Buscar

5 Resistência, Ruptura e Comportamento do Solo

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 3, do total de 77 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 6, do total de 77 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes
Você viu 9, do total de 77 páginas

Faça como milhares de estudantes: teste grátis o Passei Direto

Esse e outros conteúdos desbloqueados

16 milhões de materiais de várias disciplinas

Impressão de materiais

Agora você pode testar o

Passei Direto grátis

Você também pode ser Premium ajudando estudantes

Prévia do material em texto

DESCRIÇÃO
O comportamento na ruptura dos solos, a resistência ao cisalhamento e o critério de Mohr-
Coulomb.
PROPÓSITO
Compreender a ruptura em solos e sua expressão em parâmetros de resistência conforme o
Critério de Ruptura de Mohr-Coulomb, quantificando a resistência por ensaios de laboratório e
de campo e apontando os fatores e as características causadores de comportamentos distintos
do solo na ruptura.
PREPARAÇÃO
Antes de iniciar este conteúdo, tenha em mãos uma calculadora científica.
OBJETIVOS
MÓDULO 1
Reconhecer a resistência em solos e sua expressão em termos matemáticos
MÓDULO 2
Calcular a resistência ao cisalhamento dos solos por ensaios de laboratório e de campo
MÓDULO 3
Identificar o comportamento típico das areias ideais na ruptura
MÓDULO 4
Identificar o comportamento típico das argilas ideais e de solos não ideais na ruptura
RESISTÊNCIA AO CISALHAMENTO DOS
SOLOS
MÓDULO 1
 Reconhecer a resistência em solos e sua expressão em termos matemáticos
RESISTÊNCIA E RUPTURA EM SOLOS
A especialista Mirella Dalvi dos Santos fala sobre resistência e ruptura em solos
ESTADOS DE TENSÕES
DEFINE-SE TENSÃO COMO A INTENSIDADE DE FORÇA
APLICADA EM UMA UNIDADE DE ÁREA EM CORPO.
Quando essa tensão ocorre ortogonalmente, diz-se que se trata de uma tensão normal (σ) e,
quando ocorre cortante, diz-se que são tensões cisalhantes (τ).
Em um corpo sólido, existem três planos mutualmente ortogonais em que as tensões
cisalhantes são nulas. Esses planos são chamados de planos principais, e as tensões
normais que neles atuam são chamadas tensões principais (σ1, σ2 e σ3) e identificadas pelo
seu valor algébrico: tensão principal maior, tensão principal intermediária e tensão principal
menor, respectivamente.
O estado de tensões é a combinação de tensões normais e cisalhantes no qual um corpo ou
um elemento desse corpo esteja submetido. Assim, em um cubo elementar, o estado de
tensões pode ser expresso por:
 
Imagem: Mirella Dalvi dos Santos
 Estado de tensões em cubo elementar.
O Princípio das Tensões Efetivas de Terzaghi separa as tensões normais em solos em duas
parcelas: uma que atua na água, igualmente em todas as direções, chamada poro-pressão (u);
e outra que age nos grãos e consiste no “saldo” entre a tensão total e a poro-pressão,
chamada tensão efetiva (σ’). Esse princípio também preconiza que todas as variações de
volume e de resistência estão ligadas às tensões efetivas. Sendo assim, para se reconhecer a
resistência em solos, é importante conhecer o estado de tensões efetivas a que um elemento é
submetido.
A relação entre a tensão efetiva vertical e a horizontal é o coeficiente de empuxo K. Quando as
cargas são consequentes de processos naturais de deposições, as tensões são chamadas de
geostáticas, e K equivale ao empuxo no repouso (K0), que pode ser expresso pela fórmula de
Jaky:
 
Imagem: Mirella Dalvi dos Santos
 Tensões geostáticas.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Sendo o ângulo de atrito interno, que estudaremos mais à frente.
Para argilas sobreadensadas, o coeficiente de empuxo no repouso pode ser expresso pela
equação a seguir, em que RSA (ou OCR – overconsolidation ratio) é a razão de
sobreadensamento. Nota-se, portanto, que K0 é influenciado pelo processo de formação e
deposição dos solos, além do seu histórico de tensões.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
K0 = = 1 − sen  φ'
σ'h
σ'v
φ’
K0 =(1 − sen  φ')(RSA)
sen  φ'
As equações a seguir são utilizadas para determinar as tensões normal e cisalhante (σα e τα)
em um plano paralelo à direção de σ2 cuja normal faz um ângulo α com a direção σ1. É
desejável conhecer essas tensões, pois sabe-se que essa direção está relacionada à ruptura
dos solos.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
 
Imagem: Mirella Dalvi dos Santos
 Estado de tensões em um plano paralelo à direção de σ2.
Essas tensões podem ser expressas graficamente por meio de um círculo de centro em 
 e raio . Esse círculo foi idealizado pelo engenheiro Otto Mohr, em 1882
e, por isso, é chamado Círculo de Mohr:
σα =( )+( )cos  2ασ1+σ32
σ1−σ3
2
τα =( )sen  2ασ1−σ32
[( ), 0]σ1+σ3
2
( )σ1−σ3
2
 
Imagem: Mirella Dalvi dos Santos
 Círculo de Mohr das Tensões.
Os Círculos de Mohr podem ser traçados a partir de pares de tensão normal e cisalhante para
um plano α qualquer ou a partir de duas tensões principais. Traçado o círculo, é possível
conhecer o estado de tensões para qualquer outro plano de interesse.
Esses círculos podem ser representados em termos de tensões efetivas ou totais. Como a
poro-pressão atua em todos os planos com igual magnitude sem afetar as tensões cisalhantes
(líquidos não possuem resistência ao cisalhamento), o Círculo de Mohr das tensões efetivas
tem por abscissas as tensões normais efetivas, e por ordenadas, a mesma tensão cisalhante
do Círculo de Mohr das tensões totais. Esses dois círculos distam do valor da poro-pressão:
 
Imagem: Mirella Dalvi dos Santos
 Círculos de Mohr das tensões efetivas e totais.
Em Mecânica dos Solos, utiliza-se a convenção de sinais com tensões normais positivas
quando o esforço é de compressão, e negativa quando o esforço é de tração. Já os esforços
cisalhantes são positivos quando “giram” no sentido trigonométrico e negativos quando “giram”
no sentido horário.
RUPTURA EM SOLOS
PODEMOS DEFINIR RUPTURA COMO O ESTADO DE TENSÕES
LIMITE NO QUAL UM MATERIAL ATINGE E SE DEFORMA
INDEFINIDAMENTE.
Associada à deformação de ruptura está a tensão de ruptura ou tensão última (σf). Em solos,
a ruptura ocorre por cisalhamento, de modo que a tensão última seja expressa também pela
tensão cisalhante limite (τf), chamada resistência ao cisalhamento do solo.
Os critérios de ruptura são teorias de resistência que procuram estabelecer um padrão
matemático capaz de determinar o estado de tensões limite para dado material. Para os solos,
o que melhor traduz a ruptura é o Critério de Ruptura de Mohr-Coulomb.
 
Imagem: Shutterstock.com
Os critérios de ruptura, de acordo com Pinto (2006, p. 263), são:
Critério de Coulomb
“[...] não há ruptura se a tensão de cisalhamento não ultrapassar um valor dado pela expressão
c + fσ, sendo c e f constantes do material e σ a tensão normal existente no plano de
cisalhamento.”
Critério de Mohr
“[...] não há ruptura enquanto o círculo representativo do estado de tensões se encontrar no
interior de uma curva, que é a envoltória dos círculos relativos a estados de ruptura,
observados experimentalmente para o material.”
O Critério de Ruptura de Mohr-Coulomb define que há uma relação entre a tensão cisalhante e
a tensão normal na qual, se atingida, provoca a ruptura do material. Essa relação pode ser
graficamente expressa pela envoltória de resistência
 
Imagem: Mirella Dalvi dos Santos
 Ruptura e Círculo de Mohr.
Na ruptura, tem-se que a declividade do plano de ruptura é α e vale:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
ENVOLTÓRIA DE RESISTÊNCIA
A envoltória é uma característica intrínseca de cada material, obtida experimentalmente por
meio de ensaios de resistência realizados em laboratório ou em campo. Como em solos a
α = = 45° +
90+φ'
2
φ'
2
envoltória é em realidade curva, quando precisamos determinar a resistência ao cisalhamento
de um solo devemos tomar um intervalo de tensões compatível àquele que o solo virá de fato
sofrer. Em solos sem cimentação c’ é apenas um ajuste linear de reta, pois o solo não
apresenta coesão verdadeira.
 
Imagem: Mirella Dalvi dos Santos
 Envoltória real e ajustada dos solos.
A equação a seguir é a expressão matemática do Critério de Mohr-Coulomb, que ajusta
linearmente os pontos dos Círculos de Mohr que atingem a ruptura.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Em que τf é a resistência ao cisalhamento disponível (ou limite) naruptura, σ’f é a tensão
normal efetiva no plano de ruptura, c’ é o intercepto efetivo de coesão e é o ângulo de atrito
efetivo. Esses dois últimos são chamados parâmetros de resistência dos solos.
A seguir, diferentes estados de tensões em relação à envoltória de resistência:
τf = c
' + σ'f tan  φ'
φ'
 
Imagem: Mirella Dalvi dos Santos
 Estados de tensões e a envoltória de resistência.
Podemos dizer que:
TENSÃO CISALHANTE INFERIOR À RESISTÊNCIA
Quando o estado de tensões é tal que as tensões cisalhantes são inferiores à resistência ao
cisalhamento disponível na ruptura, não há ruptura. O Círculo de Mohr está abaixo da
envoltória de resistência – caso A.
TENSÃO CISALHANTE IGUAL À RESISTÊNCIA
Quando o estado de tensões é tal que há uma tensão cisalhante que se iguala à resistência ao
cisalhamento disponível na ruptura, há ruptura. A envoltória de resistência tangencia o Círculo
de Mohr nesse ponto – caso B.
TENSÃO CISALHANTE SUPERIOR À RESISTÊNCIA
Não é possível um estado de tensões em que a tensão cisalhante ultrapasse a resistência ao
cisalhamento disponível na ruptura, pois antes disso houve a ruptura. Ou seja, o caso C
representa um estado de tensões fisicamente impossível.
RESISTÊNCIA DRENADA E NÃO DRENADA
Em campo, o solo possui um estado de tensões inicial e, quando implantamos um aterro na
superfície ou uma fundação de um edifício, por exemplo, impomos um novo estado de tensões.
javascript:void(0)
javascript:void(0)
javascript:void(0)
Naturalmente, queremos implantar essas obras sem que se esgote a capacidade que o solo
tem de resistir aos novos esforços. Ou seja, sem atingir sua resistência ao cisalhamento limite,
pois, quando isso ocorre, temos a ruptura.
 
