Logo Passei Direto
Buscar

QUESTÕES PV MATRIZ

Ferramentas de estudo

Questões resolvidas

Ao aprender truques de mágica com baralhos, Panthio deseja escolher 8 cartas das 13 cartas do naipe de espadas, de maneira que o ás e o rei estejam na “mão” escolhida.
Dessa forma, o número total de escolhas distintas que ele pode fazer é:
a) 288
b) 365
c) 462
d) 510
e) 676

Em uma de suas aulas de Combinatória o professor Jean Lira explicou aos alunos o funcionamento da loteria da Mega-Sena.
Dessa forma, a quantidade de possíveis senas vencedoras contidas em uma aposta com 8 números é de
a) 12
b) 15
c) 18
d) 24
e) 28

Em uma das turmas do Colégio Matriz, o egrégio professor Eduardo Brito, ao definir, para n natural, n! da forma usual, ou seja, 0! = 1! = 1 e n! =1.2.3. ... .n, para n≥ 2 pediu a aluna Espertonilda que simplifica-se a expressão 1.1!+2.2!+⋯+2017.2017! 2018!−1.
e a mesma que acertou, encontrou o valor
a) 0
b) 1
c) 2 017
d) 1 2018!−1
e) 2 017 2018!−1

Uma sala de aula do Colégio Matriz possui 6 lâmpadas, que podem ser acesas por interruptores distintos.
Considerando que é possível acender quantas desejarmos, de quantas maneiras essa sala pode ser iluminada com essas lâmpadas?
a) 32
b) 45
c) 48
d) 54
e) 63

O código dos produtos de uma empresa de materiais didáticos é formado por 3 letras, sendo que a primeira escolhida entre os elementos do conjunto I={D,F,J,K,P,M}; a segunda, entre os elementos de II = {N,O,R,V}, e a terceira, entre os de III ={E,G,H,L,S}.
Supondo que, após a inclusão de uma linha de livros, a quantidade de códigos dos produtos precisasse ser aumentada, acrescentando-se 3 novas letras em apenas um dos conjuntos ou acrescentando exatamente uma letra em dada conjunto, o número máximo de novos códigos que poderiam ser gerados com a inclusão das novas três letras será
a) 70
b) 80
c) 90
d) 100
e) 110

O ilustre professor Ramaton gosta muito de programar e criou um programa de computador que processa os dados numéricos de uma matriz quadrada e apresenta, na tela, um mosaico quadriculado da seguinte maneira: se o elemento xij for par, o quadrado da linha i e da coluna j do mosaico será preto, se o elemento x ij for ímpar, será branco.
Assinale a alternativa que indica quantos quadrados pretos deve haver no mosaico para representar a matriz M de quinta ordem, cujos elementos são m ij = MDC(i,j).
a) 5
b) 4
c) 3
d) 2
e) 1

Um sistema de ensino é formado por 10 colégios e, mensalmente, realiza um conselho com uma comissão composta de, no mínimo, 3 diretores executivos(um de cada colégio) a fim de trocarem experiências e traçarem novas metas e ajustes.
Assim, o número total de comissões distintas para as reuniões que podem ser formadas desse conselho é
a) 120
b) 175
c) 968
d) 1 023
e) 1 024

O Colégio Matriz está formando equipes de xadrez, nesse momento há 5 alunos da unidade Taquara, 3 da unidade Bangu e 2 da unidade Nova Iguaçu.
Quantos equipes de 5 alunos, com pelo menos 1 da unidade Nova Iguaçu e exatamente 1 da unidade Bangu, podemos formar?
a) 60
b) 70
c) 75
d) 80
e) 90

Material
páginas com resultados encontrados.
páginas com resultados encontrados.
left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

left-side-bubbles-backgroundright-side-bubbles-background

Crie sua conta grátis para liberar esse material. 🤩

Já tem uma conta?

