Buscar

APOSTILA-MATEMÁTICA-BÁSICA

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 129 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 129 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 129 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

CENTRO UNIVERSITÁRIO FAVENI 
 
 
 
 
 
 
 
 
 
 
 
MATEMÁTICA BÁSICA 
 
 
 
 
 
 
 
 
 
GUARULHOS – SP 
 
 
 
 
2 
 
 
 
 
SUMÁRIO 
 
1 INTRODUÇÃO ........................................................................................................ 5 
2 NÚMEROS NATURAIS ........................................................................................... 6 
2.1 Constituição dos números naturais ................................................................... 6 
2.2 As quatro operações nas práticas cotidianas ................................................. 11 
2.3 Expressões numéricas.................................................................................... 24 
2.4 Diferentes formas de representação de um algoritmo .................................... 26 
2.5 Subtração: algoritmo de riscar, método de subtração da esquerda para a 
direita.. ...................................................................................................................... 27 
2.6 Multiplicação: método dos camponeses russos .............................................. 27 
2.7 Divisão: método egípcio.................................................................................. 29 
3 NÚMEROS INTEIROS E RACIONAIS .................................................................. 30 
3.1 Números inteiros ............................................................................................. 30 
3.2 Números racionais .......................................................................................... 31 
3.3 Conjunto dos números inteiros ℤ .................................................................... 31 
3.4 Conjunto dos números racionais (ℚ) .............................................................. 33 
3.5 Propriedades do operador adição (+) sobre o conjunto dos números inteiros ℤ 
............... ....................................................................................................................... 34 
3.6 Propriedades do operador multiplicação (∙) sobre o conjunto dos números 
inteiros ℤ .................................................................................................................... 35 
3.7 Divisibilidade no conjunto dos números inteiros ℤ .......................................... 36 
3.8 Conectivos lógicos .......................................................................................... 37 
4 NÚMEROS IRRACIONAIS.................................................................................... 40 
 
3 
 
 
 
 
4.1 Os irracionais -  ............................................................................................. 44 
4.2 Irracionais e seu ensino .................................................................................. 46 
5 NÚMEROS REAIS ................................................................................................ 51 
5.1 Uma definição objetiva.................................................................................... 52 
5.2 Conjunto dos números reais ........................................................................... 52 
5.3 Propriedades e operações com números reais .............................................. 54 
5.4 Tipos de intervalos numéricos ........................................................................ 59 
6 FUNÇÕES: GRÁFICOS, COMPOSTAS E INVERSAS ......................................... 65 
6.1 Uma definição de função ................................................................................. 65 
6.2 Função composta ........................................................................................... 68 
6.3 Função Inversa ............................................................................................... 73 
7 FUNÇÕES DO 1º E DO 2° GRAU ........................................................................ 79 
7.1 Função de primeiro grau ou afim .................................................................... 79 
7.2 Propriedades da função de primeiro grau ....................................................... 80 
7.3 Classificação da função afim .......................................................................... 80 
7.4 Raiz ou zero da função afim ........................................................................... 83 
7.5 Gráfico função ................................................................................................ 83 
7.6 Construção do gráfico da função afim ............................................................ 84 
7.7 Função do segundo grau ................................................................................ 86 
7.8 Resolução de equações de segundo grau ...................................................... 90 
7.9 Fatoração de uma função de segundo grau ................................................... 91 
7.10 Fórmula quadrática ......................................................................................... 93 
7.11 Gráfico de uma função do segundo grau ........................................................ 94 
8 TRIGONOMETRIA ................................................................................................ 98 
 
4 
 
 
 
 
8.1 Razões trigonométricas seno, cosseno e tangente no triângulo retângulo ..... 98 
9 FUNÇÕES TRIGONOMÉTRICAS E SUAS RELAÇÕES NO CÍRCULO 
UNITÁRIO................................................................................................................101 
9.1 Funções seno e cosseno .............................................................................. 101 
9.2 Função tangente ........................................................................................... 106 
9.3 Função secante ............................................................................................ 108 
9.4 Função cossecante ....................................................................................... 109 
9.5 Função cotangente ....................................................................................... 109 
10 FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS ............................................... 110 
10.1 Função exponencial ...................................................................................... 110 
10.2 Gráfico da função exponencial ..................................................................... 113 
10.3 Função logarítmica ....................................................................................... 116 
10.4 Gráfico da função logarítmica ....................................................................... 121 
10.5 Relação entre função exponencial e função logarítmica............................... 123 
10.6 Aplicações das funções exponencial e logarítmica ....................................... 125 
REFERÊNCIAS ....................................................................................................... 128 
 
 
 
 
 
 
 
 
 
 
 
5 
 
 
 
 
1 INTRODUÇÃO 
 
Prezado aluno! 
 
O Grupo Educacional FAVENI, esclarece que o material virtual é semelhante 
ao da sala de aula presencial. Em uma sala de aula, é raro – quase improvável - um 
aluno se levantar, interromper a exposição, dirigir-se ao professor e fazer uma 
pergunta, para que seja esclarecida uma dúvida sobre o tema tratado. O comum é 
que esse aluno faça a pergunta em voz alta para todos ouvirem e todos ouvirão a 
resposta. No espaço virtual, é a mesma coisa. Não hesite em perguntar, as perguntas 
poderão ser direcionadas ao protocolo de atendimento que serão respondidas em 
tempo hábil. 
Os cursos à distância exigem do aluno tempo e organização. No caso da nossa 
disciplina é preciso ter um horário destinado à leitura do texto base e à execução das 
avaliações propostas. A vantagem é que poderá reservar o dia da semana e a hora 
que lhe convier para isso. 
A organização é o quesito indispensável, porque há uma sequência a ser 
seguida e prazosdefinidos para as atividades. 
 
Bons estudos! 
 
 
 
 
 
 
 
 
 
 
 
6 
 
 
 
 
2 NÚMEROS NATURAIS 
 
Os números naturais, apesar de serem um conjunto “simples”, são 
fundamentais para a compreensão das operações matemáticas básicas. Foram as 
necessidades básicas de contagem que deram origem aos números naturais e às 
operações que os sucedem. Portanto, retomar o contexto histórico do surgimento dos 
números naturais e dominar as operações nesse conjunto são a base para o 
desenvolvimento do conhecimento matemático (SILVEIRA, 2018). 
Neste capítulo, você vai ver como o surgimento dos números naturais está 
ligado às necessidades dos homens primitivos. Também vai ver como aplicar as 
quatro operações fundamentais em problemas do cotidiano. Por fim, vai conhecer 
diferentes algoritmos para a resolução das operações fundamentais. 
 
 
Fonte: https://conhecimentocientifico.r7.com/ 
 
2.1 Constituição dos números naturais 
 
Cerca de 20 mil anos antes de Cristo, as civilizações primitivas começaram a 
ter necessidades rudimentares de contagem. Nesse período, contagens realizadas 
 
7 
 
 
 
 
com meios simples, como pedras, riscos em ossos e nós em cordas, eram suficientes 
para se lidar com pequenas quantidades, que hoje são representadas pelos símbolos 
1, 2, 3, 4, 5, 6, 7, 8 e 9 (SILVEIRA, 2018). 
É natural não contar algo que não se tem, não é? Por isso, os antigos sistemas 
de numeração, que utilizavam regras para a composição dos números de forma 
aditiva, não usavam o zero. Somente no século II d.C. é que surgem os primeiros 
inscritos babilônicos com uma lacuna vazia para representar o zero, já nos primórdios 
do sistema decimal. Segundo Boyer (1996), a mais antiga ocorrência indubitável de 
um zero na Índia se acha numa inscrição de 876. Ainda de acordo com Boyer (1996), 
é possível que o algarismo utilizado para o zero tenha sido importado dos gregos de 
Alexandria. Porém, ainda há autores que não consideram o zero como um número 
natural. 
O sistema decimal e a representação dos números naturais por meio dos 
algarismos indo-arábicos são, sem dúvidas, invenções incríveis. Tanto que ambas se 
espalharam e dominaram a cultura mundial, facilitando a representação e as 
operações numéricas. Os algarismos combinados no sistema decimal representam 
números que formam o conjunto N dos números naturais. Veja: 
 
N = {0, 1, 2, 3, 4, 5, ...} 
 
Um importante subconjunto de N está representado a seguir: 
 
N* = {0, 1, 2, 3, 4, 5, ...} 
 
O sinal * significa que o zero foi excluído do conjunto. 
No cotidiano, diversas situações envolvem representações com números 
naturais e também giram em torna das necessidades básicas que deram origem a 
eles. 
 
 
8 
 
 
 
 
 
 
O conjunto dos números naturais possui um menor elemento, 
independentemente de se considerar o zero ou não. Porém, ele não possui maior 
elemento. A sequência dos naturais é infinita à direita, de forma que você pode 
escrever o sucessor de todo número natural somando 1 a ele. Veja: 
 
 
 
O sucessor de um número natural é o número que vem imediatamente depois 
dele. Enquanto o sucessor é o número natural que vem imediatamente a seguir, o 
antecessor é o número natural que vem imediatamente antes, ou seja, com a 
subtração de 1. Números naturais consecutivos são agrupamentos formados por um 
menor natural e uma sequência de sucessores (SILVEIRA, 2018). 
 
 
9 
 
 
 
 
 
 
Além disso, os naturais podem ser agrupados de acordo com sua paridade. Os 
números pares são os múltiplos de 2. Eles podem ser escritos de forma genérica como 
2n, sendo que n é um número natural. Veja: 
 
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, ... 
 
Por sua vez, os números naturais ímpares são representados genericamente 
por 2n + 1, sendo que n é um número natural: 
 
1, 3, 5, 7, 9, 11, 13, 15, 17, ... 
 
Além da classificação entre pares e ímpares, os números naturais podem ser 
divididos em primos ou compostos. Um número natural é primo quando ele só tem 
dois divisores naturais: 1 e o próprio número (SILVEIRA, 2018). Os primeiros números 
primos são: 
 
2, 3, 5, 7, 11, 13, 17, 19, 23, ... 
 
 
10 
 
 
 
 
Os números primos são infinitos, porém 2 é o único primo par. Se um número 
não é primo, então ele é composto, por se tratar do produto de primos (SILVEIRA, 
2018). 
 
 
Reta natural 
 
A reta dos números naturais, também conhecida como reta numérica, é um 
auxílio visual posicional dos números. Observe: 
 
 
 
Determina-se o ponto para representar o zero. Seguindo para a direita e 
mantendo determinada distância, são marcados os sucessores naturais 1, 2, 3, 4 e 
assim por diante. 
 
Agora, veja como comparar os números naturais em: 
< MENOR QUE 
> MAIOR QUE 
= IGUAL 
 
Dados dois números naturais representados na reta numérica, o maior será o 
que estiver posicionado à direita do outro. 
 