Foto: Shutterstock.com
Segundo a Lei de Darcy, ao se aplicar um carregamento não pode haver variação de volume
instantânea. E, segundo o Princípio das Tensões Efetivas, só pode haver variação nas tensões
efetivas se houver variação de volume. Portanto, quando mudamos o estado de tensões do
solo, instantaneamente quem suporta o carregamento é a água presente nos poros do solo, via
um excesso de poro-pressão.
A água, estressada, vai procurar sair dos vazios do solo em busca de uma pressão mais
favorável, dissipando o excesso de poro-pressão. Esse processo pode ocorrer rapidamente ou
lentamente, a depender do coeficiente de permeabilidade do solo. Como a carga não muda
com o tempo, essa dissipação de poro-pressão deve ocorrer de modo a aumentar a tensão
efetiva para manter a equação do princípio em equilíbrio:
t = 0 →  σ = σ' + u
t = 0+ →  σ + Δσ = σ' + u + Δu
t > 0 → σ + Δσ = σ' + Δσ' + u
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Quando um solo é solicitado de modo que a sua resistência ao cisalhamento disponível seja
atingida sem que haja tempo suficiente para que ocorra a dissipação da poro-pressão, diz-se
que o solo rompe por sua resistência não drenada. Caso contrário, quando a ruptura ocorre
com dissipação de poro-pressão, o solo mobiliza a sua resistência drenada.
 
Foto: Shutterstock.com
É importante saber qual tipo de solicitação teremos em um solo para expressar corretamente
sua resistência em termos de carregamentos drenados ou não drenados, pois os valores
dessas resistências são diferentes: como ao fim da dissipação da poro-pressão o solo ganhou
tensão efetiva, a resistência drenada é maior que a resistência não drenada.
Sabemos que as areias possuem coeficiente de permeabilidade alto, o que significa que a
água consegue sair dos poros com facilidade. Dizemos, portanto, que a sua resposta em
relação ao carregamento é drenada, e a ruptura ocorre quando a resistência drenada é
mobilizada. Já as argilas possuem baixo coeficiente de permeabilidade, o que faz com que a
água demore certo tempo para sair dos poros do solo. Logo, se a ruptura ocorre sem a saída
de água dos poros, a resistência mobilizada é a não drenada.
 
Foto: Shutterstock.com
Digamos que um solo foi solicitado e não rompeu. Ou seja, o estado de tensões a que foi
submetido não atingiu a resistência não drenada. Com o tempo, o solo ganhará tensão efetiva
e a resistência ao cisalhamento disponível será maior, referente a uma resistência drenada. Por
isso, as resistências não drenada e drenada são chamadas também de resistência a curto e
longo prazo, respectivamente.
O comportamento do solo ser drenado ou não drenado não depende apenas do coeficiente de
permeabilidade do material, mas também da velocidade de aplicação do carregamento.
CARREGAMENTOS COMUNS
Carregamentos comuns, como a construção de edifícios e aterros, não são instantâneos.
Assim, entre uma etapa e outra de construção, até mesmo uma argila pode ganhar resistência
caso a água consiga sair dos poros do solo.
CARREGAMENTOS EXCEPCIONAIS
Carregamentos excepcionais como choques e vibrações são instantâneos, e a sua intensidade
pode ser tal que cause um carregamento não drenado em uma areia, que venha a romper com
a mobilização da resistência não drenada.
CAMINHOS DE TENSÕES
javascript:void(0)
javascript:void(0)
Ao se aplicar um carregamento ou descarregamento, σ’1 e σ’3 variam. A representação dessas
tensões em um plano p’ x q’ forma os caminhos de tensões, seja em termos de tensões totais
ou efetivas.
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Quando o carregamento é drenado, e não existe excesso de poro-pressão no processo de
carregamento, o caminho de tensões efetivas (CTE) é coincidente com o de tensão total (CTT).
Quando o estado de tensões é tal que se atinge a ruptura, mobiliza-se a resistência drenada
(sd).
Quando a solicitação é não drenada, o excesso de poro-pressão faz com que os caminhos de
tensões efetivas se afastem do de tensão total com o valor da poro-pressão. Quando o estado
de tensões é tal que se atinge a ruptura, mobiliza-se a resistência não drenada (su).
 
Imagem: Mirella Dalvi dos Santos
 Caminhos de tensões totais e efetivas.
Note que p’ e q’ são as coordenadas dos pontos máximos do Círculo de Mohr. Logo, se o
ajuste dos pontos em que há ruptura é chamado de envoltória de resistência, obtida do gráfico
σ x τ, podemos expressar a envoltória de resistência também em parâmetros obtidos do gráfico
p’ x q’:
p' =      q ' =
σ'1+σ'3
2
σ'1−σ'3
2
sen  φ = tan  β     c = dcos  φ
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
MÃO NA MASSA
1. O COEFICIENTE QUE RELACIONA AS TENSÕES EFETIVAS
HORIZONTAL E VERTICAL GEOSTÁTICAS EM UM SOLO É DADA PELO:
A) Coeficiente de influência
B) Coeficiente de empuxo no repouso
C) Coeficiente de empuxo ativo
D) Coeficiente de compressão
E) Coeficiente de adensamento
2. A RESISTÊNCIA EM SOLOS PODE SER MOBILIZADA DE FORMA
DRENADA OU NÃO DRENADA, A DEPENDER DA VELOCIDADE DO
CARREGAMENTO E DAS CARACTERÍSTICAS DO MATERIAL. UM
DEPÓSITO DE AREIA SOFREU UM CHOQUE DEVIDO À QUEDA DE UM
AVIÃO. SABENDO QUE HOUVE RUPTURA, PODE-SE DIZER QUE:
A) A ruptura ocorreu pela mobilização da resistência não drenada, pois o coeficiente de
permeabilidade da areia é alto.
B) A ruptura ocorreu pela mobilização da resistência drenada, pois o coeficiente de
permeabilidade da areia é alto.
C) A ruptura ocorreu pela mobilização da resistência não drenada, pois a velocidade do
carregamento permitiu a dissipação da poro-pressão.
D) A ruptura ocorreu pela mobilização da resistência não drenada, pois a velocidade do
carregamento não permitiu a dissipação da poro-pressão.
E) A ruptura ocorreu pela mobilização da resistência drenada, pois a velocidade do
carregamento não permitiu a dissipação da poro-pressão.
3. SABE-SE QUE AS TENSÕES EFETIVAS VERTICAL E HORIZONTAL EM
UM ELEMENTO DE SOLO SÃO DE 20 E 12KPA, RESPECTIVAMENTE. O
COEFICIENTE DE EMPUXO DESSE ELEMENTO É DE:
A) 1,67
B) 8
C) 0,8
D) 0,4
E) 0,6
4. SABENDO QUE UM SOLO APRESENTA EM CAMPO TENSÃO NORMAL
EFETIVA VERTICAL E HORIZONTAL DE 80 E 50KPA, RESPECTIVAMENTE,
A TENSÃO NORMAL EFETIVA EM UM PLANO CUJA NORMALFAZ UM
ÂNGULO DE 30° COM A DIREÇÃO DA TENSÃO PRINCIPAL MAIOR É, EM
KPA:
A) 32,5
B) 130
C) 72,5
D) 15
E) 65
5. DETERMINOU-SE PARA UM SOLO ENSAIADO EM LABORATÓRIO QUE
O INTERCEPTO DE COESÃO E O ÂNGULO DE ATRITO EFETIVO SEJAM
DE 11KPA E 29°. SE A TENSÃO NORMAL EFETIVA DE 100KPA PROVOCA
A RUPTURA, A RESISTÊNCIA AO CISALHAMENTO CORRESPONDENTE É
DE:
A) 66,4kPa
B) 48,4kPa
C) 106,1kPa
D) 55,4kPa
E) 98,5kPa
6. A MÁXIMA TENSÃO CISALHANTE EM UM SOLO OCORRE A UM PLANO
CUJA NORMAL FAZ, COM A DIREÇÃO DA TENSÃO NORMAL MAIOR, UM
ÂNGULO Α DE:
A) 90°
B) 45°
C) 30°
D) 60°
E) 180°
GABARITO
1. O coeficiente que relaciona as tensões efetivas horizontal e vertical geostáticas em
um solo é dada pelo:
A alternativa "B " está correta.
O coeficiente que relaciona tensões geoestáticas é o coeficiente de empuxo no repouso:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. A resistência em solos pode ser mobilizada de forma drenada ou não drenada, a
depender da velocidade do carregamento e das características do material. Um depósito
de areia sofreu um choque devido à queda de um avião. Sabendo que houve ruptura,
pode-se dizer que:
A alternativa "D " está correta.
Embora a permeabilidade das areias seja alta, de modo que a maioria das solicitações nesse
material resultam em carregamentos drenados, o caso apresentado no enunciado é diferente.
K0 = = 1 − sen  φ'
σ'h
σ'v
O choque de um avião é instantâneo, portanto, a poro-pressão não tem tempo de ser
dissipada, e a ruptura ocorre de forma não drenada.
3. Sabe-se que as tensões efetivas vertical e horizontal em um elemento de solo são de
20 e 12kPa, respectivamente. O coeficiente de empuxo desse elemento é de:
A alternativa "E " está correta.
O coeficiente de empuxo no repouso é dado por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
4. Sabendo que um solo apresenta em campo tensão normal efetiva vertical e horizontal
de 80 e 50kPa, respectivamente, a tensão normal efetiva em um plano cuja normal faz um
ângulo de 30° com a direção da tensão principal maior é, em kPa:
A alternativa "C " está correta.
A tensão efetiva nesse plano pode ser calculada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
5. Determinou-se para um solo ensaiado em laboratório que o intercepto de coesão e o
ângulo de atrito efetivo sejam de 11kPa e 29°. Se a tensão normal efetiva de 100kPa
provoca a ruptura, a resistência ao cisalhamento correspondente é de:
A alternativa "A " está correta.
A RESISTÊNCIA EM TERMOS MATEMÁTICOS
6. A máxima tensão cisalhante em um solo ocorre a um plano cuja normal faz, com a
direção da tensão normal maior, um ângulo α de:
K0 = = = 0,6
σ'h
σ'v
12
20
σα =( )+( )cos  2α = + cos  2 .  30° = 72,5 kPaσ1+σ32
σ1−σ3
2
80+50
2
80−50
2
A alternativa "B " está correta.
A tensão cisalhante é dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
A maior tensão cisalhante será aquela em que sen2α vale 1, ou seja:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
GABARITO
TEORIA NA PRÁTICA
Uma areia compacta foi ensaiada em laboratório e foram encontrados os parâmetros de
resistência: e para o intervalo de tensões normais de 50 a 300kPa.
Sabendo que em campo essa areia deve ser submetida a uma tensão normal efetiva vertical
de 200kPa, responda:
a) Qual o coeficiente de empuxo no repouso desse solo?
b) Qual a tensão normal horizontal para a tensão normal efetiva vertical dada?
c) Há ruptura para o dado estado de tensões?
RESOLUÇÃO
ESTADOS DE TENSÕES E A RUPTURA
τα =( )sen  2ασ1−σ32
sen  2α = 1 → 2α = arcsen  1 →  α = = 45°arcsen 1
2
c’  =  17 kPa φ'  =  32°
VERIFICANDO O APRENDIZADO
1. UMA ARGILA APRESENTOU RUPTURA PARA TENSÕES NORMAL E
CISALHANTE DE 50 E 30KPA, RESPECTIVAMENTE. SABENDO QUE O
INTERCEPTO COESIVO É ZERO, O ÂNGULO DE ATRITO INTERNO
EFETIVO DESSE SOLO DEVE SER DE:
A) 37°
B) 31°
C) 60°
D) 53°
E) 22°
2. UM SOLO ENCONTRA-SE EM CAMPO COM TENSÃO NORMAL EFETIVA
VERTICAL DE 40KPA E COEFICIENTE DE EMPUXO NO REPOUSO DE 0,6.
A TENSÃO NORMAL EFETIVA HORIZONTAL DESSE MATERIAL E O
ÂNGULO DE ATRITO INTERNO DEVEM SER, RESPECTIVAMENTE:
A) 40kPa e 37°.
B) 66kPa e 24°.
C) 24kPa e 41°.
D) 66kPa e 37°.
E) 24kPa e 24°.
GABARITO
1. Uma argila apresentou ruptura para tensões normal e cisalhante de 50 e 30kPa,
respectivamente. Sabendo que o intercepto coesivo é zero, o ângulo de atrito interno
efetivo desse solo deve ser de:
A alternativa "B " está correta.
 
