido; 
V = volume deslocado pelo corpo. 
 
1.3.11.1 - Condições de Flutuação: 
A condição de flutuação ou submersão, será dada pela resultante do sistema de 
forças entre o peso do corpo e o empuxo gerado, nas seguintes condições: 
 
E = empuxo e W = peso do corpo e R= resultante. R= E – W; 
 
R>0  Flutua; 
R=0  Indiferente (o corpo fica inteiramente mergulhado e em equilíbrio em 
qualquer parte da massa líquida); 
R<0  Submerge. 
 11 
 
 
1.4 - Hidrodinâmica: 
A hidrodinâmica tem por objetivo o estudo do movimento dos líquidos. 
A solução dos problemas de hidrodinâmica, neste curso, é feita pelo método de 
Euler, que estuda, no decorrer do tempo e em determinado ponto do fluido as 
variações de velocidade. 
 
1.4.1-Viscosidade: 
Propriedade de importância fundamental no estudo dos movimentos dos 
líquidos, a viscosidade, tem grande importância nos problemas de engenharia, 
sobretudo na área de mecânica (rolamentos, caixas de engrenagens, sistemas 
hidráulicos, motores, etc.) 
Sabemos que devido à fluidez ocorre fácil mudança de forma do fluido, sob ação 
do esforço cortante. Em virtude da coesão molecular, surge a viscosidade, que é a 
resistência do fluido ao esforço cortante ou cisalhamento, ou seja, a resistência 
que o fluido opõe ao escoamento. Portanto, a viscosidade é contrária à fluidez; 
os líquidos mais viscosos (glicerina, óleo não-refinado, tinta de impressão, etc.) 
têm menor fluidez, e vice-versa. Tanto a viscosidade como a fluidez são 
propriedades características de cada fluido, que se manifestam em seu interior, 
independentemente do material sólido com que estão em contato. A pressão não 
interfere na viscosidade, a não ser em condições excepcionais, por exemplo: 
certos tipos óleos somente se transformam em sólidos plásticos se a pressão for 
superior a 2000 kfg/cm2. 
 
1.4.1.1 - Viscosidade Dinâmica ou Absoluta: 
Na fig. Abaixo, sejam: 
 
F= Força atuando na placa sólida, móvel, de modo a dar-lhe a velocidade U em 
escoamento laminar; (U=velocidade média) 
A= Área de cada uma das placas sólidas, distanciadas de y; 
 = (F/A) = Tensão cisalhante (esforço tangencial que tende a separar o fluido 
entre as duas placas); 
dv= Acréscimo de velocidade entre duas lâminas fluidas, distanciadas de dy. 
 
Temos que µ= _τ_; onde µ, é o coeficiente de viscosidade 
 dv/dy dinâmica ou absoluto do fluido 
 
Unidades: MK*S μ = kgf.s/m2 
 12 
 SI μ = N.s/m2 
 CGS μ = dina.s/cm2 = poise 
 
Utiliza-se também o centipoise : 1 cpoise= 0,01 poise 
 
Note-se que a viscosidade dinâmica possui um valor cada fluido e varia para um 
mesmo fluido, principalmente em relação à temperatura. Os gases e os líquidos 
comportam-se diferentes quanto a esse aspecto. 
Nos líquidos, a viscosidade diminui com o aumento da temperatura, enquanto 
nos gases a viscosidade aumenta com o aumento da temperatura. 
 
 
 
 
1.4.1.2 - Viscosidade Cinemática: 
A massa de um corpo é uma característica da quantidade de matéria contida 
nesse corpo, isto é, trata-se de uma característica da inércia que o corpo opõe ao 
movimento. 
Os efeitos da viscosidade serão tanto maiores quanto menor a inércia do fluido, 
ou seja, quanto menor sua massa específica ρ. Então, é útil estabelecer a razão 
entre a viscosidade dinâmica e sua massa específica. 
 
= / 
 
Unidades: MK*S  = m2/s 
 SI  = m2/s 
 CGS  = cm2/s = stoke (St); 
 
Utiliza-se ainda o centistokes: 1cSt= 0,01 St. 
Das unidades, verifica-se que o nome- viscosidade cinemática- deve-se ao fato 
dessa grandeza não envolver força, mas somente comprimentoe tempo, que são 
as grandezas fundamentais da cinemática. 
 
 13 
1.4.1.3 - Variação da Viscosidade com a Temperatura : 
Nos líquidos a viscosidade  diminui com o aumento da temperatura, suposta 
constante a pressão. Nos gases, ao contrário, a viscosidade dinâmica aumenta 
quando a temperatura cresce, admitindo-se constante a pressão. 
 
A viscosidade cinemática dos líquidos e dos gases a uma da pressão é 
preponderantemente uma função da temperatura, ou seja, é praticamente 
independente da pressão, dependendo somente da temperatura. 
 
1.4.2-Vazão(Q): 
É a quantidade de fluido que passa por uma seção na unidade de tempo. 
A vazão pode ser medida em unidade de volume, de peso ou de massa No 
presente curso,como trabalharemos somente com líquidos que consideramos 
incompressíveis, adotaremos vazão em volume. 
 