 
11 
 
 
 
 
 
 
 
 
 
 
 
2.2 As quatro operações nas práticas cotidianas 
 
As quatro operações aritméticas fundamentais são: adição, subtração, 
multiplicação e divisão. A seguir, você vai ver cada uma delas. 
 
 
 
12 
 
 
 
 
2.2.1 Adição 
Considere as seguintes situações. 
 
1. Na escola X, havia 280 alunos. Foram matriculados outros 70. Com 
quantos alunos a escola ficou? 
 
2. Na escola Y, existem duas turmas de 1º ano do ensino fundamental. Uma 
delas tem 32 alunos e a outra tem 33. Quantos alunos de 1º ano há na escola? 
 
Observe que na primeira situação a ideia envolvida é de acréscimo. Já na 
segunda situação, a ideia é de junção. Em ambos os conceitos, acrescentar e juntar, 
há a operação de adição. O algoritmo base da adição é representado da seguinte 
forma: 
 
 
 
Nessa representação, os números devem ser escritos e posicionados para que 
as ordens de cada número estejam sobrepostas. Dessa forma, eles estarão alinhados 
da direita para a esquerda. A operação também se dará da direita para a esquerda. 
A nomenclatura usual da adição é: 
 
 
 
Sempre que a soma dos algarismos de uma mesma ordem igualar ou superar 
10 unidades da ordem, uma unidade deverá ser adicionada à ordem imediatamente à 
esquerda (SILVEIRA, 2018). Dessa forma: 
 
13 
 
 
 
 
 
 
 
Propriedades da adição 
 
Propriedade comutativa: a ordem das parcelas não altera a soma. Dessa 
forma, na adição de dois números naturais a e b, você tem: 
 
a + b = b + a 
 
Propriedade associativa: o agrupamento associado de adições não interfere 
na soma. Dessa forma, na adição de três números naturais a, b e c, você tem: 
 
a + b + c = (a + b) + c = a + (b + c) 
 
Existência do elemento neutro: o zero é o elemento neutro aditivo, de forma 
que não influencia uma operação de adição. Assim, considerando um número natural 
a, você tem: 
 
a + 0 = 0 + a = a 
 
Propriedade do fechamento: toda adição de naturais tem como soma outro 
número natural. 
 
2.2.2 Subtração 
 
Considere as seguintes situações. 
 
 
14 
 
 
 
 
1. Carlinhos tem R$ 500,00 na sua conta-poupança. Ele pediu aos seus 
pais se poderia utilizar R$ 150,00 para comprar um jogo novo para 
seu videogame. Quanto restará na sua poupança? 
 
2. A empresa ALFA contratou 400 funcionários. Sabendo que ela deve 
fechar seu quadro de contratações com 680 funcionários, quantos ainda 
precisa contratar? 
 
Observe que na primeira situação a ideia envolvida é uma retirada, ou seja, 
uma subtração. Já na segunda situação, a ideia envolvida é uma comparação, ou 
seja, deseja-se saber quanto falta para completar determinada quantidade. Subtrair, 
comparar e completar são ideias básicas da subtração. 
O algoritmo base da subtração é representado da seguinte forma: 
 
 
Os números devem ser escritos e posicionados de forma semelhante à utilizada 
na adição. Assim, eles ficam alinhados da direita para a esquerda. A operação segue 
a mesma ordem da adição, de modo que os números são subtraídos um a um, da 
direita paraa esquerda (SILVEIRA, 2018). 
A nomenclatura usual da adição é: 
 
 
 
Quando um dos algarismos do minuendo for menor do que o do subtraendo, 
será necessário que uma unidade imediatamente à esquerda seja convertida em 10 
novas unidades da ordem que for insuficiente para subtrair. Essa operação é 
 
15 
 
 
 
 
comumente conhecida como “pedir emprestado”. Se a ordem imediatamente à 
esquerda não tiver algarismo significativo, o “pedido” segue para a próxima ordem à 
esquerda. Veja este exemplo. 
 
 
 
16 
 
 
 
 
 
 
Propriedade fundamental da subtração 
 
Em uma subtração, o minuendo é igual à soma do subtraendo ao resto. Dessa 
forma, você tem: 
m – s = d ↔ m = s + d 
 
Veja ainda as seguintes considerações quanto à subtração. 
 
A soma dos três termos de uma subtração (minuendo, subtraendo e diferença) 
é o dobro do minuendo (SILVEIRA, 2018). Veja: 
 
m + s + d = 2m 
 
A subtração é a operação inversa da adição. Dessa forma, adicionar e subtrair 
um mesmo número é equivalente a não realizar nenhuma das operações. Veja: 
 
a + b – b = a 
 
A subtração não se restringe aos números naturais (SILVEIRA, 2018). Isso 
significa que nem toda subtração é possível nesse conjunto. Veja: 
 
6 – 2 é natural, pois 6 > 2; 
12 – 12 é natural, pois 12 = 12; 
2 – 6 não é natural, pois 2 < 6. 
 
17 
 
 
 
 
 
 
2.2.3 Multiplicação 
 
Considere as seguintes situações. 
 
1. Sr. Arthur tem 5 filhos e decidiu dar uma mesada de R$ 30,00 para cada um 
deles. Quanto Sr. Arthur gastará em mesada? 
 
 
 
Dessa forma, a multiplicação surge como uma alternativa para simplificar 
adições de parcelas repetidas. Assim, você tem: 
 
5 × 30 = 150 
 
2. Em um jogo de baralho, existem 4 naipes (copas, ouro, espada e paus). Cada 
naipe possui 13 cartas (ás, 2, 3, 4, 5, 6, 7, 8, 9, 10, valete, dama e rei). Quantas 
cartas diferentes há em um baralho completo? 
 
Copas: ás, 2, 3, 4, 5, 6, 7, 8, 9, 10, valete, dama e rei 
Ouro: ás, 2, 3, 4, 5, 6, 7, 8, 9, 10, valete, dama e rei 
Espada: ás, 2, 3, 4, 5, 6, 7, 8, 9, 10, valete, dama e rei 
Paus: ás, 2, 3, 4, 5, 6, 7, 8, 9, 10, valete, dama e rei 
 
18 
 
 
 
 
4 × 13 = 52 
 
Observe que a primeira situação consiste na ideia de adicionar parcelas iguais. 
Na segunda situação, acontece uma combinação entre naipes e cartas. A ideia de 
adicionar parcelas iguais e a ideia de combinar são a síntese da multiplicação. 
O algoritmo base da multiplicação é representado por: 
 
 
 
De forma semelhante à que caracteriza a adição, os números são operados da 
direita para a esquerda. E, da mesma forma, ao acumular mais de 10 unidades em 
uma ordem, uma nova unidade deve ser acrescida na ordem imediatamente à 
esquerda, caso exista. 
A nomenclatura usual da adição é: 
 
 
 
Como consequência da multiplicação, se diz que o produto é um múltiplo dos 
fatores envolvidos. 
 
 
Então, p é múltiplo de a e b. 
Quando um produto tiver ambos os fatores com mais de dois algarismos, cada 
algarismo do fator irá gerar uma parcela. Ao final, as parcelas deverão ser somadas 
(SILVEIRA, 2018). Veja: 
 
19 
 
 
 
 
 
 
4 × 5 = 20 unidades simples. Logo, você deve representar com zero unidade 
simples e duas unidades de dezena, que devem ser adicionadas na ordem das 
dezenas. 
 
Na sequência, você deve efetuar o produto 4 × 4 = 16 e só depois deve efetuar 
a adição com as duas unidades de dezena adicionais, de forma a obter 16 + 2 = 18. 
Porém, não há mais ordens à esquerda das dezenas. 
 
 
Agora, você deve repetir o processo efetuando os produtos com o algarismo 2. 
Veja: 2 × 5 = 10, ou zero unidade simples e uma unidade de dezena. O resultado do 
produto deve ser deslocado uma ordem à esquerda, como consequência do fato de o 
algarismo 2 representar uma quantidade superior ao algarismo 4 no fator 24. 
 
 
 
Veja: 2 × 4 + 1 = 9. Fique atento ao fato de ter de realizar o produto antes da 
soma. Por fim, basta somar as parcelas obtidas: 
 
20 
 
 
 
 
 
 
O processo será semelhante no caso de um dos fatores ter mais de dois 
algarismos, sempre adicionando uma parcela para cada algarismo e deslocando uma 
ordem à esquerda (SILVEIRA, 2018). Uma sugestão é utilizar o fator com menos 
algarismos na parte abaixo do algoritmo, de forma a obter menos parcelas a serem 
somadas. 
 
Propriedades da multiplicação 
 
Propriedade comutativa: a ordem dos fatores não altera o produto. Dados 
dois números naturais quaisquer a e b, você tem: 
 
a × b = b × a 
 
Propriedade associativa: o agrupamento associado de multiplicações não 
interfere no produto. Dados três números naturais quaisquer a, b e c, você tem: 
 
a × b × c = (a × b) × c = a × (b × c) 
 
Existência do elemento neutro: o número 1 é o elemento neutro multiplicativo, 
de forma que não interfere em uma operação de multiplicação. Assim, sendo um 
número natural a, você tem: 
 
a × 1 = 1 × a = a 
 
 
21 
 
 
 
 
Propriedade do fechamento: toda multiplicação de naturais tem como produto 
outro número natural. 
Propriedade distributiva da multiplicação em relação à adição: dados três 
números naturais quaisquer a, b e c, você tem: 
 
a × (b + c) = a × b + a × c 
 
Nesse caso, convém ressaltar que a operação de multiplicação tem prioridade 
em relação à adição. Portanto, deve ser operada primeiro. 
 
2.2.4 Divisão 
 
Considere as seguintes situações. 
 
1. João vai repartir suas 21 bolinhas de gude com seus dois irmãos, de forma 
que todos fiquem com quantidades iguais. Com quantas bolinhas cada um 
ficará? 
 
A melhor maneira de entender a divisão é por meio do agrupamento dos objetos 
em quantidades iguais (SILVEIRA, 2018). 
 
 
 
Dessa forma: 21 ÷ 3 = 7 
 
2. Na hora de fazer sua mudança, dona Maria precisou guardar sua 
coleção de copos em caixas. Sabendo que dona Maria possui 18 
 
22 
 
 
 
 
copos e que em cada caixa cabem 6 copos, de quantas caixas ela 
precisa? 
 
18 – 6 = 12: primeira caixa fechada 
12 – 6 = 6: segunda caixa fechada 
6 – 6 = 0: terceira caixa fechada 
 
Portanto, dona Maria precisa de 3 caixas para guardar seus copos. 
 