A relação entre as tensões normais e cisalhantes para um solo na ruptura é dado pela
envoltória de resistência de Mohr-Coulomb:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
2. Um solo encontra-se em campo com tensão normal efetiva vertical de 40kPa e
coeficiente de empuxo no repouso de 0,6. A tensão normal efetiva horizontal desse
material e o ângulo de atrito interno devem ser, respectivamente:
A alternativa "E " está correta.
 
O coeficiente que relaciona a tensão efetiva horizontal e vertical geostática é o coeficiente de
empuxo no repouso, dado por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
MÓDULO 2
τf = c' + σ'f tan  φ' → tan  φ' = = = 0,6
( τf−c' )
σ'f
30−0
50
φ' = artan  0,6 = 31°
K0 = = 1 − sen  φ
'σ
'
h
σ'v
σ'h = K0. σ'v = 0,6 .  40 = 24 kPa
0,6 = 1 − sen  φ' →   sen  φ' = −(0,6 − 1)= 0,4 →  φ' = arcsen 0,4 = 24°
 Calcular a resistência ao cisalhamento dos solos por ensaios de laboratório e de
campo
ENSAIOS PARA A DETERMINAÇÃO DA
RESISTÊNCIA EM SOLOS
A especialista Mirella Dalvi dos Santos fala sobre ensaios para a determinação da resistência
em solos
CISALHAMENTO DIRETO
O ensaio de cisalhamento direto consiste em talhar uma amostra indeformada de solo e
colocá-la em uma caixa que possui a parte inferior independente da superior. Sob a caixa, há
um conjunto de bilhas que se desloca da caixa inferior quando uma velocidade constante é
aplicada ao sistema por um motor e imprime uma força horizontal (T). Na parte superior, aplica-
se uma carga normal (N) com auxílio de um top cap.
 
Imagem: Mirella Dalvi dos Santos
 Esquema do ensaio de cisalhamento direto.
O procedimento de ensaio consiste em aplicar a carga normal N e ligar o motor que provocará
o deslocamento da parte inferior da caixa. Por meio de célula de carga ou anel dinamométrico
mede-se a força de reação horizontal (T).
Mede-se durante o ensaio a reação horizontal e o deslocamento vertical e horizontal δv e δh.
Sabendo as dimensões da amostra, é possível obter os esforços em termos de tensões. O
resultado do ensaio é expresso por meio de um gráfico τ x δ, e a resistência última do solo é o
máximo valor obtido no gráfico:
 
Imagem: Mirella Dalvi dos Santos.
 Resultado típico de ensaio de cisalhamento direto.
Repete-se o ensaio para diferentes cargas normais, de modo a obter pares de valores de τf x
σf, que permitam obter, por ajuste linear, a envoltória de resistência do solo.
O procedimento para o ensaio de cisalhamento direto encontra-se na norma técnica americana
ASTM D3080-04. Esse é um ensaio muito simples de ser executado, sendo largamente
empregado para a determinação da resistência dos solos. No entanto, podemos citar algumas
de suas limitações:
 
Imagem: Shutterstock.com.
Não é possível controlar as condições de drenagem, de modo que o executor deve ter controle
da velocidade do motor que desloca a caixa inferior e deve avaliar se a resistência obtida é
drenada ou não drenada.
 
Imagem: Shutterstock.com.
As variações de volume não são medidas com acurácia.
 
Imagem: Shutterstock.com.
Não é possível conhecer os estados de tensões e a poro-pressão. Logo, não é possível traçar
os caminhos de tensões totais e efetivas.
 
Imagem: Shutterstock.com.
O estado de deformações não é conhecido e não é uniforme. Logo, não se obtém os
parâmetros de deformabilidade do solo.Imagem: Shutterstock.com.
O plano de ruptura é imposto. Em ensaios em que se deseja saber a resistência ao
cisalhamento em uma interface isso é muito útil, mas em campo o plano de ruptura pode não
ser perfeitamente horizontal como simulado no ensaio.
TRIAXIAIS
Nos ensaios triaxiais, uma amostra indeformada de solo é colocada no aparelho triaxial, em
que são aplicadas cargas axiais e uma tensão confinante. Assim, é possível expressar o
estado de tensões que a amostra tinha em campo.
A carga axial é aplicada por meio de um pistão acionado por uma prensa automática com
controle da velocidade de ensaio. A tensão confinante é aplicada por meio do preenchimento
da câmara triaxial com água sob pressão. A amostra é protegida com uma membrana de
borracha:
 