Q= V/t, 
onde V= volume e t= tempo; demonstra-se que Q= vA, onde v= velocidade da 
corrente fluida e A= área da seção do conduto. 
 
l.4.3- Classificação dos Movimentos 
 
1.4.3.1 – Quanto ao regime: 
a)Regime Variado: É aquele em que as condições do fluido em alguns pontos ou 
regiões de pontos variam com o passar do tempo, como, por exemplo, nos rios 
sujeitos às mares, a vazão varia com o tempo. 
 
b)Regime Permanente: É aquele em que as propriedades do fluido são 
invariáveis com o passar do tempo. Note-se que as propriedades podem variar 
de ponto para ponto, desde que não haja variações com o tempo. 
Neste curso adotaremos o Regime Permanente, onde a vazão é constante. 
 
1.4.3.2- Quanto a Trajetória das Partículas: 
a)Escoamento Laminar: As trajetórias das partículas são bem definidas e não se 
cruzam. 
 
 
b)Escoamento Turbulento: É aquele em que as partículas apresentam um 
movimento aleatório, ou seja, as partículas se movem desordenadamente. 
 
 
 14 
O escoamento laminar é o menos comum na prática, mas pode ser visualizado 
num filete de água de uma torneira pouco aberta ou no início da trajetória 
seguida pela fumaça de um cigarro, já que a certa distância notam-se 
movimentos transversais. 
Reynolds verificou que o fato do movimento ser laminar ou turbulento, depende 
de um valor adimensional dado por: 
 
Re= ρvD = vD, 
 μ ν 
 
onde : 
Re= Número de Reynolds 
D= diâmetro 
v= velocidade média 
ν = viscosidade cinemática 
 
Essa expressão se chama Número de Reynolds e mostra que o tipo de 
escoamento depende do conjunto de grandezas v,D e ν, e não somente de cada 
uma delas. 
Reynolds verificou que, no caso de tubos, seriam observados os seguintes 
valores: 
 
Re < 2.000 Escoamento laminar 
 
2.000<Re<4000 Escoamento de transição 
 
Re> 4000 Escoamento turbulento 
 
1.4.3.3 - Quanto a Velocidade: 
a)Movimento Uniforme: É quando a velocidade média permanece constante ao 
longo da corrente. 
 
b)Movimento Não Uniforme: É quando a velocidade média varia em pontos da 
corrente. Os movimentos, nesses casos, podem ser acelerados, quando a 
velocidade média aumenta e retardados quando a velocidade média diminui ao 
longo da corrente. 
 
1.4.4- Equação da Continuidade: 
No escoamento permanente, é constate o produto vA, ou seja, é constante o 
produto de cada seção transversal (A) do tubo pela respectiva velocidade média 
das partículas. 
Para dois pontos de uma tubulação, temos, considerando o fluido como ideal: 
 
Q1= v1A1 e Q2= v2A2, como Q1=Q2 tem-se que v1A1 = v2A2 
 
1.4.7- Linha de Corrente: 
É a trajetória descrita pela partícula fluida. 
 
 15 
1.4.4.1- Tubo de corrente: 
Ë um conjunto constituído de linhas de corrente, ou uma figura imaginária 
limitada por linhas de corrente. 
 
 
 
l.4.5- Equação de Bernoulli: 
A Equação de Bernoulli deriva da Equação de Euler, com simplificações, 
partindo-se de uma equação mais simples. 
É óbvio que cada hipótese admitida cria um afastamento entre os resultados 
obtidos pela equação e o observado na prática. No entanto, é de importância 
fundamental, seja conceitualmente, seja como alicerce da equação geral, que será 
construída pela eliminação gradual das hipóteses da equação de Bernoulli e pela 
introdução dos termos necessários, para que a equação represente com exatidão 
os fenômenos naturais. 
As hipóteses simplificadoras são: 
 
a)Regime permanente; 
b)Sem máquina no trecho de escoamento em estudo. Entenda-se por máquina 
qualquer dispositivo mecânico que forneça ou retire energia do fluido, na forma 
de trabalho. As que fornecem energia ao fluido serão denominadas “bombas” e 
as que extraem energia do fluido, “turbina”; 
c)Sem perdas por atrito no escoamento do fluido ou fluido ideal; 
d)Propriedades uniformes nas seções; 
e)Fluido incompressível; 
Sem trocas de calor. 
 
1.4.6- Equação de Bernoulli para Fluidos Ideais: 
A equação de Bernoulli para fluidos ideais, leva em conta todas as hipóteses 
elencadas acima e seu enunciado diz: Ao longo de qualquer linha de corrente é 
constante a soma das energias potencial, cinética e de pressão ou piezométrica. 
Este teorema é uma extensão do princípio da conservação da energia. Bernoulli é 
uma equação que facilita o estudo de sistemas fluidos, eis que, transforma as três 
parcelas de energias em equivalentes colunas fluidas. 
 
a)Energia Potencial ou de Posição  z 
b)Energia Cinética  v2/2g 
c)Energia de Pressão ou Piezométrica  p/γ 
 16 
 
 
1.4.6.1 - Fluido Ideal: 
É aquele cuja viscosidade é nula. Por essa definição conclui-se que é um fluido 
que escoa sem perdas de energia por atrito. É evidente que nenhum fluido possui 
essa propriedade; no entanto, será visto no decorrer do estudo que algumas 
vezes será interessante admitir essa hipótese, ou por razões didáticas ou pelo 
fato de a viscosidade ser efeito secundário do fenômeno. 
 
1.4.6.2 - Fluido ou Escoamento Incompressível: 
Diz-se que um fluido é incompressível se o seu volume não varia ao modificar a 
pressão. Isso implica o fato de que, se o fluido for incompressível, a sua massa 
específica não varia com a pressão. É claro que, na prática, não existem fluidos 
nessas condições. Os líquidos, porém, têm um comportamento muito próximo a 
esse e na prática, normalmente, são considerados como incompressíveis. 
 
