Prévia do material em texto
Questão 1/10 - Álgebra Linear
Seja T:R2→R2T:R2→R2 a transformação linear dada por T(x,y)=(x+2y,y).T(x,y)=(x+2y,y).
De acordo com a transformação linear dada e os conteúdos do livro-base Álgebra Linear, assinale a alternativa que contém a matriz de TT com relação à base canônica do R2R2:
Nota: 10.0
A
[1201].[1201].
Você acertou!
Observamos que
T(1,0)=(1,0)=1(1,0)+0(0,1) e T(0,1)=(2,1)=2(1,0)+1(0,1).T(1,0)=(1,0)=1(1,0)+0(0,1) e T(0,1)=(2,1)=2(1,0)+1(0,1).
Logo, a matriz de TT com relação à base canônica é [1201][1201] (livro-base p. 130-139)
B
[1021].[1021].
C
[1210].[1210].
D
[2110].[2110].
E
[1012].[1012].
Questão 2/10 - Álgebra Linear
Considere o vetor v=(3,2,1)v=(3,2,1) do R3R3 e o conjunto de vetores α={v1=(1,2,3),v2=(1,1,1),v3=(1,0,0)}α={v1=(1,2,3),v2=(1,1,1),v3=(1,0,0)} também do R3R3.
De acordo com as informações acima e os conteúdos do livro-base Álgebra Linear, analise as afirmativas a seguir, assinale com V as sentenças verdadeiras e com F as falsas.
( ) vv é uma combinação linear dos vetores do conjunto αα.
( ) αα é uma base do R3R3.
( ) Os vetores v1,v2 e v3v1,v2 e v3 são linearmente independentes.
Agora, assinale a alternativa com a sequência correta:
Nota: 10.0
A
V-V-F
B
V-V-V
Você acertou!
Comentário: A sequência correta é V-V-V.
Se vv é combinação linear dos vetores de αα, então existe a, b e c, tal que v=av1+bv2+cv3v=av1+bv2+cv3
Como o determinante dos vetores de αα é diferente de zero, logo existe a, b e c e vv é uma combinação linear dos vetores do conjunto αα.
Alternativa I é verdadeira porque o determinante dos vetores é diferente de zero.
Alternativa II é verdadeira porque vv é uma combinação linear dos vetores.
Alternativa III é verdadeira porque o determinante é diferente de zero,
v=av1+bv2+cv3v=av1+bv2+cv3
(Livro-base p. 89-103).
C
F-V-V
D
V-F-F
E
F-F-F
Questão 3/10 - Álgebra Linear
Considere a transformação T:R3→R3T:R3→R3 definida por T(x,y,z)=(x,y,0).T(x,y,z)=(x,y,0).
De acordo com a transformação dada e com os conteúdos do livro-base Álgebra Linear, coloque V quando a afirmativa for verdadeira e F quando for falsa:
I. ( ) TT é uma transformação linear.
II. ( ) O núcleo de TT é N(T)={(0,0,z); z∈R}N(T)={(0,0,z); z∈R}.
III. ( ) O conjunto imagem de TT satisfaz dim(Im(T))=2.dim(Im(T))=2.
Agora, marque a sequência correta:
Nota: 0.0
A
V - V - V
Dados u,v∈R3 e λ∈Ru,v∈R3 e λ∈R, observamos que TT satisfaz
T(u+v)=T(u)+T(v) e T(λu)=λT(u).T(u+v)=T(u)+T(v) e T(λu)=λT(u).
Assim, TT é uma transformação linear e a afirmativa I é verdadeira. Além disso, T(x,y,z)=(0,0,0)⟺(x,y,0)=(0,0,0)⟺x=0 e y=0,T(x,y,z)=(0,0,0)⟺(x,y,0)=(0,0,0)⟺x=0 e y=0,
o que mostra que zz pode ser tomado qualquer. Desse modo, N(T)={(0,0,z), z∈R}N(T)={(0,0,z), z∈R} e a afirmativa II é verdadeira. Segue do Teorema do Núcleo e da Imagem que
dim(N(T))+dim(Im(T))=dim(R3)⇒1+dim(Im(T))=3⇒dim(Im(T))=2.dim(N(T))+dim(Im(T))=dim(R3)⇒1+dim(Im(T))=3⇒dim(Im(T))=2.