Imagem: Mirella Dalvi dos Santos
 Esquema do ensaio triaxial.
O ensaio triaxial é divido em duas etapas: adensamento e cisalhamento.
ADENSAMENTO
Essa etapa pode ser utilizada para recompor o estado de tensões que uma amostra tinha em
campo e para conhecer o comportamento do material frente ao adensamento. Este pode ser
realizado pela aplicação de carga hidrostática (igual em todas as direções) ou anisotrópica
(cargas verticais e horizontais diferentes, com um coeficiente de empuxo).
CISALHAMENTO
Essa segunda etapa é de cisalhamento propriamente dito, e consiste em aumentar a carga
axial até a ruptura, enquanto a tensão confinante é mantida constante ou variável. A diferença
entre a tensão axial e a de confinamento é chamada de tensão desviadora (σd).
O aparelho triaxial permite controlar a saída de água durante o cisalhamento, possibilitando
simular um carregamento drenado ou não drenado que a amostra apresentaria em campo, e,
assim, obter resistências drenadas e não drenadas. Dessa maneira, combinando as possíveis
etapas do ensaio triaxial, podemos ter os ensaios:
ENSAIO CD 
(CONSONLIDATED DRAINED)
Adensado drenado.
Em solos arenosos, em que a dissipação de poro-pressão é rápida, o ensaio CD é o mais
empregado, obtendo-se uma resistência drenada. Em solos argilosos, para conhecer a
resistência de longo prazo (drenada), aplica-se ensaios do tipo CD. No entanto, como a
dissipação de poro-pressão é muito lenta, esse ensaio pode demorar semanas até que seja
finalizado.
ENSAIO CU 
(CONSOLIDATED UNDRAINED)
Adensado não drenado.
Quando se deseja conhecer a resistência de curto prazo (não drenada), aplica-se o ensaio do
tipo CU.
ENSAIO UU 
(UNCONSOLIDATED UNDRAINED)
Não adensado não drenado.
No ensaio UU obtém-se uma resistência não drenada sem que haja adensamento prévio da
amostra e variação do seu índice de vazios ou do seu volume durante todo o ensaio. Por esse
motivo, é conhecido como ensaio rápido.
Durante o ensaio UU, mede-se: a força aplicada axialmente, que, sabendo as dimensões do
corpo de prova, pode ser transformada em tensão vertical (σ1); a tensão confinante, seja ela
constante ou variável durante o ensaio (σ3); as deformações (ε); e o volume (V – ensaio
drenado). Para expressar os resultados do ensaio em termos de tensões efetivas, é necessário
também medir a poro-pressão. Essas grandezas podem ser medidas por células de carga,
transdutores de tensão, extensômetros transdutores de deslocamento e buretas.
A forma mais comum de expressar os resultados de ensaios triaxiais é por meio dos gráficos
de tensão x deformação, poro-pressão x deformação, p’ x q’ e Círculos de Mohr. Enquanto os
dois primeiros evidenciam o comportamento da deformação e da poro-pressão com o
comportamento do solo frente a um aumento de tensões, os dois últimos permitem que seja
obtida a envoltória de resistência quando são realizados para diferentes estados de tensões.
 
Imagem: Mirella Dalvi dos Santos
 Resultado típico de ensaios triaxiais.
Os ensaios triaxiais são os mais completos e recomendados para a obtenção da resistência ao
cisalhamento dos solos em laboratório. Isso porque o confinamento da amostra exprime muito
bem o comportamento do solo em campo, o estado de tensões e de deformações são
conhecidos durante o ensaio, é possível controlar a drenagem e monitorar a poro-pressão e o
plano de ruptura não é previamente definido como ocorre no ensaio de cisalhamento direto.
Podem ser realizados, também, ensaios de extensão, quando são aplicados
descarregamentos. Esse tipo de ensaio seria representativo para uma escavação, por
exemplo. Além de parâmetros de resistência , os ensaios triaxiais podem ser
empregados quando desejamos conhecer parâmetros de deformação: módulo de
(c’,  φ')
deformabilidade (E) e o coeficiente de Poisson (ν), e o coeficiente de permeabilidade do solo
(k).
 SAIBA MAIS
A norma técnica que preconiza os procedimentos para a boa realização de ensaios triaxiais é a
ASTM D7181 para ensaios com etapa de adensamento (CU e CD), e ASTM D4767 para
ensaio sem etapa de adensamento (UU).
OUTROS ENSAIOS DE LABORATÓRIO
É possível estimar a resistência dos solos em laboratório por outros tipos de ensaios, não tão
comuns quanto os ensaios triaxiais e de cisalhamento direto.
O ensaio de cisalhamento simples − conhecido como DSS (direct simple shear) quando o
carregamento é estático, ou CSS (cyclic simple shear) quando o carregamento é cíclico −
consiste em adensar a amostra de solo e em seguida cisalhar pela aplicação de uma força
horizontal, de modo que as deformações sejam planas e o volume seja mantido constante. A
norma técnica que preconiza os procedimentos para a realização desse ensaio é a ASTM
D6528.
O ensaio de compressão simples é semelhante àquele realizado em corpos de prova de
concreto para determinar a sua resistência à compressão: aplica-se uma carga axial no topo da
amostra, sem a presença de tensão confinante. Ou seja, pode-se dizer que é um ensaio
particular triaxial em que σ3 = 0.
 