 
 17 
Nos esquemas acima, baseados no teorema de Bernoulli para fluidos ideais, 
conclui-se que: 
 
(I) Aumentando-se a energia cinética (pela diminuição de seção) a energia de 
pressão diminui e vice-versa; 
(II)Diminuindo a altura (energia potencial z) e mantendo-se a energia cinética, a 
energia de pressão aumenta ou vice-versa. 
 
1.4.7 - Aplicações do Teorema de Bernoulli: 
 
1.4.7.1 - Teorema de Torricelli: 
Aplica-se para soluções de velocidade em orifício de recipiente de paredes 
delgadas e tubo de Pitot. 
 
v2 = 2gh 
 
a)Recipientes de paredes delgadas: A velocidade de um líquido, jorrando por 
um orifício em parede delgada, é igual à velocidade que teria um corpo caindo 
livremente da altura h (medida entre o centro o orifício e a superfície livre do 
líquido contido no recipiente). 
 
 
 
b) Tubo de Pitot: Serve para medir a velocidade em um ponto qualquer de uma 
corrente líquida (rio, canal, etc.) Consiste em um tubo de vidro recurvado, de 
pequeno diâmetro e aberto nas duas extremidades. 
 
 
 
 
 18 
1.4.8- Equação de Bernoulli para Fluidos Reais: 
 
1.4.8.1 - Conceito Inicial da Perda de Carga: 
A experiência mostra que, no escoamento dos Fluidos Reais, uma parte da sua 
energia se dissipa em forma de calor e nos turbilhões que se formam na corrente 
fluida. Essa parte de energia é consumida pelo Fluido Real ao vencer diversas 
resistências, que não foram levadas em conta ao tratarmos do Fluido Ideal. Uma 
das resistências é causada pela Viscosidade do Fluido Real, outra é provocada 
pelo contato do fluido com a parede interna do conduto. Várias resistências são 
causadas na tubulação por peças de adaptação ou conexões (curvas, joelhos, tês, 
registros, etc.). Assim, a carga no Fluido Real, não é mais aquele valor visto na 
Equação de Bernoulli para FluidosIdeais, pois uma parte da carga ficou perdida 
no Fluido Real: Ë a chamada “Perda de Carga”. 
Considerando a Equação de Bernoulli entre os pontos (1) e (2), sendo o processo 
no sentido de (1) para (2), temos: 
 
v12/2g + p1/γ + z1 = v22/2g + p2/γ + z2 + hf 
onde: 
 hf é a somatória das perdas ocorridas ao longo da trajetória fluida. 
 
 
As perdas de carga estão classificadas em perdas de Carga ao longo de um 
conduto e Perdas de Carga Localizadas. 
Conduto é qualquer estrutura sólida, destinada ao transporte de fluidos. 
 
a)Perda de Carga ao Longo de um Conduto (hf): 
São ocasionadas pelo movimento do fluido na própria tubulação. 
A resistência ao escoamento do fluido ao longo das canalizações depende do 
comprimento e do diâmetro do diâmetro do tubo, da velocidade do fluido, da 
rugosidade das paredes do tubo, porém não depende da posição do tubo nem da 
pressão interna. 
 19 
As experiências de Nikuradse, mostram a importância da rugosidade nas perdas 
ao longo das canalizações. 
A rugosidade das paredes depende: 
- material empregado; 
- processo de fabricação dos tubos; 
- comprimento do tubo e número de juntas; 
- técnica de assentamento; 
- estado de conservação das paredes do tubo; 
- existência de revestimento especial; e 
- emprego de medidas protetoras durante o funcionamento. 
 
Existem várias fórmulas empíricas para o cálculo da perda de carga ao longo das 
canalizações, porém, neste curso, abordaremos somente a fórmula universal. 
 
 hf = f . L v2 
 D 2g 
Onde: 
L= comprimento da tubulação e/ou comprimento equivalente das singularidades 
existentes ao longo da linha (m); 
D= diâmetro do tubo (m); 
v= velocidade do fluido (m/s) 
f= coeficiente de atrito, que é função do fluido, tipo de material e diâmetro do 
conduto e da velocidade de escoamento. (Tabelado). 
 
b) Perda de Carga Localizadas (hf): 
São provocadas pelas peças e singularidades ao longo das canalizações, tais 
como: curvas, registros, derivações, redução ou aumento de diâmetro. 
 
1.4.9- Escoamento dos Líquidos em Condutos: 
Os escoamentos são classificados, quanto ao comportamento dos fluidos em seu 
interior, em livres e forçados: 
 
a)Escoamento Livre: Se o líquido estiver em parte ou na sua totalidade em 
contato com a atmosfera, ou seja, apresentar superfície livre, diz-se que o 
escoamento é livre. 
Exemplos: canaletas, calhas, aquedutos livres, galerias, túneis canais, canais, 
cursos de água e jatos provindos de orifícios. 
 
 20 
b)Escoamento Forçado: Quando o líquido estiver em contato com as paredes do 
conduto, exercendo nelas, em conseqüência, uma certa pressão, diz-se que o 
escoamento é forçado. 
 
1.4.9.1 - Raio Hidráulico e Diâmetro Hidráulico: 
O Raio Hidráulico é definido como: 
 
RH= A/σ 
 
onde; 
A= área transversal do escoamento do fluido; 
σ = perímetro molhado ou trecho o perímetro, da seção de área A, em que o 
fluido está em contato com a parede do conduto. 
 