Portanto, a afirmativa III também é verdadeira (livro-base p. 124-130).
B
V - F - V
C
V - V - F
D
V - F - F
E
F - V - V
Questão 4/10 - Álgebra Linear
Considere a seguinte equação ∣∣
∣∣x+123x1531−2∣∣
∣∣|x+123x1531−2|= ∣∣∣41x−2∣∣∣|41x−2| .
De acordo com a equação acima e os conteúdos do livro-base Álgebra Linear, assinale a alternativa com o valor de x:
Nota: 0.0
A
x=−32x=−32
B
x=−18x=−18
C
x=−25x=−25
D
x=−22x=−22
Resolvendo os determinantes à direita e à esquerda, temos:
−2(x+1)+3x+30−9−5(x+1)+4x=−8−x−2x−2+3x+30−9−5x−5+4x=−8−x−2x+3x−5x+4x−2+30−9−5=−8−x14=−8−x14+8=−x22=−x−22=x−2(x+1)+3x+30−9−5(x+1)+4x=−8−x−2x−2+3x+30−9−5x−5+4x=−8−x−2x+3x−5x+4x−2+30−9−5=−8−x14=−8−x14+8=−x22=−x−22=x
(Livro-base p. 39-42).
E
x=−20x=−20
Questão 5/10 - Álgebra Linear
Analise as matrizes A=[2002]A=[2002] e B=[3003]B=[3003].
De acordo com as matrizes acima e os conteúdos do livro-base Álgebra Linear, determine a matriz XX, tal que X=A.Bt+B.X=A.Bt+B.
Nota: 10.0
A
X=[120012]X=[120012]
B
X=[180018]X=[180018]
C
X=[9009]X=[9009]
Você acertou!
X=A.Bt+B=X=A.Bt+B= [2002][2002].[3003][3003]+ [3003][3003]=
=[6006][6006] +[3003][3003] =[9009][9009]
(Livro-base p. 26-38)
D
X=[8448]X=[8448]
E
X=[101110]X=[101110]
Questão 6/10 - Álgebra Linear
De acordo com os conteúdos do livro-base Álgebra linear, sobre sistemas de equações lineares, as matrizes A=(aij)∈M2×3A=(aij)∈M2×3 e B=(bij)∈M3×3B=(bij)∈M3×3 são definidas por aij=2i+3j−2 e bij={2i+j, se i=j2j−i, se i≠jaij=2i+3j−2 e bij={2i+j, se i=j2j−i, se i≠j. O produto AB é a matriz:
Nota: 0.0
A
[054120474156][054120474156]
Construção das matrizes A e B.
A=[a11a12a13a21a22a23]=[3695811]A=[a11a12a13a21a22a23]=[3695811] e B=⎡⎢⎣a11a12a13a21a22a23a31a22a33⎤⎥⎦=⎡⎢⎣335064−119⎤⎥⎦=[a11a12a13a21a22a23a31a22a33]=[335064−119]. O produto AB=[3695811][3695811]⎡⎢⎣335064−119⎤⎥⎦[335064−119]=[3695811][3695811].
(Livro-base p. 40-52)
B
⎡⎢⎣7294729284102⎤⎥⎦[7294729284102]
C
[72941207292156][72941207292156]
D
[05484472156][05484472156]
E
⎡⎢⎣7294729284102⎤⎥⎦[7294729284102]
Questão 7/10 - Álgebra Linear
Observe a transformação linear T:R2→R3T:R2→R3, onde T(x,y)=(x,y,x−y)T(x,y)=(x,y,x−y), sendo u= (1, 3) e v =(-2, -1).
De acordo com a transformação linear dada acima e os conteúdos do livro-base Álgebra Linear, determine T(u) e T(v).T(u) e T(v).
Nota: 10.0
A
T(u)=(1,3,−2) e T(v)=(−2,−1,−1)T(u)=(1,3,−2) e T(v)=(−2,−1,−1)
Você acertou!
T(1,3)=(1,3,1−3)=(1,3,−2)T(−2,−1)=(−2,−1,−2+1)=(−2,−1,−1).T(1,3)=(1,3,1−3)=(1,3,−2)T(−2,−1)=(−2,−1,−2+1)=(−2,−1,−1).