Foto: SANTANA; RODRIGUES (2005, p. 7)
 Equipamento do ensaio de compressão simples.
A ausência de tensão confinante faz com que esse ensaio não seja representativo para a
ruptura em campo, em que o solo está confinado. A norma técnica que preconiza os
procedimentos para a boa realização desse tipo de ensaio é a NBR 12770.
ENSAIOS DE CAMPO
É possível obter a resistência de um solo sem levar a amostra para o laboratório, por meio dos
ensaios de campo ou ensaios in situ. Essa investigação é muito útil em solos de baixa
consistência e compacidade − como argilas moles e areias fofas −, nos quais a retirada de
amostras indeformadas é dificultada.
Vejamos dois exemplos:
ENSAIO DE CONE (CPT – CONE PENETRATION TEST)
ENSAIO DE PALHETA
ENSAIO DE CONE (CPT – CONE PENETRATION TEST)
Obtém a resistência do solo diretamente pela cravação de uma ponteira cônica de 60° de ápice
a uma velocidade padronizada de 20mm/s. Durante a cravação, é medida continuamente a
resistência de ponta (qc), necessária para prospectar o solo, e o atrito lateral (fs),
correspondente ao atrito no contato fuste do cone-solo. Em modelos especiais, como o
piezocone, mede-se também a poro-pressão, tendo um ensaio do tipo CPTu. Esse ensaio pode
ser empregado em areias ou argilas. A norma técnica que preconiza os procedimentos para a
boa realização de ensaios piezocone é a ASTM D5778-20.
ENSAIO DE PALHETA
Conhecido também como vane test, é empregado quando deseja-se conhecer a resistência
não drenada de solos moles. Para tal, insere-se uma palheta e mede-se qual torque, aplicado a
uma velocidade constante de 6°/min, é necessário para que haja rotação. Com essa medida,
obtém-se a resistência não drenada da argila. A norma técnica que preconiza os
procedimentos para a boa realização de ensaios de palheta é a NBR 10905.
Ensaios de campo nem sempre são empregados em projetos de obras civis comuns, uma vez
que são custosos e sua interpretação pode ser mais complexa que os ensaios de laboratório.
Deve-se ter em mente que todos os ensaios apresentados neste módulo possuem premissas e
procedimentos diferentes. Portanto, as formas de ruptura são distintas, assim como as
resistências encontradas.Cabe ao engenheiro projetista solicitar ensaios que sejam
adequados à condição que se espera ocorrer em campo.
MÃO NA MASSA
1. A RESISTÊNCIA AO CISALHAMENTO DOS SOLOS PODE SER OBTIDA
POR DIFERENTES MÉTODOS, SEJAM ELES EM CAMPO OU EM
LABORATÓRIO. QUANDO SE DESEJA CONHECER A RESISTÊNCIA DE
UMA AREIA, NÃO É APLICÁVEL O ENSAIO DE:
A) Cisalhamento direto
B) Palheta
C) Cone
D) Triaxial
E) Cisalhamento simples
2. PARA VIABILIZAR A CONSTRUÇÃO DE UM ATERRO EM UM DEPÓSITO
DE ARGILA, O ENGENHEIRO DETERMINOU QUE FOSSEM REALIZADOS
ENSAIOS TRIAXIAIS EM AMOSTRAS INDEFORMADAS PARA OBTENÇÃO
DOS PARÂMETROS DE RESISTÊNCIA. SABENDO QUE A VELOCIDADE
DE CONSTRUÇÃO DO ATERRO É SUPERIOR À QUE O SOLO CONSEGUE
DISSIPAR DE PORO-PRESSÃO, O MAIS RECOMENDADO É QUE ESSE
ENGENHEIRO SOLICITE ENSAIOS:
A) Adensados drenados com medida de poro-pressão.
B) Adensados drenados sem medida de poro-pressão.
C) Adensados não drenados com medida de poro-pressão.
D) Adensados não drenados sem medida de poro-pressão.
E) Não adensados drenados com medida de poro-pressão.
3. A TABELA A SEGUIR ILUSTRA OS RESULTADOS OBTIDOS DE UM
ENSAIO DE CISALHAMENTO DIRETO REALIZADO EM UMA AREIA
MEDIANAMENTE COMPACTA. SE ESSE SOLO NÃO POSSUI INTERCEPTO
COESIVO, SEU ÂNGULO DE ATRITO INTERNO PODE SER ESTIMADO EM:
Σ (KPA) ΤMÁX (KPA)
50 25
100 50
ELABORADA POR MIRELLA DALVI DOS SANTOS
 ATENÇÃO! PARA VISUALIZAÇÃO COMPLETA DA TABELA UTILIZE A
ROLAGEM HORIZONTAL
A) 35°
B) 14°
C) 45°
D) 50°
E) 27°
4. EM UM ENSAIO TRIAXIAL, A RUPTURA OCORREU PARA A TENSÃO
AXIAL DE 250KPA E A TENSÃO CONFINANTE DE 100KPA, MANTIDA
CONSTANTE DURANTE TODO O ENSAIO. A TENSÃO DESVIADORA NA
RUPTURA FOI, EM KPA, DE:
A) 350
B) 250
C) 100
D) 150
E) 200
5. EM UM ENSAIO TRIAXIAL, A TENSÃO DESVIADORA OBTIDA NA
RUPTURA FOI DE 180KPA. SABENDO QUE DA ENVOLTÓRIA OBTIDA
DESSE ENSAIO OS PARÂMETROS DE RESISTÊNCIA SÃO DE 5KPA E 29°,
E QUE A PORO-PRESSÃO NO MOMENTO DA RUPTURA FOI MEDIDA EM
20KPA, A RESISTÊNCIA AO CISALHAMENTO DESSE SOLO DEVE SER,
EM KPA:
A) 89
B) 94
C) 100
D) 105
E) 190
6. UM SOLO ARGILOSO FOI ENSAIADO NO APARELHO TRIAXIAL COM
MONITORAMENTO DA PORO-PRESSÃO PARA A CONDIÇÃO ADENSADA
NÃO DRENADA. O TÉCNICO RESPONSÁVEL TRAÇOU OS CAMINHOS DE
TENSÕES E OBTEVE UMA RELAÇÃO ENTRE P’ E Q’ DE 25°. O ÂNGULO
DE ATRITO EFETIVO E A VARIAÇÃO DE VOLUME DA AMOSTRA SÃO,
RESPECTIVAMENTE:
A) 28° e zero.
B) 28° e maior que zero.
C) 25° e zero.
D) 25° e maior que zero.
E) 23° e zero.
GABARITO
1. A resistência ao cisalhamento dos solos pode ser obtida por diferentes métodos,
sejam eles em campo ou em laboratório. Quando se deseja conhecer a resistência de
uma areia, não é aplicável o ensaio de:
A alternativa "B " está correta.
O ensaio de palheta é recomendado para o reconhecimento da resistência ao cisalhamento
não drenada de solos moles (argilas), não sendo aplicável para areias.
2. Para viabilizar a construção de um aterro em um depósito de argila, o engenheiro
determinou que fossem realizados ensaios triaxiais em amostras indeformadas para
obtenção dos parâmetros de resistência. Sabendo que a velocidade de construção do
aterro é superior à que o solo consegue dissipar de poro-pressão, o mais recomendado
é que esse engenheiro solicite ensaios:
A alternativa "C " está correta.
Como a velocidade de construção do aterro supera a capacidade da argila de dissipar a poro-
pressão, o carregamento é não drenado. Logo, o mais recomendado é que sejam realizados
ensaios triaxiais não drenados.
Para se reconstituir o estado de tensões que a amostra tinha em campo, o mais recomendado
é a realização de ensaios com adensamento. E, para se conhecer os parâmetros de resistência
em termos efetivos, deve-se medir a poro-pressão durante o ensaio.
3. A tabela a seguir ilustra os resultados obtidos de um ensaio de cisalhamento direto
realizado em uma areia medianamente compacta. Se esse solo não possui intercepto
coesivo, seu ângulo de atrito interno pode ser estimado em:
σ (kPa) τmáx (kPa)
50 25
100 50
Elaborada por Mirella Dalvi dos Santos
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
A alternativa "E " está correta.
A envoltória de resistência para um solo sem intercepto coesivo é dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
4. Em um ensaio triaxial, a ruptura ocorreu para a tensão axial de 250kPa e a tensão
confinante de 100kPa, mantida constante durante todo o ensaio. A tensão desviadora na
ruptura foi, em kPa, de:
A alternativa "D " está correta.
A tensão desviadora é dada pela diferença entre a tensão axial (vertical) e a confinante (radial).
Logo:
τf = σ
'
f tan  φ
' → tan  φ' = = = 0,5 →  φ' = 27°
τf
σ'f
25
50
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
5. Em um ensaio triaxial, a tensão desviadora obtida na ruptura foi de 180kPa. Sabendo
que da envoltória obtida desse ensaio os parâmetros de resistência são de 5kPa e 29°, e
que a poro-pressão no momento da ruptura foi medida em 20kPa, a resistência ao
cisalhamento desse solo deve ser, em kPa:
A alternativa "B " está correta.
INTERPRETAÇÃO DE ENSAIOS TRIAXIAIS
6. Um solo argiloso foi ensaiado no aparelho triaxial com monitoramento da poro-
pressão para a condição adensada não drenada. O técnico responsável traçou os
caminhos de tensões e obteve uma relação entre p’ e q’ de 25°. O ângulo de atrito efetivo
e a variação de volume da amostra são, respectivamente:
A alternativa "A " está correta.
A relação para os parâmetros de resistência em termos de p’ x q’ e tensão normal e cisalhante
é:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Ensaios não drenados são aqueles que não permitem a variação volumétrica da amostra
durante o cisalhamento. Portanto, a variação de volume foi zero durante o ensaio realizado.
GABARITO
σd = σ1 − σ3 = 250 − 100 = 150 kPa
sen  φ = tan  β → φ = arcsen   tan  25° = 28°
TEORIA NA PRÁTICA
O conhecimento da resistência ao cisalhamento dos solos é importante em qualquer análise
que exige que o solo suporte dado carregamento. Em estudos de escorregamentos de
encostas, a relação dada entre a resistência ao cisalhamento e a tensão cisalhante solicitante é
chamada de fator de segurança. Quando esse fator está próximo de 1,0, dizemos que o solo
está na iminência da ruptura. A seguir, resultados de ensaios de cisalhamento direto realizados
em um solo de uma encosta, que após fortes chuvas mobilizou uma tensão normal efetiva de
320kPa e cisalhante de 160kPa.
σ (kPa) τmáx (kPa)
150 75
300 150
600 300
Elaborada por Mirella Dalvi dos Santos.
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
Responda:
a) Qual a envoltória de resistência desse solo?
b) Há ruptura e deslizamento de terra?
c) Qual a máxima tensão cisalhante a ser mobilizada para garantir um fator de segurança de
1,5?
RESOLUÇÃO
RESISTÊNCIA AO CISALHAMENTO DOS SOLOS
APLICADA
VERIFICANDO O APRENDIZADO
1. UMA AREIA FOI ENSAIADA NO APARELHO DE CISALHAMENTO
DIRETO, APLICANDO-SE A CARGA CISALHANTE MUITO RAPIDAMENTE.
SE A RELAÇÃO ENTRE A TENSÃO NORMAL E A CISALHANTE FOI DE
0,7, O ÂNGULO DE ATRITO DESSA AREIA E A RESISTÊNCIA SÃO,
RESPECTIVAMENTE:
A) 45° e drenada.
B) 45° e não drenada.
C) 35° e drenada.
D) 35° e não drenada.
E) 30° e drenada.
2. UM ENSAIO TRIAXIAL FOI REALIZADO EM UMA ARGILA NA QUAL FOI
APLICADA UMA CARGA CONFINANTE DE 100KPA. SE NA ETAPA DE
CISALHAMENTO ESSE VALOR FOI MANTIDO E NA RUPTURA FOI
MEDIDA UMA TENSÃO AXIAL DE 300KPA E UMA PORO-PRESSÃO DE
50KPA, A TENSÃO DESVIADORA E A TENSÃO EFETIVA VERTICAL
VALEM, RESPECTIVAMENTE, EM KPA:
A) 150 e 300.
B) 150 e 200.
C) 200 e 250.
D) 300 e 150.
E) 300 e 150.
GABARITO
1. Uma areia foi ensaiada no aparelho de cisalhamento direto, aplicando-se a carga
cisalhante muito rapidamente. Se a relação entre a tensão normal e a cisalhante foi de
0,7, o ângulo de atrito dessa areia e a resistência são, respectivamente:
A alternativa"D " está correta.
 
A resistência desse solo pode ser obtida por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Como o carregamento foi aplicado muito rapidamente, essa deve ser a resistência não drenada
da areia, pois não foi dado o tempo para que a poro-pressão se dissipasse.
2. Um ensaio triaxial foi realizado em uma argila na qual foi aplicada uma carga
confinante de 100kPa. Se na etapa de cisalhamento esse valor foi mantido e na ruptura
foi medida uma tensão axial de 300kPa e uma poro-pressão de 50kPa, a tensão
desviadora e a tensão efetiva vertical valem, respectivamente, em kPa:
A alternativa "C " está correta.
 
A tensão desviadora é dada pela diferença entre a tensão axial (vertical) e a confinante (radial).
Logo:
τf = σ
'
f tan  φ
' → tan  φ' = = 0,7 →  φ' = 35° 
τf
σ'f
σd = σ1 − σ3 = 300 − 100 = 200 kPa
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
Para obter a tensão efetiva vertical, do Princípio das Tensões Efetivas de Terzaghi:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
MÓDULO 3
 Identificar o comportamento típico das areias ideais na ruptura
CISALHAMENTO DE AREIAS
A especialista Mirella Dalvi dos Santos fala sobre cisalhamento de areias
σ' = σ − u = 300 − 50 = 250 kPa
DEFORMAÇÃO EM AREIAS
As areias sofrem deformação por três mecanismos entre os grãos: distorção, quebra, e
movimento relativo (escorregamento e rolamento). Para que haja deformação, um ou mais
desses mecanismos precisam ser acionados, dependendo do arranjo entre partículas. Como a
quebra dos grãos é incomum, pois as areias são constituídas principalmente por quartzo
(mineral resistente ao intemperismo), resta que a deformação em um solo arenoso ocorra em
razão do movimento relativo entre as partículas. Essas deformações sofridas em solos são
irreversíveis, visto que com o descarregamento uma areia não reconstitui sua configuração
inicial.
EXPANSÃO E COMPRESSÃO
Considere uma areia limpa ideal que não apresenta cimentação (ou seja, não possui coesão
verdadeira) e cujo teor de finos é inferior a 12%. Seu comportamento na ruptura dependerá do
seu estado inicial, mais especificamente do seu índice de vazios inicial, e da tensão confinante.
Uma areia de compacidade fofa, que apresenta alto índice de vazios, quando solicitada, irá
reorganizar os grãos, de modo a apresentar redução de volume e compressão até a ruptura.
Como há variação volumétrica, esse comportamento só é possível em ensaios drenados. Logo,
a ruptura é dada com o crescimento da tensão desviadora até apresentar deformação infinita
(ruptura), e a deformação específica típica na ruptura é de cerca de 6 a 8%.
 
Imagem: Mirella Dalvi dos Santos
 Areia fofa sob cisalhamento drenado.
Nota-se na imagem que, com o aumento da tensão desviadora, as curvas são deslocadas
proporcionalmente, mas o formato e o comportamento é o mesmo. Dessa maneira, admite-se
que as tensões sejam proporcionais à tensão confinante de ensaio, e os Círculos de Mohr
correspondentes às máximas tensões desviadoras dão luz a uma envoltória reta, passando
pela origem.
Considerando que a areia esteja compacta, com menor índice de vazios, quando o
carregamento é imposto ao solo, um grão já está muito próximo do outro. Dessa maneira, ele
não tem espaço suficiente para se reorganizar e apresentar uma diminuição de volume como
na areia fofa. Com os grãos próximos, a única opção para que haja deformação é um grão se
sobrepor a outro.
 