O Diâmetro Hidráulico é definido por: DH= 4RH 
 
A tabela a seguir apresenta alguns exemplos: 
 
 
 
 
 
 
 21 
1.4.9.2- Orifícios, Bocais e Vertedouros: 
a)Orifícios: São perfurações feitas abaixo da superfície livre do líquido em 
paredes de reservatórios, tanques, canais ou canalizações. 
Podem ser classificados: 
 
a.1)Quanto à forma: 
-circulares 
-retangulares e etc. 
 
a.2)Quanto às dimensões: 
-pequenos  d < = h/3 
-grandes  d > h/3 
 
a.3)Quanto à natureza da parede: 
- parede delgada e< 1,5 d 
  e>= 1,5 d 
 
 
b)Bocais e Tubos Curtos: São constituídos por peças tubulares adaptadas aos 
orifícios. 
Os bocais servem para dirigir o jato. Um bocal deve ter seu comprimento 
compreendido ente 1,5 e 5 vezes o seu diâmetro d. 
 
 
c)Vertedores: São simples aberturas sobre as quais um líquido escoa. Podemos 
dizer que são orifícios sem bordo superior. 
São utilizados na medição de vazão de pequenos cursos de água e de condutos 
livres, assim como, no controle de escoamento em galerias e canais. Classificam-
se em: 
 22 
 
c.1)Quanto à forma: Retangular, Trapezoidal e Triangular; 
 
 
 
c.2)Quanto à altura relativa da soleira: -Completos ou Livres: p>p’ 
 -Incompletos ou afogados: p<p’ 
 
c.3)Quanto à natureza da parede: -Delgada: e< H/2 
 -Espessa;  e> H/2 
 
 
c.4)Quanto à largura relativa: - sem contração; 
 - com uma contração 
 - com duas contrações 
 
 
 
 
 
 23 
 
 
1.4.9.3 - Vazão nos vertedores: 
Exemplos de cálculo da vazão em vertedores mais utilizados: 
 
(I)Vertedores retangulares de paredes delgada e sem contração. Fórmula de 
Francis. 
 
Q= 1,838 L H3/2 (m3/s) 
 
(II)Vertedores retangulares de paredes delgadas com duas contrações: 
 
Q= 1,838 (L – 2H) H3/2 (m3/s) 
 10 
 
 
(III)Vertedores trapezoidais de Cipolletti: 
 
Q= Q2 + 2Q1 (m3/s) 
 
 
 
(IV)Vertedores triangulares de parede delgada lisa (Fórmula de Thompson): 
 
Q= 1,4 H5/2 (m3/s) 
 
 
 
 
 
 
 24 
 
2.MÁQUINAS DE FLUXO: ( BOMBAS, TURBINAS, COMPRESSORES, 
VENTILADORES) 
 
2.1- Definição: 
As máquinas que fornecem ou extraem energia de um fluído de modo contínuo, 
sob a forma de um conjugado de um eixo rotativo, são denominados máquinas de 
fluxo. 
 
2.2- Classificação das máquinas de fluxo: 
As máquinas de fluxo podem ser classificadas segundo vários critérios. 
 
2.2.1- Conforme o sentido da transformação de energia. 
a)O fluído cede energia à máquina, que transforma esta energia em trabalho 
mecânico. 
Ex.: turbinas, moinhos de vento, etc. 
 
b) A máquina cede energia ao fluído, resultando um aumento de energia do 
fluído. 
Ex.: bombas, ventiladores, compressores, etc. 
 
 
 
 
 
 
2.3- Bombas hidráulicas: 
2.3.1 – Definição: 
São Máquinas Hidráulicas Operatrizes, isto é, máquinas que recebem energia 
mecânica (força motriz de um motor ou turbina), e transformam parte desta 
 25 
potência em energia cinética (movimento) e energia de pressão (força) cedendo 
estas duas energias ao fluído bombeado, de forma a recirculá-lo ou transportá-lo 
de um ponto a outro. 
Portanto, o uso de bombas hidráulicas ocorre sempre que há a necessidade de se 
aumentar a pressão de trabalho, a velocidade de escoamento, ou ambas as 
grandezas de uma substância líquida contida num sistema. 
2.3.2 – Classificação quanto ao tipo: 
Devido a grande diversidade de tipos e usos das bombas existentes, adotamos 
uma classificação resumida, segundo a qual as bombas hidráulicas dividem-se 
em dois grandes grupos: 
a) Bombas Centrífugas ou Turbo-Bombas, também conhecidas como Hidro 
ou Rotodinâmicas: 
Nas Bombas Centrífugas, ou Turbo-Bombas, a movimentação do líquido 
ocorre pela ação de forças que se desenvolvem na massa do líquido, em 
conseqüência da rotação de um eixo no qual é acoplado um disco (rotor, 
impulsor) dotado de pás (palhetas, hélice), o qual recebe o líquido pelo seu 
centro e o expulsa pela periferia, pela ação da força centrífuga, daí o seu nome 
mais usual. 
Em função da direção do movimento do líquido dentro do rotor, estas bombas 
dividem-se em: 
a.1)Centrífugas Radiais (puras): A movimentação do líquido se dá do centro 
para a periferia do rotor, no sentido perpendicular ao eixo de rotação. Sua 
característica básica é trabalhar com pequenas vazões a grandes alturas, com 
predominância de força centrífuga; são as mais utilizadas atualmente. 
NOTA: Este tipo de bomba hidráulica é o mais usado no mundo, 
principalmente no transporte de água. 
a.2)Centrífugas de Fluxo Axial (helicoidais): O movimento do líquido ocorre 
paralelo ao eixo de rotação. As Bombas axiais trabalham com grandes vazões a 
pequenas alturas. 
a.3) Centrífugas de Fluxo Misto (hélico-centrífugas): O movimento do líquido 
ocorre na direção inclinada (diagonal) ao eixo de rotação. Caracterizam-se pelo 
recalque de médias vazões a médias alturas, sendo um tipo combinado das duas 
anteriores. 
 26 
 
a.4) ComponentesPrincipais e Complementares: 
 