Na primeira situação, a divisão é entendida como repartição em partes iguais. 
Já na segunda situação, a divisão pode ser interpretada pela quantidade de 
subtrações iguais, consecutivas. 
Observe que na primeira situação descrita as divisões ocorreram sem que 
nenhum irmão ficasse com quantidades diferentes de bolinhas, ou que sobrassem 
bolinhas. Na segunda situação, foram fechadas três caixas completas de copos. Esse 
tipo de divisão é chamada de divisão exata. Isso ocorre porque os valores a serem 
divididos são múltiplos do número pelo qual serão divididos. Observe: 
 
21 ÷ 3 = 7, pois 7 × 3 = 21. 
18 ÷ 6 = 3, pois 3 × 6 = 18. 
 
O algoritmo base da divisão é: 
 
A nomenclatura usual da divisão é: 
 
 
23 
 
 
 
 
 
 
De forma linear, você tem o seguinte: 
 
D = q × d + r 
 
 
 
Em uma divisão exata, o dividendo é divisível pelo divisor. Isso significa que o 
dividendo é múltiplo do divisor (SILVEIRA, 2018). Nesse caso, o resto sempre será 
igual a zero. 
Existem ainda algumas considerações relevantes quanto à divisão: 
 
 a divisão é a operação inversa da multiplicação (e vice-versa); 
 o resultado da divisão de zero por qualquer divisor será sempre zero; 
 as divisões por zero são impossíveis. 
 
Observe: 
 
D ÷ 0 = q ↔ q × 0 = D 
 
 
24 
 
 
 
 
Porém, todo produto em que um dos fatores é zero resulta em zero. Logo: D = 
0. 
Além das divisões exatas, que possuem resto zero, há as divisões não exatas, 
que possuem resto diferente de zero. Nesse caso, seu resultado pode ser 
representado em conjuntos numéricos naturais. Assim, o conjunto N dos naturais não 
é fechado para a divisão (SILVEIRA, 2018). 
 
2.3 Expressões numéricas 
 
As expressões numéricas são os agrupamentos de operações matemáticas. 
Certas operações devem ser realizadas com prioridadeem detrimento de outras para 
se obter o valor da expressão. Veja este exemplo: 
 
3 × 5 + 2 
 
Uma expressão serve para representar matematicamente problemas e 
situações reais em que existam prioridades nas operações a serem realizadas. 
Entre as operações fundamentais, considere que há dois grupos relativos à 
ordem de prioridade: 
 
1. multiplicações e divisões; 
2. adições e subtrações. 
 
 
 
 
25 
 
 
 
 
Uma expressão numérica pode conter elementos que auxiliam nas relações de 
prioridade. Com relação a esses elementos, é fundamental que você se familiarize 
com o uso dos parênteses, ( ), dos colchetes, [ ], e das chaves { }. Entre esses 
elementos, também há uma ordem de prioridade: 
 
1. resolver as operações entre parênteses; 
2. resolver as operações entre colchetes; 
3. resolver as operações entre chaves. 
 
Veja este exemplo: 
 
 
 
Como você pode notar, em alguns momentos existem sinais operatórios que 
antecedem os parênteses, os colchetes ou as chaves. Se os operadores forem × ou 
÷, você pode aplicar a propriedade distributiva da multiplicação. Na divisão, o mesmo 
pode ser feito, pois a divisão é a inversa da multiplicação (SILVEIRA, 2018). Se o 
operador for +, ele conservará as operações internas. Você deve ter cuidado 
principalmente com as situações em que o operador que antecede os parênteses, os 
colchetes ou as chaves for de subtração. Nesse caso, você deve alterar os sinais de 
adição e subtração internos, ou ainda alterar o resultado operado no interior dos 
parênteses, dos colchetes ou das chaves. 
Considere este exemplo: 
 
 
26 
 
 
 
 
 
 
2.4 Diferentes formas de representação de um algoritmo 
 
Além dos algoritmos que você viu, existem outros modos de expressar e de 
operar as operações aqui descritas. A seguir, você vai ver algoritmos alternativos para 
as operações fundamentais. Além deles, existem muitos outro. 
Adição: método das somas parciais 
 
Nesse método, ocorre a decomposição dos números envolvidos de forma a 
expressá-los por meio de uma soma em que as ordens são inteiras (SILVEIRA, 2018). 
Veja este exemplo: 
 
284 = 200 + 80 + 4 
 
Agora veja essa decomposição alinhada no algoritmo tradicional: 
 
284 + 592 
 
 
 
O reagrupamento pode ser feito: 700 + 170 + 6 = 876. 
Esse processo é muito utilizado nos cálculos mentais. 
 
 
 
 
27 
 
 
 
 
2.5 Subtração: algoritmo de riscar, método de subtração da esquerda para a 
direita 
 
A seguir, veja o processo passo a passo: 
 
 
2.6 Multiplicação: método dos camponeses russos 
 
A multiplicação que você viu até aqui utiliza como símbolo operador ×. Porém, 
o ponto (∙) também pode ser a representação do operador de multiplicação (SILVEIRA, 
2018). 
Veja como os camponeses russos operavam a multiplicação. Observe: 
 
36 ∙ 13 
 
Agora considere os números colocados lado a lado: 
36 13 
 
 
28 
 
 
 
 
A ideia é determinar a metade do primeiro e o dobro do segundo, escrevendo 
os resultados abaixo dos fatores correspondentes: 
 
36 13 
18 26 
 
Procede-se do mesmo modo com os resultados obtidos: 
36 13 
18 26 
9 52 
 
Chegando a um número ímpar (9), que não tem divisão exata por 2, se reduz 
uma unidade e depois se segue com a divisão, de forma que: 
 
36 13 
18 26 
9 52 
4 104 
2 208 
1 416 
 
Por fim, se somam os números da coluna da direita que possuem 
correspondentes ímpares na coluna da esquerda. Veja: 
 
416 + 52 = 468, que é o produto de 36 ∙ 13 
 
 
29 
 
 
 
 
 
 
2.7 Divisão: método egípcio 
 
A divisão que você viu até aqui utiliza como símbolo operador ÷. Porém, os 
dois-pontos (:) também podem ser a representação do operador de divisão. 
Segundo Moraes (2015), “[...] o Papiro de Rhind (conhecido também como 
Papiro de Ahmes) é uma das principais fontes históricas sobre as raízes da aritmética. 
Encontramos, registrado no papiro, o problema ‘dividir 19 por 8’”. 
Usando a aritmética atual para representar o método egípcio, você tem: 
 
 
 
Se você somar as linhas com (*), vai obter a soma 19. Dessa forma, a solução 
do problema é obtida assim: 
 
 
 
 
30 
 
 
 
 
Esse não é um resultado natural. Portanto, veja agora um exemplo com 
resultado natural: 
 
 
Se você somar as linhas com (*), vai obter a soma 28. Dessa forma, a solução 
do problema é obtida assim: 
 
28 : 4 = 3 + 4 = 7 
 
 
3 NÚMEROS INTEIROS E RACIONAIS 
 
3.1 Números inteiros 
 
Os números inteiros são constituídos por números positivos e por números 
negativos, mais o número 0 (zero), compondo dessa forma o conjunto dos números 
inteiros. Os números inteiros são representados simbolicamente pela letra Z. 
Os números inteiros contemplam os números naturais N e os que são a eles 
equiparados e não nulos. Nesse contexto, Oliveira (2016, p. 22) afirma que “[...] dois 
números inteiros são simétricos quando a sua soma é zero [...]”. 
Exemplo de como o conjunto dos números inteiros pode ser representado 
(OLIVEIRA, 2016): 
 
Z = {..., –4, –3, –1, 0, 1, 2,...} ou ainda Z = {..., –3, –2, –1, 1, 2, 3,...} 
 
 
 
 
31 
 
 
 
 
3.2 Números racionais 
 
De acordo com Oliveira (2016), os números racionais correspondem aos que 
podem ser apresentados por frações, ou seja, com numerador e denominador inteiros 
e denominador não considerado nulo, que, desse modo, não pode ser 0 (zero). É 
possível afirmar que os números inteiros e os naturais são entendidos como racionais, 
já que podem ser evidenciados como uma fração de denominador 1. O símbolo que 
representa os números racionais é a letra Q. Exemplos de números racionais: 
 
 
 
 
3.3 Conjunto dos números inteiros ℤ 
 
Para compreender o conjunto dos números inteiros ℤ, faz-se necessário 
conhecer alguns conceitos iniciais que auxiliam na construção do pensamento 
matemático. Como observam Iezzi e Murakami (2019), quando se considera a teoria 
dos conjuntos, há três noções que são aceitas sem definição, a saber: conjunto, 
elemento e pertinência entre um elemento e um conjunto. 
Ainda segundo esses autores, na matemática, a noção de conjunto é 
praticamente a mesma que se utiliza na linguagem comum, ou seja, tem-se o sentido 
de agrupamento, classe; por exemplo: conjuntos dos meses de um ano, dos dias de 
um mês, de vogais, entre tantos outros. Assim, considerando-se que A é um conjunto 
e x é um elemento, se x pertence ao conjunto A, então se denota x ∈ A. Por sua vez, 
se x não pertence ao conjunto A, então se escreve x ∉ A. A figura abaixo também 
demonstra essa notação de pertencimento. 
 
32 
 
 
 
 
Na matemática, o conjunto numérico matemático mais elementar é o conjunto dos 
números naturais, o qual é denotado por ℕ e possui como elementos {1,2,3,4…}. 
Sobre esse conjunto, podem ser definidas as operações de soma e multiplicação 
(SANTIAGO, 2020). 
 
 
 
Uma extensão do conjunto dos números naturais é o conjunto dos números inteiros, 
o qual é denotado por ℤ. Os seguintes elementos compõem esse conjunto: ℤ = {… –
3,–2,–1,0,1,2,3, …}. Sobre esse conjunto, é possível distinguir três subconjuntos 
notáveis, a saber (SANTIAGO, 2020): 
 
 
 
Sobre o conjunto dos números inteiros ℤ, podem ser definidas operações de 
adição e multiplicação, sendo para cada uma delas válidas as propriedades 
apresentadas a seguir. 
 