Imagem: Mirella Dalvi dos Santos
 Imbricamento em areias compactas.
Para que isso ocorra, é necessária uma energia extra para vencer o imbricamento entre os
grãos, e o resultado é uma expansão do volume do solo. Esse fenômeno é chamado de
dilatância, que aparece no gráfico tensão x deformação como um pico na tensão desviadora:
 
Imagem: Mirella Dalvi dos Santos
 Areia compacta sob cisalhamento drenado.
Nota-se que o efeito da dilatância não só forma um pico na tensão desviadora, mas também
aumenta muito rapidamente a tensão com a deformação no início do ensaio. Em gráficos
deformação volumétrica x deformação axial, nota-se que o corpo de prova inicialmente
comprime, seguido por uma expansão antes da ruptura.
ÍNDICE DE VAZIOS CRÍTICO
Parece existir um estado de compacidade intermediário no qual a areia não apresenta variação
de volume quando cisalhada. Esse estado está relacionado ao índice de vazios crítico, no
qual diz-se que a ruptura ocorre a volume constante.
Realizando o ensaio para areias em diferentes compacidades, por meio de interpolações pode-
se obter a curva do índice de vazios crítico. Note que o índice de vazios crítico não é
propriedade do material, visto que depende da tensão confinante (σ3): quanto maior essa
tensão, menor o índice de vazios crítico.
 
Imagem: Mirella Dalvi dos Santos
 Índice de vazios crítico em areias.
A areia, esteja ela em compacidade fofa ou compacta, procurará o índice de vazios crítico na
ruptura. Assim, como uma areia fofa apresenta índice de vazios superior ao crítico, ela deverá
comprimir para romper, enquanto uma areia compacta, que apresenta índice de vazios inferior
ao crítico, deverá expandir para atingir a curva de volume constante na ruptura.
Seja uma areia em condição fofa, representada pelo ponto A na imagem anterior. Para
encontrar o índice de vazios crítico, ela deverá fazer o caminho A-A1 indicado na imagem,
reduzindo o seu índice de vazios (sofrendo compressão). Considerando agora uma areia
compacta, identificada pelo ponto B na imagem: para que a areia encontre o índice de vazios
crítico na ruptura, ela deverá fazer o caminho indicado por B-B1, que indica que haverá um
aumento no índice de vazios – é a dilatância!
 ATENÇÃO
Note que para um mesmo índice de vazios inicial, a depender da tensão confinante do solo, a
areia poderá apresentar expansão, volume constante ou compressão na ruptura,
representados por C1, C2 e C3, respectivamente. Tal observação reforça que o índice de
vazios crítico não é propriedade do material.
A compressão em areias fofas ocorre pela saída de água nos poros do solo. Logo, se a ruptura
é atingida para condição não drenada, o índice de vazios não varia e a compressão é
impedida. Para que a areia atinja o índice de vazios crítico, a poro-pressão deverá ser
aumentada. Em consequência, há diminuição da tensão efetiva e, como essa é diretamente
proporcional à resistência ao cisalhamento, a resistência é menor. O caminho a ser seguido por
essa areia seria o A-A2, indicado na figura anterior.
 SAIBA MAIS
Existe um caso particular no qual o aumento da poro-pressão é tal que se iguala à tensão total,
de modo que a tensão efetiva seja nula. Esse caso é chamado de liquefação − a areia se
comporta como um líquido que, por não ter resistência ao cisalhamento, escoa rapidamente, e
a ruptura é catastrófica.
Por outro lado, a expansão é dada pela entrada de água nos poros do solo. Caso uma areia
compacta sofra um carregamento não drenado, a variação volumétrica é impedida e a água
nos vazios ficará sob uma pressão negativa (sucção). Tem-se uma tensão efetiva maior, assim
como a resistência ao cisalhamento. O caminho a ser seguido por essa areia seria o B-B2,
indicado na figura anterior. Ressalta-se que a sucção na água é limitada a -1 atm, pois acima
disso ocorre cavitação formação de pequenas bolhas de vapor-d’água nos vazios do solo.
RESISTÊNCIA DE PICO E PÓS-PICO
Definimos que a ruptura ocorre quando atingimos um estado de tensões limite no qual um
material começa a se deformar infinitamente. Em areias que apresentem dilatância, observa-se
um pico de tensão desviadora que antecede a deformação infinita, chamada condição pós-
pico.
NESSES SOLOS, A RUPTURA OCORRE PARA O PICO, EM QUE
A TENSÃO DESVIADORA É MÁXIMA, OU PARA A
DEFORMAÇÃO INFINITA, NA CONDIÇÃO PÓS-PICO?
Não há resposta correta para essa pergunta, e a interpretação de ensaios triaxiais é realizada
para essasduas condições. Deve-se ter em mente que a dilatância é uma consequência do
estado de compacidade do material, e não uma resistência extra que o material apresenta
intrinsicamente. Logo, o mais adequado seria associar a resistência à situação pós-pico, mas
não é uma regra.
Para se descontar o efeito da dilatância, a resistência associada ao pós-pico pode ser
associada àquela que ocorre a volume constante, enquanto o pico é associado à energia
necessária para vencer o imbricamento dos grãos. De observações experimentais nota-se que
a condição de pós-pico se aproxima da ruptura sofrida por uma areia fofa. Logo, o ângulo de
atrito de uma areia fofa deve ser similar ao da condição pós-pico de uma areia compacta:
 
Imagem: Mirella Dalvi dos Santos.
 Tensão cisalhante para expansão e volume constante.
É muito comum se referir ao estado pós-pico de uma areia à sua condição residual. À rigor, a
resistência residual ocorre em solos que sofrem grandes deslocamentos e deformações, em
que a orientação das partículas faz com que a resistência ao cisalhamento seja menor. Em
areias limpas pode-se dizer que a resistência residual é próxima à resistência pós-pico. No
entanto, em areias que possuem em sua composição minerais micáceos, que possuem planos
de clivagem e criam planos que favorecem o cisalhamento, a resistência residual pode não ser
a mesma da pós-pico.
FATORES QUE INFLUENCIAM A
RESISTÊNCIA DAS AREIAS
Além do estado de compacidade de uma amostra de areia antes de seu cisalhamento e da
tensão confinante aplicada, a resistência das areias é influenciada por:
DISTRIBUIÇÃO GRANULOMÉTRICA
Areias bem graduadas possuem melhor entrosamento entre os grãos, de modo a apresentar
menor compacidade e maior ângulo de atrito quando comparadas com areias uniformes.
ANGULOSIDADE DOS GRÃOS
Quanto mais angulosos, mais facilmente os grãos conseguem se entrosar, de modo a atingir
menores índices de vazios e maiores ângulos de atrito:
 
