Buscar

experiencia_a1_-_mru_e_mruv_0

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 7 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

Departamento de F́ısica - CCE 
F́ısica Experimental 
Roteiro 
 
 
 
 
__________________________________________________________________________________ 
 
Experimento A1: Movimento Retilíneo Uniforme (MRU) E Movimento Retilíneo 
 Uniformemente Variado (MRUV) 
 
1 - INTRODUÇÃO 
 
 
A Mecânica é a área da Física que estuda o movimento dos objetos. Por razões de organização 
do conhecimento, a Mecânica é separada em duas subáreas: a Cinemática e a Dinâmica. 
Na Cinemática, analisamos os conceitos utilizados para descrever o movimento: velocidade, 
aceleração e trajetória, sem que haja preocupação com suas origens. Na Dinâmica, estudamos as leis do 
movimento, isto é, as leis que determinam que tipo de movimento terá um objeto, conhecidas as forças 
que atuam sobre ele. Aqui, vamos analisar o movimento retilíneo uniforme e o movimento retilíneo 
uniformemente variado. 
O Movimento Retilíneo Uniforme (MRU) é o movimento que ocorre com velocidade constante 
em uma trajetória reta. Isso implica uma aceleração igual a zero, desta forma, em intervalos de tempos 
iguais o móvel percorre a mesma distância. Um exemplo de MRU é quando estamos viajando em uma 
estrada plana e reta e o velocímetro indica sempre a mesma velocidade. 
Diferentemente do MRU, o Movimento Retilíneo Uniformemente Variado, também conhecido 
por MRUV, demonstra que a velocidade varia uniformemente em razão ao tempo e pode ser definido 
como um movimento de um móvel em relação a um referencial ao longo de uma reta, na qual sua 
aceleração é sempre constante. Diz-se que a velocidade do móvel sofre variações iguais em intervalos 
de tempo iguais. Um exemplo de MRUV é a queda livre no ar, onde a aceleração constante é conhecida 
como a aceleração da gravidade. 
 
2 - OBJETIVOS 
 
Estudar os movimentos retilíneos uniforme e uniformemente variado. Verificar que na ausência 
de atrito um corpo em movimento retilíneo horizontal permanece com velocidade constante 
(independente da massa). Dado o movimento em um plano inclinado, constatar que este movimento 
pode ser considerado unidimensional e na ausência de atrito possui aceleração constante. Medir 
indiretamente o valor da gravidade. 
 
3 - MATERIAIS UTILIZADOS 
 
(i) Trilho de ar com unidade geradora de fluxo (compressor de ar), Figura 1 
(ii) Dois carros de massas diferentes; 
(iii) Cinco sensores fotoelétricos; 
(iv) Uma régua obturadora de luz; 
(v) Um suporte de madeira para elevar o trilho de ar; 
(vi) Multicronômetro digital; 
(vii) Ferrite e imã; 
(viii) Suporte e nível bolha. 
Departamento de F́ısica - CCE 
F́ısica Experimental 
Roteiro 
 
 
 
 
__________________________________________________________________________________ 
 
Figura 1- Montagem do Experimento com trilho e sensores fotoelétricos, carrinho, régua obturadora e interface. 
 
4 - PROCEDIMENTO EXPERIMENTAL 
 
à ADVERTÊNCIAS 
(i) Nunca movimente os carrinhos sobre o trilho sem que o gerador de fluxo de ar esteja 
funcionando. Isso pode provocar arranhões na superfície do trilho; 
(ii) Tenha cuidado com o equipamento. Uma queda de alguns centímetros pode inutilizar o 
carrinho; 
(iii) Sempre coloque os carrinhos sobre a espuma localizada sobre a bancada; 
(iv) Nivelamento do sistema: Use o nível de bolha mostrado na Erro! Fonte de referência não 
encontrada. (cuidado para não arranhar o trilho). Agora, com o compressor ligado posicione 
o carrinho no centro do trilho e próximo do nível de bolha. Verifique que ele permanece em 
“quase” repouso. Se necessário ajuste para obter o máximo possível de repouso. 
 