 
 
 
33 
 
 
 
 
3.4 Conjunto dos números racionais (ℚ) 
 
Assim como houve, ao longo do processo evolutivo do ser humano, a 
necessidade de estabelecer um sistema de contagem, surgiu também a necessidade 
de descrever partes de algo inteiro. Desse modo, surgem os valores, ou melhor, os 
números fracionários ou, simplesmente, as frações. Quando adicionamos as frações 
aos números inteiros, obtemos o conjunto dos números racionais. São exemplos de 
números racionais: 
 
Q = {−1, −2/5, 4/3, 5, ...} 
 
Então, um número racional é todo aquele que pode ser escrito na forma de uma 
fração. Usando a linguagem matemática,dizemos que um número pertence ao 
conjunto dos racionais se (SANTIAGO, 2020): 
 
Q = {x/x = a/b, a ∈ Z, b ∈ Z, b ≠ 0} 
 
Onde se lê “x e x é igual a a sobre b” (ou a dividido por b), com a pertencente 
ao conjunto dos inteiros e b pertencente ao conjunto dos inteiros e diferente de zero. 
Observe que todo número inteiro é racional, mas nem todo número racional é 
inteiro. Por exemplo, –1 é inteiro e é racional, mas 4/3 é racional e não é inteiro. 
 
No conjunto dos racionais destacamos os subconjuntos: 
 
Q + = conjunto dos racionais não negativos 
Q_ = conjunto dos racionais não positivos 
Q* = conjunto dos racionais não nulos 
 
 
34 
 
 
 
 
 
 
Portanto, os racionais com denominador igual a 1 comportam-se para a 
igualdade, a adição e a multiplicação como se fossem números inteiros (SANTIAGO, 
2020). 
 
3.5 Propriedades do operador adição (+) sobre o conjunto dos números 
inteiros ℤ 
 
Dados quaisquer elementos a, b, c ∈ ℤ e o operador de adição (+), são válidas 
as propriedades descritas a seguir. 
Associação em relação à adição: para quaisquer elementos a, b, c 
pertencentes ao conjunto dos números inteiros, matematicamente descrito por ∀ a, b, 
c ∈ ℤ, é válida a seguinte igualdade: 
 
(a + b) + c = a + (b + c), ∀ a, b, c ∈ ℤ 
 
Comutativa em relação à adição: para quaisquer elementos a e b 
pertencentes ao conjunto dos números inteiros, sendo matematicamente descrito por 
∀ a, b ∈ ℤ, é válida a seguinte igualdade: 
 
35 
 
 
 
 
 
a + b = b + a, ∀ a, b ∈ ℤ 
 
Elemento neutro da adição: existe e é único o elemento neutro da adição em 
ℤ, de modo a se obter a igualdade a seguir: 
 
a + 0 = 0 + a = a, ∀ a ∈ Z, ∃!0 ∈ ℤ 
 
Simétrico da adição: para todo a ∈ ℤ, existe –a ∈ ℤ, tal que a igualdade a 
seguir é mantida. 
 
a + (–a) = (–a) + a = 0, ∀ a ∈ ℤ 
 
3.6 Propriedades do operador multiplicação (∙) sobre o conjunto dos números 
inteiros ℤ 
 
Dados quaisquer elementos a, b, c ∈ ℤ e o operador de multiplicação (∙), são 
válidas as propriedades descritas a seguir. 
Associativa da multiplicação: dados quaisquer a, b, c ∈ ℤ, é válida a 
associatividade da multiplicação para esses elementos. Portanto, é válida a igualdade 
a seguir: 
 
(ab)c = a(bc), ∀ a, b, c ∈ ℤ 
 
Comutativa da multiplicação: dados quaisquer a, b ∈ ℤ, é válida a 
comutatividade da multiplicação para esses elementos. Portanto, é válida a igualdade 
a seguir: 
 
ab = ba, ∀ a, b ∈ ℤ 
 
 
36 
 
 
 
 
Elemento neutro da multiplicação: existe e é único o elemento neutro da 
multiplicação em ℤ, para ∀ a ∈ ℤ, sendo válida a igualdade a seguir: 
 
a ∙ 1 = 1 ∙ a = a, ∀ a ∈ Z, ∃!1 ∈ ℤ 
 
Distributiva da adição em relação à multiplicação: dados quaisquer a, b, c ∈ ℤ, 
bem como os operadores de adição (+) e de multiplicação (∙), é válida a distribuição 
da multiplicação em relação à adição à esquerda e à direita (SANTIAGO, 2020). 
Portanto, é válida a igualdade a seguir: 
 
a ∙ (b + c) = a ∙ b + a ∙ c = b ∙ a + c ∙ a = (b + c) ∙ a, ∀ a, b, c ∈ ℤ 
 
3.7 Divisibilidade no conjunto dos números inteiros ℤ 
 
Sobre o conjunto dos números inteiros ℤ, é possível definir o conceito de divisor. 
Nesse sentido, diz-se que a ∈ ℤ é divisor inteiro de b ∈ ℤ, e se denota por a|b quando 
existe c ∈ ℤ tal que seja válida a seguinte igualdade: ca = b. Portanto, 
matematicamente, tem-se: 
 
a|b ⇔ (∃ c ∈ ℤ|c ∙ a = b) 
 
Por exemplo: 
 
–2|–14 ⇔ 7(–2) = –14 
 
 
 
 
37 
 
 
 
 
3.8 Conectivos lógicos 
 
Na matemática, você vai encontrar essencialmente quatro tipos de conectivos, 
a saber (SANTIAGO, 2020): 
 o conectivo “e”, denotado por “∧”; 
 o conectivo “ou”, denotado por “∨”; 
 o conectivo “se”, matematicamente denotado por “→”; e 
 o conectivo “se e somente se”, denotado por “↔”. 
 
A partir dos conectivos apresentados, e considerando-se as proposições “p” e 
“q”, obtêm-se a conjunção “p ∧ q", a disjunção “p ∨ q”, a condicional “p → q” e a 
bicondicional “p ↔ q”. A seguir, você vai estudar cada uma delas. 
 
Conjunção 
 
Sejam “p” e “q” duas proposições; ao se colocar o conectivo “e” denotado por 
“∧” entre elas, obtém-se uma nova proposição denominada conjunção entre “p” e “q”, 
a qual é denotada por “p ∧ q”. Por exemplo: 
 
p: 3 > 0, q: 3 ≠ 1, p ∧ q: 3 > 0 e 3 ≠ 1 
 
A conjunção “p ∧ q” será verdadeira apenas se ambas as proposições “p” e “q” 
são verdadeiras. Se uma delas for falsa, isso implica que “p ∧ q” é falso. A partir do 
exposto, obtém-se a tabela verdade expressa no quadro abaixo. 
 
 
38 
 
 
 
 
 
 
Disjunção 
 
Assim como para a conjunção, considere “p” e “q” duas proposições. Ao se 
colocar o conectivo “ou”, denotado por “∨”, entre elas, obtém-se uma nova proposição 
denominada disjunção entre “p” e “q”, a qual é denotada por “p ∨ q”. Por exemplo: 
 
p: 4 > 0, q: 4 > 2, p ∨ q: 4 > 0 ou 4 > 2 
 
A disjunção “p ∧ q” será verdadeira se ao menos uma das proposições “p” e 
“q” forem verdadeiras, e “p ∧ q” será falsa apenas se as duas proposições “p” e “q” 
forem falsas (SANTIAGO, 2020). A partir do exposto, obtém-se a tabela verdade 
apresentada no quadro abaixo. 
 
 
 
 
39 
 
 
 
 
Condicional 
 
Considere as proposições “p” e “q”. Ao se colocar o condicional “→” entre elas, 
é obtida uma nova proposição, dada por “p → q”, que se lê: se “p”, então “q”; portanto, 
“p é condição necessária para q” ou “q é uma condição suficiente para p”. Por 
exemplo: 
 
 p: quatro é divisor de oito (4|8); 
 q: oito é divisor de quarenta (8|40); 
 p → q: se quatro é divisor de oito, então quatro é divisor de quarenta. 
 
O condicional “p → q” assume o valor de falso apenas quando “p” é verdadeira 
e “q” é falsa; caso contrário, “p → q” é verdadeiro (SANTIAGO, 2020). A partir do 
exposto, obtém-se a tabela verdade apresentada no quadro abaixo. 
 
 
 
Bicondicional 
 
Considere “p” e “q” duas proposições. Ao se colocar o conectivo “↔” entre elas, 
obtém-se uma nova proposição dada por “p ↔ q”, a qual se lê: “p” se e somente se 
“q”; ou “p” é uma condição necessária e suficiente para “q”; ou, ainda, se “p”, então 
“q” é reciprocamente. Por exemplo: 
 
 
40 
 
 
 
 
p: 2|12, q: 27|127, p ⇔ q: 2|12 ⇔ 27|127 
 
O bicondicional “↔” assume valor verdadeiro apenas quando ambas as 
proposições “p” e “q” são verdadeiras, ou quando ambas simultaneamente são falsas. 
Caso contrário, o condicional “↔” é falso (SANTIAGO, 2020). A partir do exposto, 
obtém-se a tabela verdade mostrada no quadro abaixo. 
 
 
 
 
4 NÚMEROS IRRACIONAIS 
 
Por bastante tempo os números racionais foram o máximo alcançado sobre o 
conceito de número. Mas, segundo Stewart (2015), os gregos antigos provaram que 
o quadrado de uma fração nunca poderia ser exatamente igual a 2. De forma intuitiva 
já era possível perceber que os racionais não eram suficientes, pois pelo Teorema de 
Pitágoras, o comprimento da diagonal de um quadrado de lado 1 é raiz de 2, no 
entanto, esta notação ainda não existia. “A prova grega da irracionalidade emprega 
um processo geométrico que agora chamamos de algoritmo de Euclides. É um modo 
sistemático de descobrir se dois comprimentos dados a e b são comensuráveis” 
(STEWART, 2015, p.196). 
Para Roque (2012), a percepção da incomensurabilidade pelo pitagórico 
Hipaso de Metaponto e da possibilidade de um conjunto de números não-racionais 
não estão necessariamente relacionadas ao mesmo período histórico: 
 
41 
 
 
 
 
Ninguém, suficientemente instruído em matemática poderia ficar 
impressionado com a existência da incomensurabilidade. Além disso, a 
conexão entre esse problema e a filosofia pitagórica é duvidosa. Não se tem 
certeza nem mesmo da relação entre a descoberta dos incomensuráveis e a 
aplicação do teorema de “Pitágoras” (que nos permitiria concluir que há um 
lado de um triângulo cuja medida é raiz de 2), uma vez que os chineses já 
conheciam o teorema e nem por isso concluíram pela irracionalidade do lado. 
(ROQUE, 2012,p. 125). 
Substancialmente, apesar das discordâncias entre alguns historiadores 
matemáticos sobre a percepção sobre incomensurabilidade/irracionalidade, este 
conceito surge como justificativa para a necessidade de ampliação dos conjuntos 
numéricos até então conhecidos e, no contexto didático, como possível abordagem 
introdutória para apresentação do conjunto dos números irracionais (ROCHA, 2018). 
Mais formalmente, dois segmentos A e B dizem-se comensuráveis se são 
múltiplos de um segmento comum. Em outros termos, A e B são comensuráveis se 
existir um segmento C de medida u, escolhido como unidade de medida, e se existirem 
inteiros positivos m e n tais que A= mC e B= nC, então A e B são múltiplos do 
segmento comum C, e assim se dizem comensuráveis. 
Segundo Baldino (2000), os pitagóricos acreditavam que tudo em geometria e 
mesmo nos afazeres humanos poderiam ser explicados em termos de números. Não 
se sabe com precisão quando a escola pitagórica tomou conhecimento da existência 
de grandezas que não poderiam ser comparadas por meio de inteiros. 
Para Stewart (2015) a comprovação da não-racionalidade levou os geômetras 
gregos a focar em comprimentos geométricos e a ignorar números, no entanto a 
possibilidade de reforçar o sistema numérico de modo a poder lidar com questões 
como essas se tornaram uma alternativa melhor. 
Segundo Rooney (2012), Pitágoras não conseguia provar pela lógica que os 
números irracionais não existiam, mas quando Hipaso de Metaponto (nascido em 500 
a.C.) demonstrou que a raiz quadrada de 2 é irracional e argumentou sobre sua 
existência, diz a lenda que Pitágoras o afogou. Hipaso teria demonstrado sua 
descoberta a bordo de um navio. O banimento dos números irracionais, acionado por 
Pitágoras, seria então baseado em sua objeção estética, ideológica e filosófica. 
 