Imagem: Pinto (2006, p. 283)
 Grãos arredondados e angulares.
PRESENÇA DE MICA
A mica é um mineral muito comum de ser encontrado em solos arenosos. Sua estrutura é
composta por vários planos de clivagem, que fazem com que se criem planos de ruptura
preferenciais para o solo, diminuindo seu ângulo de atrito e a resistência ao cisalhamento.
Além disso, a presença de mica está associada a solos com altos índices de vazios.
CARREGAMENTOS CÍCLICOS
Podem afetar no ângulo de atrito encontrado para areias fofas, uma vez que o processo de
carregamento repetido faz com que a amostra se compacte e aumente a resistência. Em areias
compactas, o efeito é contrário, pois a amostra pode expandir e a resistência, decrescer.
QUEBRA DOS GRÃOS
A quebra dos grãos altera a distribuição granulométrica dos solos, podendo alterar a
distribuição granulométrica e a compacidade da areia. A areia é composta principalmente por
quartzo, mineral resistente. Logo, a quebra de grãos de areia só deve ocorrer para altas
tensões confinantes.
AS MAIORES INFLUÊNCIAS PARA VARIAÇÃO NA
RESISTÊNCIA AO CISALHAMENTO DAS AREIAS É A
COMPACIDADE, A DISTRIBUIÇÃO GRANULOMÉTRICA E O
FORMATO DOS GRÃOS.
De observações experimentais, o tamanho dos grãos não influencia na resistência das areias.
No entanto, na natureza as areias grossas tendem a ser mais compactas que as areias finas, o
que pode indicar uma variação na resistência ao cisalhamento.
Areias secas e saturadas apresentam resistências similares, ainda que nas secas exista uma
parcela de coesão aparente devido ao efeito da capilaridade, que é a subida de água por
tensão superficial nos meniscos do poro do solo.
VALORES TÍPICOS DE RESISTÊNCIA
A tabela a seguir apresenta valores típicos de ângulo de atrito para solos arenosos, em níveis
de tensões de 100 a 200kPa:
Compacidade
Fofo a Compacto
Areias bem graduadas
de grãos angulares 37° a 47°
de grãos arredondados 30° a 40°
Areias mal graduadas
de grãos angulares 35° a 43°
de grãos arredondados 28° a 35°
Tabela 4 
Elaborada por Mirella Dalvi dos Santos
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
Os valores indicados na tabela anterior são úteis quando um projeto ainda está em estudo de
viabilidade ou para que se tenha um senso crítico da ordem de grandeza esperada para o
parâmetro. Ressalta-se que os parâmetros de resistência dos solos devem, sempre que
possível, ser determinados por meio dos ensaios de resistência descritos no Módulo 2.
MÃO NA MASSA
1. ENTRE OS FATORES QUE AUMENTAM O ÂNGULO DE ATRITO DAS
AREIAS, PODEMOS CITAR:
A) Grãos arredondados
B) Distribuição granulométrica uniforme
C) Maior teor de umidade
D) Grãos angulares
E) Presença de mica
2. O COMPORTAMENTO DE UMA AREIA DURANTE O CISALHAMENTO
SER CONTRÁTIL OU DILATANTE DEPENDE DO(A):
A) Índice de vazios final e tensão confinante.
B) Tensão axial e tensão confinante.
C) Índice de vazios inicial e tensão confinante.
D) Ângulo de atrito efetivo e tensão axial.
E) Envoltória de resistência e tensão axial.
3. UMA AREIA FOI ENSAIADA COM TENSÃO CONFINANTE DE 300KPA E
APRESENTAVA UM ÍNDICE DE VAZIOS DE 0,65 ANTES DO
CISALHAMENTO. SE PARA ESSA TENSÃO O ÍNDICE DE VAZIOS CRÍTICO
É DE 0,50, ESSA AMOSTRA DEVERÁ APRESENTAR NA RUPTURA
PROVOCADA POR UM CARREGAMENTO DRENADO:
A) Compressão e índice de vazios final de 0,50.
B) Expansão e índice de vazios final de 0,50.
C) Compressão e índice de vazios final de 0,65.
D) Expansão e índice de vazios final de 0,50.
E) Ruptura a volume constante e índice de vazios final de 0,50.
4. UMA AREIA FOI ENSAIADA COM TENSÃO CONFINANTE DE 300KPA E
APRESENTAVA UM ÍNDICE DE VAZIOS DE 0,65 ANTES DO
CISALHAMENTO. SE PARA ESSA TENSÃO, O ÍNDICE DE VAZIOS CRÍTICO
É DE 0,50, ESSA AMOSTRA DEVERÁ APRESENTAR NA RUPTURA
PROVOCADA POR UM CARREGAMENTO NÃO DRENADO:
A) Excesso de poro-pressão zero e índice de vazios final de 0,50.
B) Excesso de poro-pressão positivo e índice de vazios final de 0,50.
C) Excesso de poro-pressão positivo e índice de vazios final de 0,65.
D) Excesso de poro-pressão negativo e índice de vazios final de 0,65.
E) Excesso de poro-pressão negativo e índice de vazios final de 0,50.
5. SE UMA AREIA É ENSAIADA COM UM ÍNDICE DE VAZIOS INICIAL DE
0,30 E O ENGENHEIRO ESTIMA QUE PARA A TENSÃO CONFINANTE
APLICADA O ÍNDICE DE VAZIOS CRÍTICO É DE 0,45, PODE-SE AFIRMAR
QUE:
A) Até a ruptura, o índice de vazios diminui em 0,15 devido ao comportamento expansivo.
B) Até a ruptura, o índice de vazios diminui em 0,15 devido ao comportamento contrátil.
C) Até a ruptura, o índice de vazios aumenta em 0,15 devido ao comportamento expansivo.
D) Até a ruptura, o índice de vazios aumenta em 0,15 devido ao comportamento contrátil.
E) A ruptura ocorre com o índice de vazios igual ao inicial.
6. UMA AREIA MUITO COMPACTA FOI ENSAIADA NO APARELHO
TRIAXIAL SOB CONDIÇÃO DRENADA E SE OBSERVOU UMA TENSÃO
CISALHANTE MÁXIMA DE 225KPA. ESSA MESMA AREIA FOI MOLDADA
COM MAIOR ÍNDICE DE VAZIOS (CONDIÇÃO FOFA), E APRESENTOU
UMA TENSÃO CISALHANTE MÁXIMA DE 175KPA. O FATO DE AS
TENSÕES CISALHANTES MÁXIMAS SEREM DIFERENTES NOS DOIS
ENSAIOS PODE SER ATRIBUÍDO À:
A) Tensão para vencer o imbricamento dos grãos, de 225kPa.
B) Tensão para vencer o imbricamento dos grãos, de 50kPa.
C) Tensão para comprimir o corpo de prova, de 50kPa.
D) Tensão para cisalhar a amostra, de 50kPa.
E) Tensão para cisalhar a amostra, de 225kPa.
GABARITO
1. Entre os fatores que aumentam o ângulo de atrito das areias, podemos citar:
A alternativa "D " está correta.
O ângulo de atrito é maior para solos com menores índice de vazios. Das alternativas dadas,
os grãos angulosos formam uma estrutura em que os grãos estão mais bem entrosados, e o
cisalhamento é dificultado.
2. O comportamento de uma areia durante o cisalhamento ser contrátil ou dilatante
depende do(a):
A alternativa "C " está correta.
O comportamento de uma areia ser contrátil ou dilatante durante o cisalhamento depende do
índice de vazios inicial e da tensão confinante em relação ao índice de vazioscrítico para essa
tensão.
3. Uma areia foi ensaiada com tensão confinante de 300kPa e apresentava um índice de
vazios de 0,65 antes do cisalhamento. Se para essa tensão o índice de vazios crítico é de
0,50, essa amostra deverá apresentar na ruptura provocada por um carregamento
drenado:
A alternativa "A " está correta.
Como para a tensão confinante do ensaio o índice de vazios da amostra é 0,65, superior ao
índice de vazios crítico de 0,50, o solo encontra-se fofo e, na ruptura, deverá apresentar o
índice de vazios de 0,50. Como haverá uma diminuição de volume, há compressão.
4. Uma areia foi ensaiada com tensão confinante de 300kPa e apresentava um índice de
vazios de 0,65 antes do cisalhamento. Se para essa tensão, o índice de vazios crítico é
de 0,50, essa amostra deverá apresentar na ruptura provocada por um carregamento não
drenado:
A alternativa "C " está correta.
Como o carregamento é não drenado, o índice de vazios não pode variar durante o
cisalhamento. Como para a tensão confinante do ensaio o índice de vazios da amostra é
superior ao índice de vazios crítico, a tendência que a amostra teria de comprimir caso a
drenagem fosse liberada será refletido em um aumento na poro-pressão.
5. Se uma areia é ensaiada com um índice de vazios inicial de 0,30 e o engenheiro estima
que para a tensão confinante aplicada o índice de vazios crítico é de 0,45, pode-se
afirmar que:
A alternativa "C " está correta.
Como o índice de vazios inicial da amostra é menor que o índice de vazios crítico para a
tensão ensaiada, a areia apresentará um comportamento expansivo, pois terá que aumentar o
índice de vazios de 0,30 a 0,45, ou seja, em 0,15.
6. Uma areia muito compacta foi ensaiada no aparelho triaxial sob condição drenada e se
observou uma tensão cisalhante máxima de 225kPa. Essa mesma areia foi moldada com
maior índice de vazios (condição fofa), e apresentou uma tensão cisalhante máxima de
175kPa. O fato de as tensões cisalhantes máximas serem diferentes nos dois ensaios
pode ser atribuído à:
A alternativa "B " está correta.
RESISTÊNCIA DE PICO E PÓS-PICO
GABARITO
TEORIA NA PRÁTICA
As areias sob cisalhamento podem apresentar comportamento contrátil ou dilatante, a
depender do índice de vazios inicial da amostra em relação ao índice de vazios crítico para
certa tensão confinante. Sabendo que em campo o solo possui um índice de vazios de 0,40,
tensão horizontal de 50kPa e que foi construído um aterro em etapas nesse solo, para a curva
de índice de vazios crítico a seguir, responda:
a) Se houver ruptura, essa areia apresentará comportamento contrátil ou dilatante?
b) Qual a variação do índice de vazios até a ruptura?
c) Qual a variação na poro-pressão até a ruptura?
 
Imagem: Mirella Dalvi dos Santos
RESOLUÇÃO
COMPORTAMENTO CONTRÁTIL OU DILATANTE
NA RUPTURA
VERIFICANDO O APRENDIZADO
1. O CISALHAMENTO DE UMA AREIA EM LABORATÓRIO DEMONSTROU
QUE O ÍNDICE DE VAZIOS INICIAL DA AMOSTRA ERA DE 0,50, E O
CRÍTICO PARA A MESMA TENSÃO CONFINANTE ERA DE 0,30. PODE-SE
AFIRMAR QUE:
A) Esse solo sofreu variação de -0,20 no índice de vazios e o carregamento é não drenado.
B) Esse solo sofreu variação de +0,20 no índice de vazios e o carregamento é drenado.
C) Esse solo sofreu variação de -0,20 no índice de vazios e o carregamento é drenado.
D) Esse solo sofreu variação de +0,20 no índice de vazios e o carregamento é não drenado.
E) Esse solo não sofreu variação no índice de vazios.
2. UMA AREIA FOI ENSAIADA EM LABORATÓRIO SOB VÁRIAS
CONDIÇÕES INICIAIS. SOB COMPORTAMENTO FOFO, ELA
APRESENTOU UMA TENSÃO CISALHANTE MÁXIMA DE 200KPA E, SOB
COMPORTAMENTO COMPACTO, ELA APRESENTOU UMA TENSÃO
CISALHAMENTO MÁXIMA DE 120KPA. PODE-SE AFIRMAR QUE:
A) A resistência pós-pico da areia compacta é de 200kPa.
B) A resistência pós-pico da areia compacta é de 120kPa.
C) A resistência pós-pico da areia compacta é de 80kPa.
D) A resistência de pico da areia fofa é de 200kPa.
E) A resistência de pico da areia fofa é de 80kPa.
GABARITO
1. O cisalhamento de uma areia em laboratório demonstrou que o índice de vazios inicial
da amostra era de 0,50, e o crítico para a mesma tensão confinante era de 0,30. Pode-se
afirmar que:
A alternativa "C " está correta.
 