 
Figura 2 - Montagem para alinhamento do trilho, utilizando carrinho e suporte com nível de bolha. 
(v) O ângulo máximo de inclinação do trilho deve ser 10°. 
(vi) O movimento sempre iniciará do lado oposto ao eixo que permite inclinar o trilho de ar. 
Perceba que a bobina responsável por impulsionar ou prender o carrinho encontra-se na 
posição do início do experimento. 
(vii) Nunca aperte o botão que fornece impulso ao carrinho com o compressor desligado. 
 
Departamento de F́ısica - CCE 
F́ısica Experimental 
Roteiro 
 
 
 
 
__________________________________________________________________________________ 
à PROCEDIMENTO MRU – COM DOIS SENSORES 
 
(i) Como o carrinho montado com o “ferrite” na sua parte traseira, encoste-o na bobina (lembre-
se de movimentar o carrinho com o compressor ligado). Posicione o sensor S0 próximo a 
sombra criada pela régua obturadora. Obs: posicione os sensores fotoelétricos de forma que 
o carrinho possa atravessa-los sem nenhuma influência externa; 
(ii) A partir do sensor 𝑆", posiciones os sensores restantes afastados de 12 cm do seu adjacente; 
(iii) Troque o “ferrite” pelo imã; 
(iv) Ligue o Multicronômetro e certifique-se que os cabos do primeiro e do último sensor estão 
ligados nos canais “S0” e “S1”. Obs: solte todos os outros cabos no multicronômetro!; 
(v) Selecione a Função F7 – Choq-Inl 2 Sens. Está função permite que os sensores S0 e S1 meçam 
10 tempos de passagem. O carrinho possui uma régua que alterna intervalos transparentes e 
opacos. Ao movimentar o carrinho através de um sensor fotoelétrico, está régua obstrui 10 
vezes o caminho óptico. Medindo 10 intervalos de tempo para deslocamentos de 18 mm; 
(vi) Aperte o botão que aciona a Bobina para impulsionar o carrinho. É importante que o impulso 
seja somente na direção do movimento, portanto, a bobina deve estar alinhada de forma que 
o imã esteja centrado na mesma; 
(vii) Acesse os 10 tempos de passagem registrados em cada sensor no Multicronômetro e anote na 
Tabela 1. Obs: o primeiro tempo medido no sensor S1 corresponde a duração do 
movimento entre o sensor S0 e S1; 
(viii) Refaça os procedimentos acima aumentando a massa do carinho em 100 g e anote os 
resultados na Tabela 1; 
 
à PROCEDIMENTO MRU – Com cinco Sensores 
 
(i) Ligue os cabos dos cinco sensores nos canais S0 a S4 na ordem crescente com o movimento 
do carrinho. Obs.: Ao religar os cabos faça um “reset” no sistema. 
(ii) Verifique que a distância entre os sensores é de 12 cm e anote na Tabela 2. 
(iii) Selecione a Função F1 – Tempo de passagem entre os 5 sensores. Esta função mede o intervalo 
de tempo para o movimento entre sensores adjacentes. 
(iv) Aperte o botão que aciona a Bobina para impulsionar o carrinho. 
(v) Acesse os TODOS OS TEMPOS de passagem entre sensores adjacentes registrados no 
Multicronômetro e anote na Tabela 2. 
 