(Livro-base p. 119-122)
B
T(u)=(1,−3,−2) e T(v)=(−2,1,−1)T(u)=(1,−3,−2) e T(v)=(−2,1,−1)
C
T(u)=(1,3,2) e T(v)=(−2,−1,1)T(u)=(1,3,2) e T(v)=(−2,−1,1)
D
T(u) = (1,3,-2) \ e \ T(v) = (-2, -1, 1)
E
T(u)=(1,3,−2) e T(v)=(−2,−1,−3)T(u)=(1,3,−2) e T(v)=(−2,−1,−3)
Questão 8/10 - Álgebra Linear
Leia as informações abaixo:
Um sistema de equações lineares pode ter uma única solução, nenhuma solução ou infinitas soluções. Sendo assim, podemos classificá-lo em possível e determinado, impossível, ou possível e indeterminado, respectivamente.
De acordo com as informações acima e os conteúdos do livro-base Álgebra Linear, determine a solução do seguinte sistema:
⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩x+y=2y+z=4x+y=5x+y+z=0{x+y=2y+z=4x+y=5x+y+z=0
Assinale a alternativa correta:
Nota: 10.0
A
Este sistema é indeterminado.
B
Este sistema é possível e sua solução é (0,0,0).
C
Este sistema é possível e sua solução é (0,1,1).
D
Este sistema é impossível.
Você acertou!
Comentário: Podemos somar as três primeiras equações e obter 2x + 2y + 3z = 11. Dividindo por 2 teremos: x + y + z = 11/2. Como a quarta equação é x + y + z = 0, temos que o sistema é impossível.
(Livro-base p. 56-58)
E
Este sistema é possível e sua solução é (1,2,3).
Questão 9/10 - Álgebra Linear
Considerando os conteúdos do livro-base Álgebra linear, sobre base de um espaço vetorial e os vetores:
u=(1,−1,−2),v=(2,1,1) e w=(k,0,3)u=(1,−1,−2),v=(2,1,1) e w=(k,0,3).
Assinale a alternativa com o valor de kk para que os vetores u,v e wu,v e w formem uma base do R3.R3.
Nota: 0.0
A
k≠8k≠8
B
k≠−7k≠−7
C
k≠5k≠5
D
k≠−9k≠−9
Determine o valor de kk para que os vetores u,v e wu,v e w formem uma base do R3.R3.
Montamos o sistema linear
⎧⎪⎨⎪⎩a+2b+kc=0−a+b=0−2a+b+3c=0{a+2b+kc=0−a+b=0−2a+b+3c=0
Efetuamos o escalonamento
⎧⎪⎨⎪⎩a+2b+kc=03b+kc=05b+(2k+3)c=0⎧⎪
⎪⎨⎪
⎪⎩a+2b+kc=03b+kc=0(k+9)3c=0k≠−9{a+2b+kc=03b+kc=05b+(2k+3)c=0{a+2b+kc=03b+kc=0(k+9)3c=0k≠−9
(Livro-base p. 95-100)
E
k≠6k≠6
Questão 10/10 - Álgebra Linear
Considerando os conteúdos do livro-base Álgebra linear, sobre mudança de base e coordenadas de um vetor, e as bases
A={p1=4−3x,p2=3−2x} e B={q1=x+2,q2=2x+3}A={p1=4−3x,p2=3−2x} e B={q1=x+2,q2=2x+3} do conjunto dos polinômios de grau menor ou igual a 1, assinale a alternativa cuja matriz é a
matriz de mudança de base de A para B, [M]AB[M]BA.
Nota: 0.0
A
[M]AB=[M]BA=[1712−10−7].[1712−10−7].Para determinar a matriz de mudança de base de A para B, devemos fazer A como combinação linear de B.
p1=4−3x=a(x+2)+b(2x+3)p2=3−2x=c(x+2)+d(2x+3)[12|−3−223|43].p1=4−3x=a(x+2)+b(2x+3)p2=3−2x=c(x+2)+d(2x+3)[12|−3−223|43].
Escalonando
[10|171201|−10−7].[10|171201|−10−7].
[M]AB=[M]BA=[1712−10−7].[1712−10−7].
(Livro-base p. 108-112)
B
[M]AB=[M]BA=[182−12−8].[182−12−8].
C
[M]AB=[M]BA=[1813−11−6].[1813−11−6].
D
[M]AB=[M]BA=[2210−11−9].[2210−11−9].
E
[M]AB=[M]BA=[1813−158].