42 
 
 
 
 
Somente no século XVII, com a criação da Geometria Analítica (Fermat e 
Descartes), se estabelece a simbiose do geométrico com o algébrico, favorecendo o 
tratamento aritmético do comensurável e do incomensurável. Newton (1642-1727) 
define pela primeira vez "número", tanto racional como irracional. 
De acordo com Iezzi e Murakami (2005), números cuja representação decimal 
com infinitas casas decimais não periódicas são chamados números irracionais. 
Segundo Niven (2012) para demonstrar a irracionalidade de 2 podemos seguir 
a seguinte trajetória: 
Suponhamos que 2 fosse um número racional, isto é, 2 =a/b , com a e b inteiros 
e b diferente de 0. Suponhamos ainda, e isso é essencial para o argumento, que a/b 
seja uma fração irredutível, isto é, que a e b sejam primos entre si. Usaremos, 
especificamente, o fato de a e b não serem ambos pares porque, se o fossem, a/b não 
seria irredutível. Elevando ao quadrado a equação acima e simplificando-a, obtemos 
2= 𝑎² / 𝑏² , 𝑎 ² = 2𝑏² . 
O termo 2𝑏² representa um inteiro par, de modo que 𝑎 2 é um inteiro par e, 
portanto, a é um inteiro par, digamos a=2c, com c também inteiro. Substituindo a por 
2c na equação 𝑎²=2𝑏², obtemos: 
 
(2𝑐) ² = 2𝑏² , 
4𝑐 ² = 2𝑏² , 
2𝑐 ² = 𝑏² 
 
O termo 2𝑐² representa um inteiro par, de modo que 𝑏² é um inteiro par e, 
portanto, b é um inteiro par. Mas agora chegamos à conclusão de que a e b são ambos 
inteiros pares, enquanto a e b foram, inicialmente, supostos primos entre si. Essa 
contradição nos leva à conclusão de que não é possível escrever 2 𝑛𝑎 𝑓𝑜𝑟𝑚𝑎 
𝑎
𝑏
 , 
portanto 2 é irracional (ROCHA, 2018). 
De forma semelhante Niven (2012) demonstra a irracionalidade de 3, com a 
exceção de que o argumento chave envolve divisibilidade por 3 e não por 2, segue a 
demonstração: 
 
43 
 
 
 
 
Provaremos como resultado preliminar, que o quadrado de um inteiro é divisível 
por 3 se, e somente se, o inteiro em si for divisível por três. Observemos, inicialmente, 
que um inteiro divisível por 3 é da forma 3n, enquanto que um inteiro não divisível por 
3 é da forma 3n+1 ou 3n+2. Então as equações: 
 
3𝑛 ² = 9𝑛 ² = 3 (3𝑛) ² 
(3𝑛 + 1) ² = 9𝑛 ²+6n+1= 3(3𝑛 ² + 2𝑛) +1= 
(3𝑛 + 2) ²= 9𝑛 ²+12n+4= 3(3𝑛 ²+4n+1) +1 
 
Suponhamos agora que 3 fosse um número racional, digamos que 3 = 𝑎/𝑏, com 
a e b inteiros. Novamente, como no caso de 2·, suponhamos a/b irredutível, de modo 
que a e b não são ambos divisíveis por 3. Elevando a equação ao quadrado e 
simplificando, obtemos: 
os: 3= 𝑎 ² /𝑏 ² , 
𝑎 ²= 3𝑏 ² 
 
O inteiro 3𝑏 ² é divisível por 3, isto é, 𝑎 ² é 𝑑𝑖𝑣𝑖𝑠í𝑣𝑒𝑙 𝑝𝑜𝑟 3. Portanto, a é divisível 
por 3, digamos, a =3c, com c inteiro. Substituindo a por 3c na equação 𝑎 ²= 3𝑏 ² temos: 
 
(3𝑐) ² = 3𝑏 ² , 
9𝑐 ² = 3𝑏 ² , 
3𝑐 ² = 𝑏 ² 
 
Isso mostra que 𝑏 ² é divisível por 3 e, portanto, b é divisível por 3. Concluímos, 
assim, que a e b são ambos divisíveis por 3 e isso contraria a hipótese inicial de ser 
a/b irredutível. Portanto 3 é irracional. 
É bom lembrar que todas as raízes inexatas são irracionais (ROCHA, 2018). 
Na verdade estes são os números irracionais mais simples: √2, √3, √6, etc. Estes 
números são soluções das equações x² - 2 = 0, 𝑥 2 - 3 = 0, x² - 6 = 0, respectivamente. 
Por essa razão eles são chamados de irracionais algébricos. Um número algébrico: é 
 
44 
 
 
 
 
um número real que satisfaz alguma equação do tipo: a² + n = 0, com a e n inteiros. 
Ou seja, um número real se diz algébrico se satisfizer uma equação algébrica com 
coeficientes inteiros. 
Mas acontece que muitos números irracionais não são algébricos (ROCHA, 
2018). Por isso, são chamados de irracionais transcendentes. Estes não são raízes 
de equações da forma acima. 
 
4.1 Os irracionais -  
 
O número  é o exemplo mais conhecido de número irracional. Este símbolo 
lhe foi dado por ser a letra grega correspondente a primeira letra da palavra perímetro 
(ROCHA, 2018). 
Segundo Stewart (2015) os egípcios acreditavam que π fosse racional e igual 
a 19/6, que é aproximadamente 3,16. Para calcular este valor, usaram argumentos 
geométricos: traçaram um octógono inscrito num círculo e calcularam a razão entre 
seu perímetro e o diâmetro da circunferência. 
 
 
Fonte: https://www.diekeure.be/ 
 
45 
 
 
 
 
Muitos dos símbolos matemáticos que usamos atualmente são devidos ao 
matemático suíço Leonard Euler (1707-1783). Foi Euler quem, em 1737, tornou 
conhecido o símbolo  para o número PI. Foi também nesta época que os 
matemáticos conseguiram demonstrar que  é um número irracional. Segundo Guzzo 
(2007) “O símbolo atual que designa o número “PI” é a letra grega , que foi utilizada 
pela primeira vez em 1707 por Willian Jones, mas só foi amplamente aceita quando 
usada por Euler em 1737”. 
De forma geral  é definido como a razão entre a circunferência de um círculo 
qualquer e seu diâmetro, no entanto este cálculo não representa um valor tão próximo 
por se tratar de um número que não pode ser representado através de uma razão. De 
acordo com Stewart (2015), Arquimedes apresentou uma prova lógica diferente. 
Utilizando um hexágono inscrito e duplicando o número de lados consecutivamente, 
Arquimedes obteve um valor bastante acurado para . 
Muitas tentativas foram surgindo ao longo dos anos. Algumas delas não tão 
obviamente relacionadas às medidas circulares. Sua representação decimal vem 
sendo calculada durante os anos tanto por métodos tradicionais como frações 
contínuas, soma de séries, cálculos trigonométricos; quanto por sistemas 
informatizados e softwares específicos (ROCHA, 2018). 
Além de irracional,  é um número transcendente, o que foi provado por 
Ferdinand Lindemann em 1882. Isso significa que não existe um polinômio com 
coeficientes inteiros ou racionais do qual  seja uma raiz. É difícil de calculá-lo porque 
sendo um número irracional, sua representação decimal não apresenta nenhuma 
previsibilidade. 
Em geral, esse esclarecimento não é enfatizado, nem pelos professores nem 
pelos autores dos livros didáticos,o que pode confundir os alunos, pois a forma 
experimental sugerida de obtenção do  é a razão entre comprimento de uma 
circunferência e o seu diâmetro o que pode contrariar a própria definição de número 
irracional, o impedimento de ser representado por uma fração (ROCHA, 2018). 
Devemos destacar os seguintes casos: 
 
 
46 
 
 
 
 
1) Quando a medida do diâmetro de uma circunferência for um número inteiro, 
a medida do comprimento da circunferência não será número inteiro, por 
isso a razão resulta num valor aproximado de , que é um número irracional; 
2) Quando determinamos o valor do comprimento da circunferência, 
utilizando-se C= 2 R, como possuímos somente valores aproximados de  
(3,1415...), então os valores de C serão também aproximados. 
 
Durante séculos as fórmulas para o cálculo de  se tornaram cada vez mais 
eficientes e diretas. Em 1670 Leibniz (1646-1716), divulgou uma fórmula eficaz para 
a construção do irracional, mas que parece ter sido descoberta, primeiro por James 
Gregory (1638-1675), e, portanto, conhecida como fórmula de Gregory-Leibniz. 
 
