Grátis
226 pág.

Denunciar
Pré-visualização | Página 32 de 37
etapas: escolher a primeira letra e permutar as letras restantes. Para a primeira letra, há duas possibilidades: O ou E. Assim, pelo princípio fundamental da contagem, o total de anagramas que começam por vogal é 2 ∙ (5!) = 2 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 240 Guilherme Neves Aula 05 Raciocínio Lógico p/ PC-PA - Pós-Edital www.estrategiaconcursos.com.br 1442029 00697812227 - CINTHYA ELEN PEREIRA DE LIMA 192 Gabarito: A 82. (FGV 2013/SUDENE) Observe a tabela a seguir: Começando pela letra S na primeira linha e caminhando consecutivamente sempre para a linha de baixo em diagonal para a coluna imediatamente à esquerda ou para a coluna imediatamente à direita até chegar na última linha, forma-se sempre a sigla SUDENE. A quantidade de caminhos possíveis é (A) 20. (B) 21. (C) 32. (D) 64. (E) 720. Comentário São 5 etapas: escolher a letra U, a letra D, a letra E, a letra N e, finalmente, a letra E. Primeira etapa: estamos começando pela letra S. Quando vamos escolher a letra U, temos 2 possibilidades. Segunda etapa: já escolhemos a letra U. Com a letra U já escolhida, temos 2 possibilidades para escolher a letra D. Terceira etapa: já escolhemos a letra D. Com a letra D já escolhida, temos 2 possibilidades para escolher a letra E. Guilherme Neves Aula 05 Raciocínio Lógico p/ PC-PA - Pós-Edital www.estrategiaconcursos.com.br 1442029 00697812227 - CINTHYA ELEN PEREIRA DE LIMA 193 Quarta etapa: já escolhemos a letra E. Com a letra E já escolhida, temos 2 possibilidades para escolher a letra N. Quinta etapa: já escolhemos a letra N. Com a letra N já escolhida, temos 2 possibilidades para escolher a letra E. Pelo princípio fundamental da contagem, o total de caminhos é 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 = 32. Gabarito: C 83. (VUNESP 2017/CM de Cotia) Em uma festa, estavam presentes homens e mulheres, sendo que havia 5 homens a mais do que mulheres. Cada homem conversou com cada outro homem, cada mulher conversou com cada outra mulher e cada homem conversou com cada mulher, num total de 253 conversas. O número total de pessoas nessa festa era, incluindo homens e mulheres, (A) 23. (B) 29. (C) 31. (D) 37. (E) 41. Comentário Todos os homens conversam entre si, todas as mulheres conversam entre si e, ademais, todos os homens conversam com todas as mulheres. O texto só tentou complicar a situação. Em suma, cada pessoa conversa com todas as outras pessoas da festa. Assim, é totalmente irrelevante saber que há 5 homens a mais do que mulheres. Vamos considerar que são n pessoas. Quando a pessoa X conversa com a pessoa Y, pessoa Y também conversa com a pessoa X. Assim, a ordem das pessoas não é relevante. Como são n pessoas, o número de conversas é igual a 𝐶KN. 𝐶KN = 253 Guilherme Neves Aula 05 Raciocínio Lógico p/ PC-PA - Pós-Edital www.estrategiaconcursos.com.br 1442029 00697812227 - CINTHYA ELEN PEREIRA DE LIMA 194 𝑛(𝑛 − 1) 2 ∙ 1 = 253 𝑛N − 𝑛 = 506 𝑛N − 𝑛 − 506 = 0 𝛥 = 𝑏N − 4𝑎𝑐 = (−1)N − 4 ∙ 1 ∙ (−506) = 2.025 𝑛 = 1 ± 45 2 , 𝑛 > 0 𝑛 = 1 + 45 2 = 23 Gabarito: A 84. (FGV 2012/PC-MA) Entre vinte policiais civis há doze homens e oito mulheres. Deseja-se escolher, entre eles, quatro policiais civis sendo dois homens e duas mulheres. O número total de conjuntos distintos de quatro policias civis que se pode escolher nas condições dadas é: (A) 7392. (B) 1848. (C) 384. (D) 188. (E) 94. Comentário Guilherme Neves Aula 05 Raciocínio Lógico p/ PC-PA - Pós-Edital www.estrategiaconcursos.com.br 1442029 00697812227 - CINTHYA ELEN PEREIRA DE LIMA 195 Como o problema não especificou funções específicas para os policiais, a ordem deles não é relevante. Assim, podemos usar combinações. Temos 12 homens dos quais 2 serão escolhidos, e 8 mulheres das quais 2 serão escolhidas. O total de possibilidades é igual a: 𝐶MNN ∙ 