 27 
 
 
Prensa Gaxeta 
 
Gaxeta 
 28 
 
Selo Mecânico 
b) Bombas Volumétricas, também conhecidas como de Deslocamento 
Positivo; 
Nas Bombas Volumétricas, ou de Deslocamento Positivo, a movimentação dos 
líquidos é causada diretamente pela ação do órgão de impulsão da bomba que 
obriga o líquido a executar o mesmo movimento a que está sujeito este impulsor 
(êmbolo, engrenagens, lóbulos, palhetas). Dá-se o nome de volumétrica porque o 
líquido, de forma sucessiva, ocupa e desocupa espaços no interior da bomba, com 
volumes conhecidos, sendo que o movimento geral do líquido dá-se na mesma 
direção das forças a ele transmitidas, daí o nome, também comum, de 
deslocamento positivo. 
Recomenda-se a aplicação de bombas de deslocamento positivo em casos onde 
necessário uma vazão constante independente da variação de carga sobre a 
bomba e, também, quando o volume deve ser medido com precisão, já que a 
vazão produzida pela bomba é função, apenas, da sua rotação. 
As Bombas Volumétricas dividem-se em: 
b.1) De Êmbolo ou Alternativas (pistão, diafragma, membrana): 
 
 29 
b.2) Rotativas (engrenagens, lóbulos, palhetas, helicoidal, fusos, parafusos) 
 
 
 Bomba de Engrenagem 
 
 Bomba de Palhetas 
 
 Bomba Helicoidal 
 
 30 
 Bomba de Lóbulos Triplo 
 
 Bomba de Tubo Flexível ou de Rolete 
 (peristáltica) 
As bombas peristálticas são utilizada em dosadores de substâncias químicas e 
produtos alimentícios ( por exemplo leite) que não podem entrar em contato 
com o metal e lubrificantes da bomba. 
2.3.3 - Classificação quanto ao posicionamento do Eixo: 
a) Bomba de eixo vertical: utilizada em poços subterrâneos profundos. 
 
 
 31 
 
b) Bomba de eixo horizontal: é o tipo construtivo mais usado. 
 
2.3.4- Quanto à posição do eixo da bomba em relação ao nível da água: 
a) Bomba de sucção positiva: quando o eixo da bomba situa-se acima do 
nível do reservatório. 
 
 32 
 
 
 
 
 
b) Bomba de sucção negativa ("afogada"): quando o eixo da bomba situa-se 
abaixo do nível do reservatório. 
 
 
 
 
2.3.5- Classificação quanto ao tipo de Rotor: 
a) Rotor Fechado: Indicados para líquidos sem substâncias em suspensão. 
 
 33 
 
 
b)Rotor Semi-aberto: 
 
 
c)Rotor Aberto: Indicados para líquidos contendo pastas, lamas, areia, esgotos 
sanitários. 
 
 
 
 
 34 
 
2.3.6 – Funcionamento: 
Abordaremos apenas os aspectos do funcionamento das Bombas Centrífugas 
Radiais, como segue: 
A Bomba Centrífuga tem como base de funcionamento a criação de duas zonas 
de pressão diferenciadas, uma de baixa pressão (sucção) e outra de alta 
pressão (recalque). 
Para que haja a formação destas duas zonas distintas de pressão, é necessário 
existir no interior da bomba a transformação de energia mecânica (de 
potência); que é fornecida pela máquina acionadora (motor ou turbina), 
primeiramente em energia cinética, a qual irá deslocar o líquido, e 
posteriormente, e em maior escala, em energia de pressão, a qual irá 
adicionar "carga" ao líquido para que ele vença as alturas de deslocamento. 
Para estabelecer este funcionamento, existem três partes fundamentais na 
bomba: 
 O rotor (impelidor) que se constitui de um disco provido de pás 
(palhetas) que impulsionam o líquido; 
 A carcaça (corpo) que envolve o rotor acondiciona o líquido e direciona o 
mesmo para a tubulação de recalque; 
 O eixo de acionamento, que transmite a força motriz e no qual está 
acoplado o rotor, causando o movimento rotatório do mesmo. 
 
 
 35 
 
Para que haja o funcionamento é necessário que a carcaça esteja totalmente 
preenchida do líquido, estando o rotor imerso no mesmo. 
Ao iniciar o seu processo de rotação (R.P.M), o rotor cede energia cinética à 
massa do líquido, deslocando suas partículas para a extremidade periférica do 
rotor. 
Isto ocorre pela ação da força centrífuga, daí advindo o nome usual deste tipo 
de bomba. 
A partir daí passam o ocorrer os fenômenos físicos que causam o aparecimento 
das duas zonas de pressão (baixa e alta) de que necessita a bomba para cumprir 
sua função: 
a) Com o deslocamento da massa inicial do líquido do centro do rotor para sua 
extremidade, no centro do rotor se formará um " Vazio", sendo este o 
ponto de menor pressão da bomba. Este ponto constitui-se também no local 
por onde, obviamente, novas e sucessivas massas do líquido irão ocupar 
espaço, vindas da captação, pela ação da pressão atmosférica ou outra 
qualquer. 
b) Paralelamente, a massa do líquido que é arrastada para a periferia do rotor, 
agora comprimida entre as pás e as faces internas do mesmo, recebe uma 
crescente energia de pressão, derivada da energia potencial e da energia 
cinética, anteriormente, introduzidas no sistema. O crescente alargamento da 
área de escoamento (Teorema de Bernoulli), assim como as características 
construtivas do interior da carcaça da bomba (voluta ou difusores) ocasionam 
a alta pressão na descarga da bomba, sendo ela; já descontadas as perdas de 
carga por atrito entre o líquido e as partes internas na bomba; a responsável 
pela "carga" que elevará o líquido à altura desejada. 
 36 
 