4.2 Irracionais e seu ensino 
 
Ripoll (2004) realiza observações importantes sobre a definição de irracionais, 
e levanta apontamentos que merecem atenção. Segundo a autora, as caracterizações 
de números irracionais mais encontradas nos livros didáticos para a Escola Básica 
são as seguintes, divididas em grupos de semelhança: 
(A) “Um número é irracional se não puder ser escrito na forma a/b com a; b ϵ 
Z e b não-nulo”. “Irracional é o número que não pode ser escrito na forma de fração". 
(B) “Irracional é o número cuja representação decimal é infinita e não-
periódica”. “Todo número escrito na forma de um decimal infinito e não-periódico é um 
número irracional". 
(C) “Os números irracionais representam medidas de segmentos que são 
incomensuráveis com a unidade". 
Crítica sobre cada uma destas descrições: 
Tanto em (A) quanto em (B) ficam pressupostos o conhecimento da existência 
de outros números além do universo trabalhado até o momento pelos alunos (a saber, 
o de números racionais) - o que é até, no mínimo, incoerente, quando o que se quer 
é ampliar o conjunto dos números; fica pressuposta também a capacidade de um 
 
47 
 
 
 
 
manejo com tais números que os permitam saber decidir se eles podem ou não ser 
escritos na forma de fração. Mas, mesmo que trabalhemos sob a premissa que o aluno 
saiba que existem outros números, temos problemas: 
Em (A): Alunos de oitava série, num questionário aplicado pelos alunos da 
Licenciatura da UFRGS, afirmam que é irracional, pois também não pode ser 
escrito na forma de fração (ROCHA, 2018). Mesmo que está confusão não surja neste 
momento, ela poderá aparecer quando, mais tarde, seja abordado o assunto 
“Números Complexos". De fato, existem demonstrações para comprovar que i não 
pode ser escrito na forma de fração que podem muito bem ser utilizadas para 
irracionais. Modo que então, pelas definições colocadas em (A) concluiríamos que é 
irracional. Em outras palavras: Números imaginários não podem ser escritos na forma 
de fração, e nem por isso são irracionais (ROCHA, 2018). 
Segundo Silva (2014), os números irracionais ensinados na escola são aqueles 
obtidos através de raízes, senos, cossenos, tangentes e logaritmos “inexatos” (não 
racionais), como, por exemplo, √ 2, √3, sen (8), cos (9), tan (10), log 3 etc. Como todos 
os irracionais têm representação infinita, sua localização na reta deve ser aproximada, 
e, portanto, haveria necessidade de se ensinar métodos de aproximação, o que, 
lamentavelmente, não é feito. 
Os motivos, por que não são ensinados, são variados, e aqui destacaremos 
três: primeiro porque não consta no programa tradicional do ensino médio; segundo, 
porque se acredita que os melhores métodos de aproximação se utilizam de 
ferramentas do cálculo que também não está neste programa; e terceiro, porque no 
contexto do ensino básico, muitos professores desconhecem métodos simples de 
aproximação que poderiam ser apresentados aos alunos usando apenas uma 
calculadora de bolso, ou por ”princípios” da sua formação, são contra o uso de 
recursos eletrônicos em sala de aula. Além disso, alguns irracionais são “definidos” 
de um modo misterioso para o aluno, como, por exemplo, os números π = 3, 
1415926535... ou e = 2, 718281828... Isso sugere a ideia de que cada nova casa 
decimal aparece aleatoriamente, e desta forma, impossibilita sua localização e 
precisão (ROCHA, 2018). 
 
48 
 
 
 
 
De acordo com Ripoll (2004) em geral, na sua formação dentro do curso de 
Licenciatura, o futuro professor faz um curso de Análise na Reta ou similar, onde é 
feita a construção dos números reais. Mas ali o conjunto dos Reais é construído como 
complemento de Q via cortes de Dedekind ou sequências de Cauchy, deduzindo-se 
dessa estrutura as demais propriedades, e muito pouco (ou nada) é esclarecido sobre 
os conflitos normalmente existentes sobre este assunto. Daí, os licenciados voltam ao 
Ensino Básico, agora como professores, sem o devido esclarecimento sobre tal 
assunto, e sem, por exemplo, nunca terem “feito a ponte" entre aquela construção 
vista em Análise na Reta e a resposta às suas perguntas. 
Para Silva (2014), explicar para o aluno a necessidade de saber que existe um 
número, não inteiro, que não tem representação decimal finita, e que não tem 
representação como fração, chamado número irracional, cuja representação é 
decimal infinita e não-periódica, mas que sempre pode ser substituído (aproximado) 
por um número racional, é uma tarefa, no mínimo, árdua. E de fato um convite à 
exploração de mais um conjunto numérico abstrato que surge, através da descoberta 
de novos elementos e suas propriedades. Uma aventura intelectual matemática 
disfarçada de exercício de raciocínio lógico. Precisamos fazer exemplificações, 
operações e aproximações com os mais variados tipos de números reais. Pois é 
através dessa experiência prática que o aluno intelectualmente se aproxima das 
características e propriedades dos diferentes números reais (ROCHA, 2018). 
Pietropaolo, Corbo e Campos (2013) analisando resultados de sua pesquisa 
sob a perspectiva de Tall & Vinner (1981), concluíram que a imagem conceitual 
construída pela maioria dos participantes do estudo, relativa aos números irracionais, 
era principalmente constituída por noções que pertencem ao campo numérico, 
contendo, em alguns casos, concepções incorretas – por exemplo, relativas às 
representações e à classificação desses números. A incomensurabilidade de 
grandezas – interpretação geométrica dos números irracionais, conceito cuja 
discussão pode favorecer a compreensão representativa de medidas de quaisquer 
grandezas, não constava do repertório de conhecimentos do conteúdo específico 
acumulados pelos professores. Esta constatação indica lacunas também nos 
 
49 
 
 
 
 
conhecimentos pedagógicos necessários à apresentação desse conteúdo aos alunos. 
Tais resultados colocam em destaque a necessidade de promover, nos cursos de 
formação inicial e/ou continuada, discussões sobre a relevância dos números 
irracionais nos currículos de Matemática, sobre as dificuldades vivenciadas pelos 
estudantes quando iniciam a construção desse conhecimento e sobre a importância 
de seu estudo nas diversas etapas escolares (ROCHA, 2018). 
Pommer (2012) afirma que ainda a esse respeito, é necessário reiterar o que 
foi dito anteriormente, sobre a importância de distribuir o estudo dos números 
irracionais não apenas nos dois últimos anos do Ensino Fundamental, mas também 
ao longo do Ensino Médio e nos cursos de Licenciatura em Matemática, para que se 
deem a consolidação e a ampliação desse conhecimento em etapas escolares 
subsequentes, nas quais os estudantes certamente já desenvolveram outras 
habilidades necessárias à compreensão e ao aprofundamento desse assunto. 
Corbo (2012) relataque, em virtude de todo o exposto, dada a importância dos 
números irracionais para a compreensão da ampliação dos campos numéricos, seu 
estudo não pode receber uma atenção descuidada, que enfatize um único aspecto 
(por exemplo, o algorítmico), sob pena de provocar a elaboração de uma concepção 
desses números despida de significado. Isto é, a abordagem dos irracionais não pode 
ser feita por meio de um trabalho aligeirado, fraco, ainda que se considere toda a 
complexidade inerente à construção desse conhecimento. 
Jover (2013) realizou uma oficina em quatro encontros, com atividades de uma 
hora de duração, equivalente a cinco períodos de aula, com a participação ativa dos 
alunos proporcionada pelo uso do software Geogebra. O estudo de números 
irracionais em aulas expositivas se estendeu durante um bimestre letivo (mais de vinte 
períodos). A diversidade da metodologia, utilizada para alcançar o mesmo propósito, 
apontou que a experiência proporciona mais, em menos tempo. Contudo, a 
aprendizagem só acontece se o aluno estiver aberto para a experiência. O discurso 
do educador de que “não há tempo, é necessário vencer o conteúdo” mostra uma 
visão da educação que anula a experiência. A preocupação excessiva do professor 
em vencer o conteúdo, acompanhada da quantidade de informação e de trabalho, se 
 
50 
 
 
 
 
contrapõe à oportunidade de propiciar a aprendizagem pela experiência e de 
efetivamente construir o conhecimento proposto. 
Laurentino (2013) afirma que também aprendemos que enquanto os números 
racionais são enumeráveis, os irracionais não o são, surgindo aí o primeiro resultado 
interessante de que podemos comparar conjuntos infinitos e obter “infinitos maiores 
que outros infinitos”. Kindel (2012) aponta que um conjunto é enumerável se for 
possível estabelecer uma relação bijetora entre ele e o conjunto dos números naturais, 
ou seja, um conjunto infinito enumerável é aquele que possui infinitos termos, porém 
somos capazes de nomear cada um deles, considere o conjunto X= {x1, x2, x3,…} um 
conjunto finito, encontramos facilmente uma bijeção deste conjunto com os naturais, 
que será dada por f(n) =xn, assim, x1 = f(1), x2 = f(2),…, xn = f(n),… 
Outra variável a ser considerada é a apresentação dos conjuntos numéricos 
em uma ordem reorganizada e diferente da que foi constituída através da história. 
Kindel (1998) afirma que a matemática escolar apresenta convencionalmente os 
conjuntos numéricos da seguinte forma: N Ϲ Z Ϲ Q U I = R Ϲ C, que se baseia no 
processo de axiomatização aritmética, cuja preocupação era a construção da 
aritmética como um sistema orgânico com fundamento lógico. Esta colocação 
simplista leva professores e alunos a acreditar que se “compreendemos bem” os 
números naturais, a construção dos outros conjuntos numéricos flui naturalmente, 
acreditando os estudantes na aplicação direta de propriedades dos naturais a outros 
conjuntos. Um caso exemplar que nos obriga a pensar simultaneamente no didático e 
na matemática é o que entende a fração ¾ como sendo dois naturais 3 e 4, onde se 
pode fazer 3+1 = 4 e 4+1= 5, então a fração ¾ = (3+1) / (4+1) = 4/5. O erro didático, 
neste caso, consiste em que não estão sendo reconhecidas as características 
diferentes dos números introduzidos, o mesmo costuma acontecer a partir da 
apresentação superficial do conjunto dos números irracionais (ROCHA, 2018). 
Neste contexto, onde os conjuntos numéricos estão organizados de forma 
embutida como Matrioskas russas, pouco se percebe em relação ao desenvolvimento 
histórico e suas relações com as necessidades humanas. O estudante pode imaginar, 
seguindo a ordem apresentada, que os números racionais e irracionais surgiram logo 
 
51 
 
 
 
 
após o entendimento sobre números inteiros, no entanto, foram mais de 1500 anos a 
partir de 300 a.C para a aceitação dos números negativos e, além disso, essa 
aceitação demandou discussões e considerações de diversos matemáticos (ROCHA, 
2018). 
 
5 NÚMEROS REAIS 
 
Neste capítulo, você aprenderá sobre o conjunto dos números reais e verificará 
que ele é uma reunião de vários subconjuntos numéricos. Dessa maneira, é possível 
utilizar as notações da teoria de conjuntos para relacionar o conjunto dos números 
reais com os demais conjuntos. 
Dentro dos números reais, podemos estabelecer relações de igualdade ou 
desigualdade entre seus elementos, facilitando o entendimento da representação no 
eixo real. Os conjuntos numéricos podem ser representados em notação de conjuntos 
utilizando chaves e colchetes, ou sobre a reta ordenada, em que os números ficam 
dispostos em ordem crescente. 
 