Ao continuar, você aceita os Termos de Uso e Política de Privacidade

Questões resolvidas

Ao aprender truques de mágica com baralhos, Panthio deseja escolher 8 cartas das 13 cartas do naipe de espadas, de maneira que o ás e o rei estejam na “mão” escolhida.
Dessa forma, o número total de escolhas distintas que ele pode fazer é:
a) 288
b) 365
c) 462
d) 510
e) 676

Em uma de suas aulas de Combinatória o professor Jean Lira explicou aos alunos o funcionamento da loteria da Mega-Sena.
Dessa forma, a quantidade de possíveis senas vencedoras contidas em uma aposta com 8 números é de
a) 12
b) 15
c) 18
d) 24
e) 28

Em uma das turmas do Colégio Matriz, o egrégio professor Eduardo Brito, ao definir, para n natural, n! da forma usual, ou seja, 0! = 1! = 1 e n! =1.2.3. ... .n, para n≥ 2 pediu a aluna Espertonilda que simplifica-se a expressão 1.1!+2.2!+⋯+2017.2017! 2018!−1.
e a mesma que acertou, encontrou o valor
a) 0
b) 1
c) 2 017
d) 1 2018!−1
e) 2 017 2018!−1

Uma sala de aula do Colégio Matriz possui 6 lâmpadas, que podem ser acesas por interruptores distintos.
Considerando que é possível acender quantas desejarmos, de quantas maneiras essa sala pode ser iluminada com essas lâmpadas?
a) 32
b) 45
c) 48
d) 54
e) 63

O código dos produtos de uma empresa de materiais didáticos é formado por 3 letras, sendo que a primeira escolhida entre os elementos do conjunto I={D,F,J,K,P,M}; a segunda, entre os elementos de II = {N,O,R,V}, e a terceira, entre os de III ={E,G,H,L,S}.
Supondo que, após a inclusão de uma linha de livros, a quantidade de códigos dos produtos precisasse ser aumentada, acrescentando-se 3 novas letras em apenas um dos conjuntos ou acrescentando exatamente uma letra em dada conjunto, o número máximo de novos códigos que poderiam ser gerados com a inclusão das novas três letras será
a) 70
b) 80
c) 90
d) 100
e) 110

O ilustre professor Ramaton gosta muito de programar e criou um programa de computador que processa os dados numéricos de uma matriz quadrada e apresenta, na tela, um mosaico quadriculado da seguinte maneira: se o elemento xij for par, o quadrado da linha i e da coluna j do mosaico será preto, se o elemento x ij for ímpar, será branco.
Assinale a alternativa que indica quantos quadrados pretos deve haver no mosaico para representar a matriz M de quinta ordem, cujos elementos são m ij = MDC(i,j).
a) 5
b) 4
c) 3
d) 2
e) 1

Um sistema de ensino é formado por 10 colégios e, mensalmente, realiza um conselho com uma comissão composta de, no mínimo, 3 diretores executivos(um de cada colégio) a fim de trocarem experiências e traçarem novas metas e ajustes.
Assim, o número total de comissões distintas para as reuniões que podem ser formadas desse conselho é
a) 120
b) 175
c) 968
d) 1 023
e) 1 024

O Colégio Matriz está formando equipes de xadrez, nesse momento há 5 alunos da unidade Taquara, 3 da unidade Bangu e 2 da unidade Nova Iguaçu.
Quantos equipes de 5 alunos, com pelo menos 1 da unidade Nova Iguaçu e exatamente 1 da unidade Bangu, podemos formar?
a) 60
b) 70
c) 75
d) 80
e) 90