NOTA: Convém salientar que, somente um estudo mais profundo sobre as 
diversas equações e teoremas que determinam o funcionamento de uma 
bomba hidráulica irá deixar claro como estes processos se desenvolvem em 
suas inúmeras variáveis, não sendo este o objetivo deste curso. 
No entanto, resumidamente, podemos dizer que o funcionamento de uma 
bomba centrífuga contempla o princípio universal da conservação de energia, 
que diz: "A energia potencial se transforma em energia cinética, e vice-
versa". É óbvio também que parte da energia potencial transmitida à bomba 
não é aproveitada pela mesma, pois devido ao atrito acaba transformando-se 
em calor. Em vista disto, o rendimento hidráulico das bombas pode variar em 
seu melhor ponto de trabalho (ponto ótimo) de 20% a 80%, dependendo do 
tipo de bomba, do acabamento interno e do líquido bombeado pela mesma. 
 
2.3.7- Partes Principais de uma Instalação de Bombeamento: 
 
A Figura 1 ilustra as partes principais de uma instalação de bombeamento 
 
 
 
 
 37 
 
Legenda: 
 
1- Casa de Bombas RE - Redução Excêntrica 
M – Motor de acionamento CL - Curva de 90o 
B – Bomba 4 - Linha de Recalque 
2 – Poço (fonte) VR - Válvula de retenção 
3 – Linha de Sucção R – Registro VPC - Válvula de pé com crivo 
C – Joelhos 5 - Reservatório. 
 
 
 