Departamento de F́ısica - CCE 
F́ısica Experimental 
Roteiro 
 
 
 
 
__________________________________________________________________________________ 
à PROCEDIMENTO MRUV 
 
(i) Incline o trilho de ar, com o auxílio do suporte de madeira, em 3º (Figura 3). 
(ii) Substitua o imã na parte traseira do carrinho pelo ferrite. 
(iii) Posicione o carrinho na extremidade erguida do trilho, tomando cuidado para que a régua a 
obturadora de luz fique na iminência de fazer uma sombra no sensor fotoelétrico S0 (Porque 
isso é necessário?). 
(iv) Selecione a Função F1 – Tempo de passagem entre os 5 sensores. 
(v) Segure o botão da bobina para atrair e fixar o carrinho. Ligue o compressor e posteriormente 
solte o botão da bobina para permitir que o carrinho desça o plano inclinado. Anote o tempo 
de passagem entre cada sensor na Tabela 3. Mantendo o compressor ligado, refaça estre 
procedimento mais 5 vezes. 
(vi) Ajuste o plano inclinado para um ângulo de 6º e refaça os procedimentos acima e anote na 
Tabela 3. 
 
 
Figura 3 - Montagem do Experimento para o MRUV. 
5 - ANÁLISE DOS DADOS E DISCUSSÕES 
 
5.1 - MRU 
 
5.1.1 - Dois (2) Sensores 
 
(a) A régua obturadora possui bloqueios a cada 18 mm, então, a velocidade em cada intervalo 
pode ser calculada dividindo o comprimento de cada bloqueio pelo tempo de passagem em 
cada um, ou seja: 
𝑣$%& = 	
𝑖 × 0,018
𝑡$
𝑚
𝑠 
 
𝑣$%2 = 	
(𝑖 − 1) × 0,018 + 0,480
𝑡$
𝑚
𝑠 
 
(b) Usando as expressões acima, calcule a velocidade em cada intervalo. 
(c) Obtenha o valor médio da velocidadee sua incerteza para os carrinhos com massas diferentes. 
 
Departamento de F́ısica - CCE 
F́ısica Experimental 
Roteiro 
 
 
 
 
__________________________________________________________________________________ 
(d) As velocidades dos carrinhos com massas diferentes foram iguais? Era esperado que as 
velocidades dos carrinhos fossem iguais, ou que as velocidades dos carrinhos permanecessem 
constantes durante o movimento? Qual o objetivo de utilizar dois carrinhos com massas 
diferentes? Nesta situação experimental, carrinhos de massa diferente teriam um movimento 
diferente do MRU? 
(e) Discuta seu resultado e de sua conclusão. 
 
5.1.2 - Cinco (5) Sensores 
 
(a) Calcule a velocidade média entre cada Sensor, faça uma tabela e discuta os resultados obtidos. 
 
5.2 - MRUV 
 
(a) Faça um diagrama das forças que agem sobre o carrinho nesta configuração inclinada e mostre 
que a aceleração adquirida pelo carrinho é proporcional ao ângulo de inclinação. 
(b) Calcule o valor médio de t e t² e suas respectivas incertezas para as diferentes inclinações e 
apresente os resultados em tabelas separadas para cada inclinação. 
(c) Com os dados das tabelas, construa o gráfico da posição versus tempo t² para cada inclinação 
e trace a reta que melhor se ajusta a esses pontos. Nesta etapa o aluno deve optar em plotar os 
dois gráficos juntos ou fazer dois gráficos separados, lembrando que, para a última opção as 
escalas dos gráficos devem ser iguais (Discuta qual a importância de dos gráficos possuírem 
escalas iguais). 
(d) Obtenha os coeficientes lineares e angulares dessas retas, com suas respectivas incertezas. 
Qual é a interpretação para os coeficientes angulares dessas retas e quais suas respectivas 
unidades? Considere v0 = 0 m/s e x0 = 0 m. Porque pode-se fazer essas considerações? 
(e) Com os valores obtidos anteriormente, obtenha o valor da gravidade com sua respectiva 
incerteza; 
(f) Verifique se o valor da aceleração da gravidade para as duas inclinações são iguais. 
 