 
Fonte: https://conhecimentocientifico.r7.com/ 
 
 
52 
 
 
 
 
5.1 Uma definição objetiva 
 
Podemos definir o conjunto dos números reais como o conjunto formado da 
reunião do conjunto dos números racionais com os números irracionais 
(PROFESSOR FERRETO, 2018). 
Ainda, com base nos estudos das relações de conjuntos, podemos dizer que o 
conjunto dos números inteiros está contido no conjunto dos números reais. Podemos 
afirmar, também, que o conjunto dos números reais contém o conjunto dos números 
naturais, inteiros e racionais. 
 
5.2 Conjunto dos números reais 
 
O conjunto dos números reais (R) é formado por todos os números racionais e 
irracionais. Por sua vez, os conjuntos dos números racionais e irracionais abrangem 
outros conjuntos que podem ser verificados a seguir. 
O conjunto dos números naturais é aquele formado pelos números 0, 1, 2, ... 
 
ℕ = {0, 1, 2, 3, 4, 5, ...} 
 
Na sequência, observe o conjunto dos números inteiros, representado por Z, 
formado por números inteiros, positivos e negativos. 
 
ℤ = {..., –4, –3, –2, –1, 0, 1, 2, 3, 4, ...} 
 
O conjunto dos números racionais (ℚ) é composto por números que também 
podem assumir valores positivos e negativos. Porém, nesse conjunto, as frações 
numéricas são incorporadas. Esses números podem estar representados na forma de 
fração ou decimal. No conjunto dos números racionais, estão também presentes as 
dízimas periódicas simples e compostas, sendo esses originados de uma fração 
 
53 
 
 
 
 
possível de ser reescrita na forma a/b, em que a e b são números inteiros, e b ≠ 0 
(ARAÚJO, 2015). 
ℚ = {..., –2, ..., –1,25, ..., –1, ... –0,33, ... 0, ...1, ... , ..., 2, ...} 
 
Por fim, vem o conjunto dos números irracionais (𝕀), que são os decimais que 
não podem ser representados em forma de uma fração. Por exemplo, o número , √p, 
sendo p um número positivo, sem raiz quadrada exata, etc (ARAÚJO, 2015). 
 
 𝕀 = {..., –√2, ..., √2, ... , ...} 
 
Podemos dizer que todos esses conjuntos descritos são subconjuntos do 
conjunto dos números reais. A relação desses subconjuntos, entre si, está 
demonstrada na figura abaixo. Todos eles estão contidos em R: 
 
ℝ = 𝕀 ∪ ℚ 
 
 
 
 
Para o conjunto dos números reais, também são válidas todas as notações da 
teoria de conjuntos. Você pode verificar, de acordo com a figura acima, que o conjunto 
Q está contido no conjunto R, ou simplesmente: 
 
54 
 
 
 
 
 
ℚ ⊂ ℝ 
Ou, ainda, que o conjunto dos números irracionais, I, unido ao conjunto dos 
números racionais, Q, resulta no conjunto dos números reais: 
 
𝕀 ∪ ℚ = ℝ 
 
Essas mesmas relações da teoria de conjuntos podem ser utilizadas com os 
elementos que compõem o conjunto dos números reais, R (ARAÚJO, 2015). 
 
 
 
 
5.3 Propriedades e operações com números reais 
 
a) Propriedades dos números reais 
 
 
55 
 
 
 
 
Ao realizar operações matemáticas com os números reais, as propriedades 
básicas utilizadas com qualquer outro conjunto numérico também se aplicam. Na 
sequência, você relembrará e exercitará um pouco cada uma dessas propriedades e 
verá alguns exemplos. 
 
Não existe divisão de um número real por zero: 
 
 
Zero dividido por qualquer número real será sempre zero: 
 
 
 
Qualquer número real, diferentede zero e elevado a zero, valerá 1: 
 
 
Existe raiz de índice par somente para os números reais positivos: 
 
n sendo um número par: 
 
 
56 
 
 
 
 
 
Qualquer número real, positivo ou negativo, elevado a um expoente par, 
sempre resultará em um número real positivo (ARAÚJO, 2015): 
 
 
 
No conjunto dos números reais, uma multiplicação de potências de mesma 
base apresentará como resultado na conservação da base, com a soma dos 
expoentes: 
 
 
No conjunto dos números reais, uma divisão de potências de mesma base 
apresentará como resultado na conservação da base, com a subtração dos expoentes 
(ARAÚJO, 2015): 
 
 
 
Sempre que um número real estiver representado com uma potência de 
potência, conserve a base e multiplique os expoentes: 
 
 
 
 
57 
 
 
 
 
Potência de sinal negativo inverte o número que está sob a potência, caso 
mude o sinal: 
 
 
 
É possível transformar uma operação de radiciação em uma de potenciação, 
da seguinte maneira: 
 
 
 
 
 
 
b) Operações com números reais 
 
Para realizar as operações matemáticas, inclusive no uso das propriedades que 
você acabou de verificar, algumas regras devem ser seguidas. Acompanhe, a seguir, 
como operar em relação aos sinais (positivo e negativo) dos números reais. 
 
58 
 
 
 
 
Nas operações de adição e subtração, quando os sinais que acompanham os 
números que estão sob a operação forem iguais, o resultado permanecerá com o 
mesmo sinal (ARAÚJO, 2015): 
 
 
 
Nas operações de adição e subtração, quando os sinais que acompanham os 
números que estão sob a operação forem diferentes, o resultado apresentará o 
mesmo sinal do número com maior módulo: 
 
 
 
Nas operações de multiplicação e divisão, quando os sinais que acompanham 
os números que estão sob a operação forem iguais, o resultado apresentará sinal 
positivo (+) (ARAÚJO, 2015): 
 
 
 
Nas operações de multiplicação e divisão, quando os sinais que acompanham 
os números que estão sob a operação forem diferentes, o resultado apresentará sinal 
negativo (–) (ARAÚJO, 2015): 
 
 
59 
 
 
 
 
 
 
 
 
5.4 Tipos de intervalos numéricos 
 
Assim como em qualquer outro conjunto, os números reais (R) podem ser 
representados sobre uma reta orientada. Esta reta tem como origem o ponto 0 (zero) 
e orientação para a direita, indicando o sentido crescente da sequência numérica, 
conforme mostrado na figura abaixo. 
 
 
 
Sobre essa reta, a representação numérica será realizada unidade à unidade, 
pelo conjunto dos inteiros (Z), a fim de facilitar a representação numérica. A partir do 
ponto de origem, para o lado direito, serão colocados os números positivos e, para o 
esquerdo, os negativos (ARAÚJO, 2015), como mostrado na figura abaixo. 
 
 
60 
 
 
 
 
 
 
Ainda sobre essa reta, caso seja necessário, é possível representar os demais 
números racionais e irracionais, complementando o conjunto dos números reais (R), 
conforme a figura abaixo. 
 
 
 
 
Sendo necessário referir-se aos números reais positivos, excluindo-se o zero, 
a notação R+* deverá ser utilizada. De maneira análoga, os números reais negativos, 
excluindo-se o zero, podem ser representados pela notação R-*. Definimos, assim, os 
conjuntos: 
 
R+* = {1, 2, 3, 4, 5, 6, ...} 
 
R–* = {..., –5, –4, –3, –2, –1} 
 
Desse modo, para qualquer a pertencente a R+*, dizemos que a é maior que 
zero (ARAÚJO, 2015): 
 
a > 0, ∀ a ∈ ℝ+* 
 
 
61 
 
 
 
 
Também de forma semelhante: 
 
a < 0, ∀ a ∈ ℝ–* 
 
A partir daí você já consegue definir o conjunto dos números reais maiores que 
zero (positivos) sobre a reta real. 
 
 
 
Na figura acima, um círculo aberto sobre o zero indica que o mesmo não está 
dentro do intervalo numérico representado. O mesmo pode ser observado na figura 
abaixo, a seguir, com a representação dos números reais negativos, ou menores que 
zero. 
 
 
 
O intervalo da penúltima figura pode ser, ainda, representado como: 
 
 
62 
 
 
 
 
em que o colchete aberto, ou os parênteses, indica que o número que vem após não 
pertence ao intervalo. Já o intervalo da última figura, em que o número que precede o 
colchete não pertencerá ao intervalo, pode ser expresso por: 
 
 
 
Sempre que for necessário representar conjuntos numéricos em uma reta, caso 
o primeiro número da sequência a ser representada pertença ao conjunto desejado, o 
círculo deverá ser preenchido, o que também deverá ocorrer com o último número da 
sequência a ser representada (ARAÚJO, 2015). Como exemplo, verifique que, na 
figura a seguir, está representado o intervalo entre o número 2, inclusive, até o número 
4, que também pertencerá ao conjunto da expressão: 
 
 
 
 
 
Verifique, agora, este outro intervalo: 
 
 
63 
 
 
 
 
]–3, 2] 
 
O colchete aberto em –3 indica que esse número não pertence ao intervalo que 
iremos representaremos. Por outro lado, o número 2 ainda está dentro desse conjunto 
(ARAÚJO, 2015). Assim, queremos representar na reta real o conjunto de todos os x, 
maiores que –3 e menores ou iguais a 2 (Figura 8), ou pela expressão: 
 
{x ∈ ℝ│–3 < x ≤ 2} 
 
 
 
Quando nenhum dos dois extremos do intervalo que queremos representar 
pertencer ao conjunto, os dois colchetes ficarão abertos, e, consequentemente, na 
reta, os círculos sobre os números também. Veja o exemplo a seguir: 
 
]–1, +3[ 
 
Temos um intervalo entre -1 e +3, em que esses dois números não pertencem 
ao intervalo: 
 
{x ∈ ℝ│–1 < x < +3} 
 
ou na reta representada na figura a seguir. 
 