 38 
 
2.3.8- Termos hidráulicos mais usados em bombeamento: 
a) Altura manométrica total-A.M.T.ou HMT: Pressão total desde o crivo da 
válvula (centrífugas normais) ou conexão de descarga (submersas) até o ponto 
de uso, incluindo alturas de sucção e de recalque e perdas por atrito nas 
tubulações, conexões e acessórios, a qual é medida por instrumentos, ou 
calculada, e expressa em unidades de pressão. 
A. M. T.ou HMT = Altura Sucção + Altura Recalque + Perdas de Carga Totais no 
Sistema (Tubulações/Conexões e Acessórios). 
b) mca - Metros de Coluna d’Água – Unidade de Pressão 
c) m3/h - Metros Cúbicos por hora – Unidade de Vazão – 1 m3/h = 1.000 
litros/hora 
d) Altura de sucção - A.S. ou HS - Distância vertical em metros, entre o nível 
dinâmico da captação e a entrada (sucção) da bomba. Em bombas centrífugas 
normais esta altura não pode exceder a 8 metros de coluna d’água (8mca), ao 
nível do mar. 
e) Altura de recalque - A.R.ou HR - Distância vertical em metros entre a bomba 
e o ponto de uso final ou reservatório superior. 
 39 
f) Perda de carga por atrito nas tubulações(hf): Pressão ou carga requerida 
pela bomba para superar o atrito exercido nas paredes internas dos tubos, 
quando da passagem da água pelo seu interior. Para efeito de cálculos, esta perdaé obtida percentualmente sobre o comprimento total da tubulação, em função de 
sua bitola e da vazão desejada na mesma, através de coeficientes tabelados. 
g) Perdas de cargas por atrito nas conexões / comprimento 
equivalente(hf): Pressão ou carga requerida pela bomba para superar o atrito 
exercido nas paredes internas das conexões, registros, válvulas, etc., quando da 
passagem da água. Para efeito de cálculos, a perda em cada uma dessas peças é 
comparada a uma perda proporcional em metros que haveria numa extensão 
linear do tubo de igual diâmetro (comprimento equivalente de canalização), 
através de coeficientes tabelados. 
h) Comprimento da tubulação de sucção - Extensão linear em metros dos 
tubos utilizados na instalação, desde o injetor ou válvula de pé até a bomba. 
i) Comprimento da tubulação de recalque - Extensão linear em metros, dos 
tubos utilizados na instalação, desde a bomba até o ponto de uso ou reservatório 
superior. 
j) Golpe de aríete - Impacto sobre todo o sistema hidráulico, causado pelo 
retorno da pressão fornecida pela bomba, quando da parada da mesma. Este 
impacto quando não amortecido por válvula(s) de retenção, danifica tubos, 
conexões e os componentes da bomba. 
k) Nível estático - Distância vertical em metros entre a borda do reservatório de 
sucção e o nível (lâmina) máximo da água, antes do início do bombeamento. 
l) Nível dinâmico - Distância vertical em metros entre a borda do reservatório 
de sucção e o nível (lâmina) mínimo da água, após o bombeamento da vazão 
desejada. 
m) Submergência - Distância vertical em metros entre a lâmina d’água do nível 
dinâmico e o injetor (Bombas Injetoras), a válvula de pé (Bombas Centrífugas 
Normais), ou filtro da sucção (Bombas Submersas). 
n) Escorva da bomba - Eliminação do ar existente no interior da bomba e da 
tubulação de sucção. Esta operação consiste em preencher com o líquido a ser 
bombeado todo o interior da bomba e da tubulação de sucção, antes do 
acionamento da mesma. Nas bombas auto-aspirantes basta eliminar o ar do 
interior da mesma. Até 8 mca de sucção a bomba eliminará o ar da tubulação 
automaticamente. 
o) Auto-aspirante - O mesmo que Auto-Escorvante, isto é, tipo de bomba 
centrífuga que elimina automaticamente o ar da tubulação de sucção, não sendo 
necessário o uso de válvula de pé (fundo de poço) na mesma. 
 40 
p) Cavitação - Fenômeno físico que ocorre em bombas centrífugas no momento 
em que o líquido succionado pela mesma tem a sua pressão absoluta reduzida a 
igual ou a menos que a sua pressão de vapor (líquido® vapor), voltando 
posteriormente a sua pressão absoluta anterior (vapor® liquido). Este fenômeno 
ocorre no interior da bomba quando o NPSHd é menor que o NPSHr. A cavitação 
causa ruídos, danos e queda no desempenho hidráulico das bombas. 
q) NPSH - Sigla da expressão inglesa -Net Positive Suction Head- a qual se 
divide em: 
I) NPSH disponível - Pressão absoluta por unidade de peso existente na sucção 
da bomba (entrada do rotor), a qual deve ser superior a pressão de vapor do 
líquido bombeado, e cujo valor depende das características do sistema e do 
líquido. 
II) NPSH requerido - Pressão absoluta mínima por unidade de peso, a qual dever 
ser superior a pressão de vapor do líquido bombeado, que deverá existir na 
sucção da bomba (entrada de rotor) para que não haja cavitação. Este valor 
depende das características da bomba e deve ser fornecido pelo fabricante da 
mesma. O NPSHd deve ser sempre maior que o NSPHr. (NPSHd > NPSHr) 
r) Válvula de pé ou de fundo de poço – Válvula de retenção colocada na 
extremidade da tubulação de sucção para impedir que a água succionada retorne 
à fonte quando da parada da bomba, evitando que esta trabalhe vazia (perda da 
escorva). 
s) Crivo – Grade ou filtro de sucção, normalmente acoplado à válvula de pé, que 
impede a entrada de partículas maiores do que a bomba pode recalcar. 
t) Válvula de retenção – Válvula(s) de sentido único colocada(s) na tubulação 
de recalque para evitar o retorno de pressão do líquido bombeado, quando da 
parada da bomba, cujo impacto danificaria tubulações, conexões e a própria 
bomba. Este impacto, na ausência da válvula, é usualmente conhecido como 
"Golpe de Aríete". Para evitar-se os danos do Golpe de Aríete, usa-se uma válvula 
de retenção a cada ± 20 mca da A. M. T. 
u) Registro – Dispositivo para controle da vazão de um sistema hidráulico. 
v) Manômetro – Instrumento que mede e indica a pressão de um sistema (maior 
que a ambiente). 
x) Pressão atmosférica – Peso da massa de ar que envolve a superfície da terra 
até uma altura de ± 80 Km. e que age sobre todos os corpos. Ao nível do mar, a 
P.A . equivale a 10,33 mca ou 1,033 Kg/cm2 (760 mm/Hg). 
 
 
2.3.9- Associação de Bombas: 
As bombas podem ser associadas em série ou paralelo. 
 
a)Associação em Série: 
 41 
Um conjunto constituído de duas ou mais bombas em série, terá altura de 
elevação, igual a soma as alturas de elevação de cada bomba, admitindo-se 
mesma vazão. 
 
 
b)Associação em Paralelo: 
Um conjunto constituído de bombas em paralelo, terá a mesma altura de 
elevação de cada bomba e vazão igual a soma da vazões de cada bomba, desde 
que não seja alterada a altura manométrica. 
 
 
2.3.10- Leis da Semelhança: 
Variando a rotação de n1 para n2 numa mesma bomba, vale as seguintes relações 
de semelhança: 
 
Vazão  
2
1
2
1
n
n
Q
Q
 ; 
Altura Manométrica  
2
1
man
man
H
H
(
2
1
n
n
)2 e 
Potência  3
2
1
2
1 )(
n
n
N
N
 
 
2.3.11- Cálculo da Potência: 
A potência do conjunto Motor-Bomba, deverá ter uma potência para: 
 
 42 
a)Vencer a diferença de nível H, ou a distância até o reservatório, com a vazão 
requerida; 
b)Vencer as perdas de carga na sucção e no recalque (hf); 
c)Vencer a dissipação de energia tanto no motor com na bomba, traduzida pelo 
rendimento η. 
Dessa forma, a potência de um conjunto elevatório será dada por: 
 


75
manN
QH
B  ; 
 
onde : PotênciaNB  do conjunto 
  peso específico do líquido 
 manH altura manométrica 
  rendimento do conjunto motor/bomba 
 
 
fRfSmanRmanSman hhHHH  
 
BM  . 
 