𝐶AN = 12 ∙ 11 2 ∙ 1 ∙ 8 ∙ 7 2 ∙ 1 = 1.848 Outra dica importante para notar que o problema deve ser resolvido usando combinações é que o enunciado pediu o número total de CONJUNTOS. Lembre-se que não existe ordem entre os elementos de um conjunto. Gabarito: B 85. (FGV 2010/DOCAS) Há seis contêineres diferentes que deverão ser empilhados, três mais pesados embaixo e três mais leves em cima, conforme sugere a figura. O número de maneiras de se fazer essa arrumação, mantendo os três mais pesados embaixo e os três mais leves em cima é a) 18 b) 6 c) 9 d) 36 e) 72 Comentário Devemos permutar os três contêineres que estão na primeira linha e permutar os três contêineres que estão na segunda linha. A resposta é 𝑃J ∙ 𝑃J = 3! ∙ 3! = 3 ∙ 2 ∙ 1 ∙ 3 ∙ 2 ∙ 1 = 36 Gabarito: D Guilherme Neves Aula 05 Raciocínio Lógico p/ PC-PA - Pós-Edital www.estrategiaconcursos.com.br 1442029 00697812227 - CINTHYA ELEN PEREIRA DE LIMA 196 86. (FGV 2010/DOCAS) Marcelo tem 6 camisas diferentes, sendo duas delas camisas sociais. Marcelo tem ainda 5 calças compridas, sendo 3 delas calças jeans. De quantas formas diferentes Marcelo pode usar, ao mesmo tempo, uma das camisas e uma das calças de forma que camisas sociais nunca sejam usadas com calças jeans? a) 30 b) 16 c) 12 d) 8 e) 24 Comentário Marcelo tem três opções, a saber: i) Vestir uma camisa social e uma calça não-jeans. Ele possui 2 camisas sociais e 2 calças não-jeans. Ele pode se vestir assim de 2 × 2 = 4 maneiras diferentes. ii) Vestir uma camisa não-social e uma calça jeans. Ele possui 4 camisas não-sociais e 3 calças jeans. Ele pode se vestir assim de 4 × 3 = 12 maneiras diferentes. iii) Vestir uma camisa não-social e uma calça não-jeans. Ele possui 4 camisas não-sociais e 2 calças não-jeans. Ele pode se vestir assim de 4 × 2 = 8 maneiras diferentes. O total de casos é igual a 4 +12 +8 = 24. Comentário 2 Vamos desconsiderar a restrição do problema: Marcelo possui 6 camisas e 5 calças. Ele pode se vestir de 6 × 5 = 30 maneiras diferentes. Guilherme Neves Aula 05 Raciocínio Lógico p/ PC-PA - Pós-Edital www.estrategiaconcursos.com.br 1442029 00697812227 - CINTHYA ELEN PEREIRA DE LIMA 197 Vamos excluir os casos em que Marcelo usa camisa social e camisa jeans simultaneamente. Ele possui 2 camisas sociais e 3 calças jeans. Ele pode se vestir assim de 2 × 3 = 6 maneiras diferentes. Vamos, do total de casos, subtrair essas 6 maneiras. A resposta é 30 – 6 = 24. Gabarito: E 87. (FGV 2010/CAERN) De quantas maneiras diferentes podemos colocar 5 pessoas em fila sendo que Maria, uma dessas 5 pessoas, jamais seja a primeira da fila? a) 120 b) 112 c) 96 d) 75 e) 88 Comentário Vamos utilizar o mesmo raciocínio da segunda resolução da questão anterior. Vamos desconsiderar a restrição do problema: devemos permutar 5 pessoas em fila. O total de possibilidade SERIA igual a: 𝑃I = 5! = 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 120 Destas 120 possibilidades, devemos excluir aquelas em que Maria é a primeira da fila. De quantas maneiras podemos arrumar a fila, de modo que Maria seja a primeira? Maria Neste caso, Maria está fixa e devemos permutar os 4 elementos restantes. 𝑃X = 4! = 4 ∙ 3 ∙ 2 ∙ 1 = 24 O total de casos que nos interessa é igual a 120 – 24 = 96. Guilherme Neves Aula 05 Raciocínio Lógico p/ PC-PA - Pós-Edital www.estrategiaconcursos.com.br 1442029 00697812227 - CINTHYA ELEN PEREIRA DE LIMA 198 Gabarito: C 88. (FGV 2010/CAERN) Deseja-se criar senhas bancárias de 4 algarismos. Quantas senhas diferentes podem ser criadas de modo que o último dígito seja ímpar e todos os algarismos da senha sejam diferentes? a) 3.600 b) 3.645 c) 2.520 d) 2.240 e) 2.016 Comentário Vamos esquecer, a priori, a restrição de que o último dígito deve ser ímpar. A senha deve ser formada por 4 algarismos distintos. Assim, há 10 possibilidades para o quarto dígito, 9 possibilidades para o