Prévia do material em texto

[1] Ao aprender truques de mágica com baralhos, Panthio deseja escolher 8 cartas das 13 cartas do naipe de espadas, de maneira que o ás e o rei estejam na “mão” escolhida. Dessa forma, o número total de escolhas distintas que ele pode fazer é:
a) 288
b) 365
c) 462
d) 510
e) 676
GABARITO COMENTADO:[C]
[2] Em uma de suas aulas de Combinatória o professor Jean Lira explicou aos alunos o funcionamento da loteria da Mega-Sena. Mostrou o dileto professor que a mesma consiste em um sorteio de 6 números dentre os números inteiros de 1 a 60. Esses 6 números são chamados de sena vencedora. A aposta mínima é de 6 números, mas é possível apostar em mais de 6 números de uma só vez. Dessa forma, a quantidade de possíveis senas vencedoras contidas em uma aposta com 8 números é de
a) 12
b) 15
c) 18
d) 24
e) 28
GABARITO COMENTADO:[E]
[3] Em uma das turmas do Colégio Matriz, o egrégio professor Eduardo Brito, ao definir, para n natural, n! da forma usual, ou seja, 0! = 1! = 1 e n! =1.2.3. ... .n, para n
pediu a aluna Espertonilda que simplifica-se a expressão
 e a mesma que acertou, encontrou o valor
a) 0
b) 1
c) 2 017
d) 
e) 
GABARITO COMENTADO:[B]
[4] Uma sala de aula do Colégio Matriz possui 6 lâmpadas, que podem ser acesas por interruptores distintos. Considerando que é possível acender quantas desejarmos, de quantas maneiras essa sala pode ser iluminada com essas lâmpadas ?
a) 32
b) 45
c) 48
d) 54
e) 63
GABARITO COMENTADO:[E]
[5] O código dos produtos de uma empresa de materiais didáticos é formado por 3 letras, sendo que a primeira escolhida entre os elementos do conjunto I={D,F,J,K,P,M}; a segunda, entre os elementos de II = {N,O,R,V}, e a terceira, entre os de III ={E,G,H,L,S}. Supondo que, após a inclusão de uma linha de livros, a quantidade de códigos dos produtos precisasse ser aumentada, acrescentando-se 3 novas letras em apenas um dos conjuntos ou acrescentando exatamente uma letra em dada conjunto, o número máximo de novos códigos que poderiam ser gerados com a inclusão das novas três letras será
a) 70
b) 80
c) 90
d) 100
e) 110
GABARITO COMENTADO:[C]
[6] O ilustre professor Ramaton gosta muito de programar e criou um programa de computador que processa os dados numéricos de uma matriz quadrada e apresenta, na tela, um mosaico quadriculado da seguinte maneira: se o elemento xij for par, o quadrado da linha i e da coluna j do mosaico será preto, se o elemento xij for ímpar, será branco. Assim, os mosaicos que representam as matrizes quadradas A e B de quinta ordem, cujos elementos estão definidos por aij= i + j e 
Bij = i.j são, respectivamente:
Assinale a alternativa que indica quantos quadrados pretos deve haver no mosaico para representar a matriz M de quinta ordem, cujos elementos são mij = MDC(i,j).
a) 5
b) 4
c) 3
d) 2
e) 1
GABARITO COMENTADO:[B]
[7]
GABARITO COMENTADO:[D]
[8] Um sistema de ensino é formado por 10 colégios e, mensalmente, realiza um conselho com uma comissão composta de, no mínimo, 3 diretores executivos(um de cada colégio) a fim de trocarem experiências e traçarem novas metas e ajustes. Assim, o número total de comissões distintas para as reuniões que podem ser formadas desse conselho é
a) 120
b) 175
c) 968
d) 1 023
e) 1 024
GABARITO COMENTADO:[A]
[9] 
GABARITO COMENTADO:[C]
[10] 
GABARITO COMENTADO:[D]
[11] O Colégio Matriz está formando equipes de xadrez, nesse momento há 5 alunos da unidade Taquara, 3 da unidade Bangu e 2 da unidade Nova Iguaçu. Quantos equipes de 5 alunos, com pelo menos 1 da unidade Nova Iguaçu e exatamente 1 da unidade Bangu, podemos formar ?
a) 60
b) 70
c) 75
d) 80
e) 90
GABARITO COMENTADO:[E]
Como um dos alunos deve ser de Bangu, restam 4 vagas para os outros 7 estudantes. Logo, há possibilidades no total e possibilidades apenas com estudantes da unidade Taquara. Portanto existem 
3.(35-5) = 90 equipes possíveis.

Mais conteúdos dessa disciplina