 43 
 
 Manual SCHNEIDER 
 
2.3.12- Tabelas, ábacos, esquemas e exemplos: 
Perdas de Carga em metros de comprimentos equivalentes, baseados na fórmula 
de Darcy-americana (universal) 
 
 
 
 44 
 
 45 
Exemplo de Ábaco para cálculo econômico dos Tubos e Esquema de uma 
Instalação de Bombeamento 
 
 
 46 
 
 47 
O diagrama acima, mostra as curvas características de uma bomba centrífuga de 
l.750 rpm, a altura de sucção de 3 m, com boca de entrada de 5” de diâmetro e 
saída de 4”. 
Observar que, o ponto de funcionamento ideal dessa bomba deve corresponder 
ao melhor rendimento. 
Assim, esta bomba deverá trabalhar nas seguintes condições: 
 
- rotação: l.750 rpm 
- altura de sucção: 3 m 
- altura manométrica: 6,5 m 
- potência: 2,5 HP 
- rendimento: 70% 
 
Acréscimo de Potência para Bombas: 
 
Potência do 
Motor (CV) 
Até 2 >2 a 5 >5 a 10 >10 a 20 >20 
Acréscimo(%) 50 30 20 15 10 
 
Potências usuais de motores elétricos fabricados no Brasil (CV) 
¼, 1/3, ½, ¾, 1, 1 ½, 2, 3, 5, 6, 7 ½, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 80, 100, 
125, 150, 200 e 250 
Nota: 1 CV = 0,736 kW 
 
 
2.4-Turbinas Hidráulicas: 
São motores hidráulicos rotativos, ou seja, transformam energia hidráulica em 
energia mecânica. 
 
Nota: existem outros tipos de motores hidráulicos, como por exemplo, o servo- 
motor (cilindro hidráulico), que é um motor hidráulico alternativo e as rodas 
d’água que são rotativas. Estas diferem das turbinas, por utilizarem somente a 
energia potencial. 
 
2.4.1 - Classificação das Turbinas Hidráulicas: 
As turbinas hidráulicas, são classificadas de acordo com as energias que utilizam 
para transformação em energia mecânica, em: 
 
2.4.1.1 - Turbinas de Ação: 
Aquelas que aproveitam apenas a energia cinética (
g
v
2
2
), que é o caso da turbina 
Pelton,(fig.abaixo) 
 48 
 
 
 
 
 
 
 
As turbinas de Ação são também chamadas de turbinas de Impulso. 
 49 
 
 
2.4.1.2 - Turbinas de Reação: 
As que utilizam para transformação em energia mecânica, os três tipos de 
energia que compõem um recurso hídrico, ou seja, as energias potencial, cinética 
e piezométrica ou de pressão ( Z; 
g
v
2
2
 e 

p
) 
 
 
 
 50 
 
 
 
 
 
 
 
 
 
 
 51 
 
 
 
 
 52 
 
 
 
 
 
 
 
2.4.2- Aplicações: 
As turbinas de Ação, por funcionarem apenas com a energia cinética, são 
indicadas para grandes alturas de queda, ou seja, para rios ditos de planaltos. 
 
As turbinas de Reação são as mais indicadas para rios de grande vazão e pouco 
desnível, que é o caso dos rios da Amazônia. 
 
 
2.4.3- Cálculo da Potência (NT): 
 
A potência gerada pela Turbina depende do recurso hidráulico disponível, 
portanto, o cálculo da potência que indica a viabilidade para instalação de uma 
hidrelétrica inicia-se com o cálculo da potência disponível ou potência bruta. 
Após a conversão da potência hidráulica disponível ou bruta, pela turbina, será 
apurada a potência útil da instalação. De modo que, teremos então duas 
potências a ser calculadas: 
 
a)Potência Bruta: 
A potência máxima fornecida pelo manancial hidráulico 
 
NB = QH , 
Onde: 
γ = peso específico da água (kgf /m3); 
 53 
 Q = vazão do rio (m3/s); 
 H = altura de carga (m). 
 
Para conversão para CV, divide-se por 75, eis que, 1CV = 
s
mkgf .75
 
então: NB = 
75
QH
 (CV). 
 
b)Potência Útil: 
A potência fornecida pelo motor hidráulico é dita a potência útil, ou seja, é aquela 
que vai ser disponibilizada pela usina hidrelétrica para as atividades diversas da 
sociedade. 
A potência útil é menor, obviamente, que a potência bruta, eis que dependerá do 
rendimento final do sistema hidráulico e da máquina de transformação: 
NU = NB η, ou ainda; η = 
B
U
N
N
, como 1 BU NN , ou menor de 100%. 
 
Então a equação da potência útil será: 
 
NT = 
75
QH
NU  (CV) 
Onde : 
γ = peso específico da água (kgf /m3); 
Q = vazão do rio (m3/s); 
H = altura de carga (m); 
η = rendimento total do sistema. 
 
2.4.4Velocidade de rotação (RPM) e número de pólos de um gerador a ser 
acoplado: 
 
a)A velocidade específica: é um parâmetro para fixar a velocidade de rotação de 
uma máquina, cuja fórmula é : 
 
2/1
4/5
)(
H
CVN
ns  , 
onde: 
 
ns = velocidade específica (adimensional); 
N = rotação da turbina (rpm); 
CV= potência da turbina em CV 
H = altura de carga (m). 
 
A velocidade da máquina poderá ser calculada a partir da fórmula acima, 
utilizando ns tabelas para grupos de turbinas, ficando: 
 
2/1
4/5
)(CV
Hn
N s (RPM). 
 54 
 
 
b)Número de pólos de um gerador rigidamente acoplado: 
 
N
f
p
120
 , 
onde: 
p = numero de pólos; 
f = freqüência em Hz; 
N= rotação da turbina em RPM. 
 
 
 
 Ilustração de UHE (Turbina de Reação)

Continue navegando

Outros materiais