6 – QUESTIONÁRIO PREPARATÓRIO 
 
Questão 1) Descreva com suas palavras o MRU e o MRUV. 
Questão 2) Desenhe o plano inclinado, defina o melhor eixo de referência para analisar esse problema como um 
movimento unidimensional (Justifique). Demonstre a relação entre a aceleração e o ângulo de inclinação para um 
objeto descendo a rampa sem atrito. 
Questão 3) Demonstre a fórmula do deslocamento em função do tempo para aceleração constante. 𝑥 = 𝑥" +
𝑣"𝑡 + 𝑎𝑡
:
2< 
Questão 4) Escreva um pequeno paragrafo sobre os procedimentos experimentais que serão realizados. 
Questão 5) Esboce os gráficos da posição, velocidade e aceleração em função do tempo para as situações de MRU 
e MRUV. 
Questão 6) Imagine que você tenha disponível uma técnica extremamente precisa para nivelar o trilho com a 
horizontal. Porque o carrinho não fica em repouso no centro desse trilho? 
Departamento de F́ısica - CCE 
F́ısica Experimental 
Roteiro 
 
 
 
 
__________________________________________________________________________________ 
Experimento A1: Movimento Retilíneo Uniforme (MRU) E Movimento Retilíneo 
 Uniformemente Variado (MRUV) 
 
Professor:______________________________________________________ Data: ___/___/___ 
 
Alunos:________________________, ___________________________, ________________________ 
 
Parte I: 
MRU – 2 Sensores 
 
Tabela 1: Tempo de passagem e velocidade para cada detecção no Sensor 1 (𝑡= e 𝑣= ) e para o Sensor 2 (𝑡: e 
𝑣:). As massas dos carrinhos utilizados foram 𝑀=	= (_______±	_______) g e 𝑀: = (_______±	_______) g. 
 
𝑆@& 
(cm) 
𝑡=_B= 
(s) 
𝑆@2 
 (cm) 
𝑡:_B= 
(s) 
𝑆@& 
 (cm) 
𝑡=_B: 
(s) 
𝑆@2 
 (cm) 
𝑡:_B: 
(s) 
0,018 0,480 0,018 0,480 
0,036 0,498 0,036 0,498 
0,054 0,516 0,054 0,516 
0,072 0,534 0,072 0,534 
0,090 0,552 0,090 0,552 
0,108 0,570 0,108 0,570 
0,126 0,588 0,126 0,588 
0,144 0,606 0,144 0,606 
0,162 0,624 0,162 0,624 
0,180 0,642 0,180 0,642 
 
MRU – 5 Sensores 
 
Tabela 2: Distância (𝑆$C) percorrida, tempo de passagem (𝑡$C) entres os sensores para o carrinho impulsionado 
pela bobina. 
 
 𝑆$C 
(cm) 
𝑡$C 
(s) 
ij = 01 ± ± 
ij = 02 ± ± 
ij = 03 ± ± 
ij = 04 ± ± 
ij = 12 ± ± 
ij = 23 ± ± 
ij = 34 ± ± 
 
 
 
Departamento de F́ısica - CCE 
F́ısica Experimental 
Roteiro 
 
 
 
 
__________________________________________________________________________________ 
 
Parte 2: MRUV 
 
Tabela 3: Tempo de passagem através dos cinco Sensores para inclinação de: (. ±.					)°. 
 
N 
t1 
tempo de passagem 
sensor 1 
(s) 
t2 
tempo de passagem 
sensor 2 
(s) 
t3 
tempo de passagem 
sensor 3 
(s) 
t4 
tempo de passagem 
sensor 4 
(s) 
1 
2 
3 
4 
5 
 
Tabela 4: Tempo de passagem através dos cinco Sensores para inclinação de (. ±.							)°. 
 
N 
𝑡=	
tempo de passagem 
sensor 1 
(s) 
𝑡: 
tempo de passagem 
sensor 2 
(s) 
𝑡F 
tempo de passagem 
sensor 3 
(s) 
𝑡G 
tempo de passagem 
sensor 4 
(s) 
1 
2 
3 
4 
5

Continue navegando