 
64 
 
 
 
 
 
 
Sejam três números, a, b e c. Estando a à direita de b na reta real, temos a 
garantia que a é maior que b; e estando c à esquerda de b, temos a garantia que c é 
menor que b (ARAÚJO, 2015), o que pode ser representado pelas expressões a 
seguir, respectivamente: 
 
a > b; 
 
c < b 
 
Ainda sobre os números a, b e c, podemos escrever as relações entre eles em 
uma única expressão: 
 
c < b < a 
 
em que você lerá que b é menor que a e maior que c. Assim, você também pode 
verificar que c é menor que a: 
 
c < a 
 
Com exemplo numérico, seguindo a mesma ordem apresentada nas relações 
acima, sejam os números –7, –3 e 2: 
 
2 > –3 
–7 < –3 
 
65 
 
 
 
 
– 7< –3 < 2 
 
e ainda: 
–7 < 2 
 
 
 
 
6 FUNÇÕES: GRÁFICOS, COMPOSTAS E INVERSAS 
 
6.1 Uma definição de função 
 
Para compreendermos o que é uma função, antes devemos entender o que é 
um conjunto, conceito relativamente simples que é fundamental na matemática. Um 
conjunto, de acordo com Neri e Cabral (2011, p. 1) “[...] é constituído de objetos 
chamados elementos. Usamos a notação x ∈ A (lê-se x pertence a A) para dizer que 
x é um elemento do conjunto A. Se x não é um elemento de A, então escrevemos x ∉ 
A (lê-se x não pertence a A)”. 
Em outras palavras, um conjunto é uma coleção qualquer de objetos, como, 
por exemplo: 
 conjunto dos números primos: A = {2, 3, 5, 7, 11, 13, …}; 
 conjunto das instituições de ensino: B = {públicas, privadas, 
comunitárias,…}. 
Os conjuntos são representados por letras maiúsculas, ao passo que seus 
elementos (itens dentro do conjunto) são dispostos entre chaves, separados por 
vírgula ou ponto e vírgula. Quanto aos subconjuntos, diz-se, por exemplo, que o 
 
66 
 
 
 
 
conjunto dos números naturais N é subconjunto do conjunto dos números inteiros ℤ 
se e somente se todos os elementos do conjunto são também elementos do conjunto 
ℤ. Então, pode-se dizer que N está condido em ℤ (figura abaixo). Para expressar 
simbolicamente essa relação, usam-se (está contido), (contém) ou (não está contido) 
(FRIEDRICH; MANZINI, 2015). 
 
 
 
Os números são uma invenção humana. Na Antiguidade, o crescimento da 
população e o consequente aumento da complexidade das sociedades, cujo comércio 
foi se tornando cada vez mais intenso, motivaram a criação de formas para 
representar as quantidades. Foi então que surgiramos números naturais, que mais 
tarde seriam acompanhados pelos demais conjuntos numéricos: inteiros, racionais, 
irracionais, reais, complexos, etc. (FRIEDRICH; MANZINI, 2015). 
Em nosso cotidiano, relacionamos diferentes grandezas duas a duas. Por 
exemplo, quando fazemos compras, relacionamos o produto com o seu preço; quando 
extraímos o extrato de uma conta, relacionamos o saldo com a data em que o extrato 
foi gerado; quando analisamos uma conta de energia elétrica, relacionamos o valor 
com a quantidade de kWh/hora consumido em um mês; etc. Essas relações podem 
ser expressas por diagramas. 
Por exemplo, supomos que, ao fazer compras na padaria, o preço pago pelo 
presunto dependa da quantidade de gramas comprada e que ele tenha sido modelado 
por uma função afim do tipo Algumas quantidades estão representadas no 
diagrama da figura abaixo, em que há os conjuntos A e B, chamados, 
respectivamente, “conjunto de partida” e “conjunto de chegada” 
 
 
67 
 
 
 
 
 
 
Poderíamos estar interessados em representar essa relação em um plano 
cartesiano. Ou seja, com os pares ordenados (valores de x e de y) marcar o ponto no 
gráfico e traçar a curva que expresse essa relação (figura abaixo). 
 
 
 
Relações binárias como as que acabamos de mencionar foram descobertas na 
Antiguidade. Pitágoras, por exemplo, descobriu as relações aritméticas das notas 
musicais, e Galileu Galilei, a relação entre a distância percorrida por um objeto e o 
intervalo de tempo. Hoje, nas mais diversas áreas analisamos fenômenos em que são 
estabelecidas relações que evidenciam como a variação de uma grandeza depende 
da variação de outra. Por exemplo, o número de leitos disponíveis em um hospital 
depende da demanda por leitos, o gasto de combustível depende da quantidade de 
 
68 
 
 
 
 
quilômetros rodados, os níveis de poluição dependem da degradação da natureza, 
etc. (FRIEDRICH; MANZINI, 2015). 
No exemplo do preço pago pelo presunto, deduzimos que existe uma relação 
entre o peso x do presunto que será comprado (em gramas) e o valor y a ser pago 
(expresso em reais). Mais especificamente, a relação é: 
 
 
 
Isso significa que, se quisermos comprar 350 gramas de presunto, pagaremos 
 A equação dada descreve como o preço depende do peso do 
presunto. Nessa equação, a variável x é denominada “variável independente”, e y é 
chamada “variável dependente”, uma vez que seu valor é obtido a partir de x. A regra 
que permite obter o valor da variável dependente a partir da variável independente é 
denominada função (GOMES, 2018). 
Gomes (2018, p. 256) define função da seguinte forma: “Uma função f é uma 
relação que associa a cada elemento x de um conjunto D, chamado domínio, um único 
elemento ou y de um conjunto C, denominado contradomínio”. 
 
6.2 Função composta 
 
Neste tópico, estudaremos uma função especial: a função composta. Uma 
função composta é obtida a partir de duas ou mais funções respeitando uma 
determinada condição. Veremos neste tópico como se dá o processo de construção 
dessa função e estudaremos ainda algumas de suas propriedades (COSTA et al., 
2017). 
 
 
69 
 
 
 
 
 
 
Fonte: https://brasilescola.uol.com.br/ 
Suponhamos que tivéssemos duas funções f : A → B e g : B → C. Note que, 
dado um elemento x ∈ A, usando a função f, obteremos um elemento y = f (x) ∈ B e, 
usando a função g, obteremos um elemento z = g(x) ∈ C. Dessa forma, podemos 
obter assim uma função h : A → C, que associa a cada x ∈ A um elemento z = h(x) ∈ 
C. Note ainda que a única condição que foi imposta para a existência da função ℎ é 
que Im(f) ⊂ D(g) ou ainda que o contradomínio da função f fosse igual ao domínio da 
função g (COSTA et al., 2017). A figura a seguir ilustra o que acabamos de afirmar. 
 
 
70 
 
 
 
 
 
Fonte: DEaD | IFCE 
A figura acima estabelece uma relação entre as funções f, g e ℎ. A nova função 
ℎ foi obtida da combinação das funções f e g. A este processo damos o nome de 
composição de função. De maneira formal, temos a seguinte definição: 
 
 
 
Observe que na definição acima, faz-se necessário que a imagem de f esteja 
contida no domínio de g. Sendo assim, em termos gerais, para acharmos o valor de 
g ( f ( x )), inicialmente consideramos um x ∈ A e, a partir dele, determinamos o valor 
de f (x) . Na sequência, com a função g determinamos o valor de g (f ( x )). O exercício 
resolvido abaixo ilustra esse processo. 
Exercício Resolvido 1: Sejam as funções reais f e g definidas por 
 
 
71 
 
 
 
 
 
 
 
 
 
 
Para calcularmos o valor de g (f (-2)) e f (g ( -2)), temos duas maneiras: A 
primeira seria substituindo cada um dos valores pedidos nas funções correspondentes 
(COSTA et al., 2017). Abaixo temos o processo detalhado: 
 
 
72 
 
 
 
 
 
 
Outra maneira é determinarmos a lei de formação das funções compostas e 
depois calculamos as imagens dos valores pedidos nas respectivas leis. Como no 
item a) já foram determinadas tais leis de formação, vamos agora determinar os 
valores de g (f (-2)) e f (g (-2)) diretamente na lei de g (f (x)) e f (g (x)), respectivamente 
(COSTA et al., 2017). Temos 
 
 
 
 
 
Queremos determinar os valores de x para o qual tenhamos g(f (x)) 10 = . 
Dessa forma, teremos 
 
 
73 
 
 
 
 
 
 
6.3 Função Inversa 
 
Neste segundo tópico, entenderemos inicialmente os conceitos de função 
injetora, sobrejetora e bijetora. Aprenderemos a identificar tais funções a partir do 
diagrama de flechas e pela análise de seus gráficos. Exibiremos ainda a definição de 
função inversa, mostraremos o processo de obtenção da lei de formação e veremos 
a propriedade existente entre o gráfico de uma função bijetora e o de sua inversa. 
Para iniciamos nossos estudos, consideremos as funções f : A → B e g : C → 
D representadas pelos diagramas de flecha abaixo: 
 
 
 
74 
 
 
 
 
Ao analisarmos os diagramas das funções (figura acima), observamos que 
 
 
 
De maneira formal, podemos dizer que 
 
 
Ou equivalentemente, usando a contra-positiva da Definição 4.2, temos 
 
 
 
Retornando a última figura, temos que, apesar da função g não ser injetora, ela 
apresenta uma propriedade interessante: todo elemento do seu contradomínio D é 
imagem de algum elemento de C (COSTA et al., 2017). De maneira formal, podemos 
dizer que 
 
75 
 
 
 
 
 
 
Dessa forma, analisando as funções f e g, apresentadas no início do tópico, 
notamos ainda que a função f não é uma função sobrejetora, pois Im(f) ≠ B. Por outro 
lado, a função g é sobrejetora, pois Im(g) = D (COSTA et al., 2017). 
Observe esse exemplo de funções sobrejetivas. 
Considere f : A → B onde A = { -2, -1,0,1,2} e B = {0,1,4} definida pela lei f(x) 
= x². Note que f é sobrejetora, pois, para qualquer elemento y B ∈, existe um elemento 
x A ∈ tal que y = x². 
Note que todos os elementos de B são imagens de pelo menos um elemento 
de A: 0 = f (0);1 = f (1) = f ( -1) e 4 = f (2) = f ( -2). 
 
 
De maneira geral, para verificarmos se uma função é ou não sobrejetiva, 
devemos proceder da seguinte forma: inicialmente devemos procurar explicitar x em 
função de y e depois verificar as possíveis restrições para os valores de x, 
comparando com os possíveis valores que podem ser tomados no domínio. 
De maneira formal, temos a seguinte definição 
 
76 
 
 
 
 
 
 
Daremos agora um exemplo de funções bijetoras: 
 
Considere a função f : A → B na qual A = {2,3,4,5} B = {4,5,6,7} definida pela 
lei f (x) = x + 2. 
 
 
 
 
Observe que a função é sobrejetora, pois qualquer que seja y ∈ B existe x ∈ A 
tal que y = f (x). Por outro lado, ela também é injetora, uma vez que pontos diferentes 
em seu domínio têm imagens diferentes em seu contradomínio. 
Outra forma de determinar se uma função é injetora, sobrejetora ou bijetora é 
através do seu gráfico. O teorema a seguir fornece a caracterização gráfica: 
 
 
77 
 
 
 
 
 
 
EXEMPLO: Determine,

Outros materiais