Até a ruptura, a areia procurará o índice de vazios crítico. Logo:
Δe = ef − e0 = 0,50 − 0,30 = −0,20
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
O solo sofreu expansão de 0,20 no índice de vazios. Logo, o solo sofreu variação de -0,20 no
índice de vazios, e o carregamento é drenado.
2. Uma areia foi ensaiada em laboratório sob várias condições iniciais. Sob
comportamento fofo, ela apresentou uma tensão cisalhante máxima de 200kPa e, sob
comportamento compacto, ela apresentou uma tensão cisalhamento máxima de 120kPa.
Pode-se afirmar que:
A alternativa "B " está correta.
 
A areia compacta sob cisalhamento apresenta dilatância e pico, pois é preciso vencer o
imbricamento dos grãos. Após o pico, com a continuidade da deformação, a areia apresenta
tensão cisalhante similar à de uma areia fofa. Logo:
Areia compacta: tensão de pico de 200kPa e tensão pós-pico de 120kPa. A tensão para
vencer o imbricamento dos grãos é de:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
MÓDULO 4
 Identificar o comportamento típico das argilas ideais e de solos não ideais na ruptura
τimbricamento = τcompacta − τfofa = 200 − 120 = 80 kPa
CISALHAMENTO DE ARGILAS
A especialista Mirella Dalvi dos Santos fala sobre cisalhamento de argilas
TENSÃO DE PRÉ-ADENSAMENTO
Enquanto nas areias vimos que o fator determinante no comportamento é o índice de vazios
crítico associado à tensão confinante, a razão de sobreadensamento das argilas define se o
comportamento é contrátil ou dilatante. Assim:
ARGILAS NORMALMENTE ADENSADAS 
(OCR = 1)
ARGILAS SOBREADENSADAS 
(OCR > 4)
ARGILAS LEVEMENTE SOBREADENSADAS 
(OCR < 4)
ARGILAS NORMALMENTE ADENSADAS (OCR = 1)
O solo se comporta como uma areia fofa, apresentando compressão durante o cisalhamento.
As deformações crescem lentamente com a tensão desviadora, e a ruptura ocorre para
deformações específicas da ordem de 15 a 20%. As tensões desviadoras são proporcionais às
tensões confinantes, de modo que os gráficos podem ser normalizados em relação a σ3.
ARGILAS SOBREADENSADAS (OCR > 4)
O solo se comporta como uma areia compacta, apresentando expansão durante o
cisalhamento. As deformações crescem muito rapidamente com a tensão desviadora, e pouco
antes da ruptura o solo apresenta um pico de tensão desviadora (dilatância). O pico de tensão
desviadora ocorre para menores deformações quanto maior a razão de sobreadensamento.
ARGILAS LEVEMENTE SOBREADENSADAS (OCR < 4)
O solo se comporta similar às areias em seu índice de vazios crítico, apresentando
cisalhamento a volume constante.
Podemos concluir que o papel da razão de sobreadensamento é o mesmo do índice de vazios
críticos nas areias, em que o OCR entre 1 e 4 poderia ser chamado de razão de
sobreadensamento crítica.
 
Imagem: Mirella Dalvi dos Santos.
 Argilas sob cisalhamento drenado.
A condição de sobreadensamento de uma argila está relacionada ao índice de vazios inicial do
material antes do carregamento. Mas lembre-se de que, no ensaio triaxial, o solo pode ser
submetido a uma etapa de adensamento prévio à de cisalhamento. Portanto, para o material
apresentar o comportamento de uma argila sobreadensada, a etapa de cisalhamento deve ter
sido realizada sob tensão confinante inferior à sua tensão de pré-adensamento. O efeito do
adensamento acima da tensão de sobreadensamento é atingir a compressão virgem, no qual o
solo experimenta compressão significativa com o aumento da tensão.
Considerando que na argila normalmente adensada o carregamento seja imposto de forma não
drenada, o impedimento da saída de água dos poros da argila se reflete no aumento de poro-
pressão. Consequentemente, a tensão normal efetiva e a resistência ao cisalhamento sãomenores.
Da mesma maneira, carregamentos não drenados em argilas sobreadensadas resultarão no
impedimento da entrada de água dos poros da argila. Isso ocasionará a diminuição de poro-
pressão (sucção) e o aumento da tensão normal efetiva e da resistência ao cisalhamento.
Nenhum efeito é observado quando se impede a drenagem de uma argila levemente
sobreadensada sob cisalhamento, de modo que a resistência não drenada seja da mesma
magnitude da drenada.
Essas situações encontram-se ilustradas a seguir. Podemos concluir que existe semelhança
entre o índice de vazios crítico e a razão de sobreadensamento crítica também para os
carregamentos não drenados.
 
Imagem: Mirella Dalvi dos Santos.
 Argilas sob cisalhamento não drenado.
 
Imagem: Mirella Dalvi dos Santos.
 Caminhos de tensões das argilas.
Nota-se na imagem que, para as argilas sobreadensadas, a envoltória de resistência possui
uma inclinação distinta da obtida para as argilas normalmente adensadas. A tensão que separa
os dois comportamentos é a tensão de pré-adensamento (σp), e quando em uma campanha de
ensaios são testadas argilas em diferentes condições, o ajuste da envoltória é uma reta que
possui intercepto coesivo.
RESISTÊNCIA NÃO DRENADA EM ENSAIOS
UU
Quando uma amostra indeformada é retirada de um depósito, o seu estado de tensões é
modificado devido ao desconfinamento, de modo que as tensões totais são nulas. Como não
há possibilidade de drenagem, a poro-pressão diminui na amostra, passando a ser negativa.
Admite-se que o efeito da amostragem é igual ao da redução de uma tensão isotrópica igual à
média das três tensões principais – tensão octaédrica (σ’oct).
Levando essa amostra ao laboratório, caso seja realizado um ensaio que tenha uma etapa de
adensamento, qualquer aumento na poro-pressão provocado pela tensão confinante implicará
na sua dissipação. No caso do ensaio não adensado (UU), o aumento da poro-pressão via
tensão confinante não será dissipado e, qualquer que seja a tensão confinante aplicada, a
tensão confinante efetiva é a mesma. Pinto (2006) conclui que:
EM ENSAIOS DE COMPRESSÃO TRIAXIAL DO TIPO
UU, COM AMOSTRAS SATURADAS, A TENSÃO
CONFINANTE EFETIVA, APÓS A APLICAÇÃO DA
PRESSÃO CONFINANTE, SERÁ SEMPRE A MESMA E
IGUAL À PRESSÃO CONFINANTE EFETIVA QUE
EXISTIA NA AMOSTRA, QUE É IGUAL, EM VALOR
ABSOLUTO, À PRESSÃO NEUTRA NEGATIVA DA
AMOSTRA, E QUE É IGUAL, AINDA, À MÉDIO DAS
TENSÕES PRINCIPAIS EFETIVAS QUE EXISTIA NO
TERRENO NA POSIÇÃO EM QUE A AMOSTRA FOI
RETIRADA.
(PINTO, 2006, p.321)
Seja qual for a tensão confinante aplicada, a resistência ao cisalhamento também será a
mesma. Assim, os Círculos de Mohr na ruptura possuem o mesmo diâmetro, e a envoltória é
dada por uma reta horizontal:
 
Imagem: Mirella Dalvi dos Santos
 Envoltória de resistência de argilas submetidas ao ensaio UU.
A tensão cisalhante na ruptura é chamada resistência não drenada da argila, muitas vezes
chamada erroneamente de coesão. Como o material aparenta ter um comportamento
independentemente da tensão confinante aplicada, alguns engenheiros se referem às argilas
como um solo coesivo. No entanto, devemos lembrar que esse fenômeno é uma
particularidade desse tipo de ensaio, e não é equivalente à coesão verdadeira dos solos, que
aparece devido à cimentação entre as partículas.
FATORES QUE INFLUENCIAM A
RESISTÊNCIA DAS ARGILAS
Diversos são os fatores que influenciam a resistência ao cisalhamento das argilas. Sobre a
resistência não drenada, cita-se:
AMOSTRAGEM
O desconfinamento afeta a qualidade da amostra, modificando o estado de tensões. Assim, a
resistência estimada em laboratório será menor que a resistência que o solo possui em campo.
ANISOTROPIA
Argilas compactadas e residuais possuem resistências diferentes nas direções principais
(anisotropia). Em uma superfície de ruptura, vê-se que são possíveis três tipos de situações em
relação à área carregada: compressão, cisalhamento simples e extensão. As
correspondentes resistências podem ser obtidas por ensaios específicos:
 
Imagem: Pinto (2006, p. 326)
 Superfície de ruptura de campo e resistências.
TEMPO DE SOLICITAÇÃO
A velocidade com que um carregamento é aplicado a uma argila tem efeito não só por definir
se um carregamento é drenado ou não drenado. Como esse material possui uma água adesiva
aos grãos de solo − que, por sua vez, apresentam viscosidade −, a velocidade do
carregamento influencia em uma resistência viscosa aplicada a essa água. Dessa maneira,
quanto mais rápida é a solicitação, maior é a resistência ao cisalhamento observada.
VALORES TÍPICOS DE RESISTÊNCIA
O ângulo de atrito efetivo das argilas depende do mineral argílico que compõe o solo. A tabela
a seguir apresenta valores típicos de argilas de distintas origens em função do seu Índice de
Plasticidade (IP):
Índice de plasticidade (%) Ângulo de atrito efetivo
10 30 a 38°
20 26 a 34°
40 20 a 29°
60 18 a 25°
Tabela: Valores típicos de ângulos de atrito em argilas. 
Adaptado de Pinto (2006, p. 300).
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
Os valores indicados na tabela são úteis quando um projeto ainda está em estudo de
viabilidade ou para que se tenha um senso crítico da ordem de grandeza esperada para o
ângulo de atrito das argilas. Ressalta-se que os parâmetros de resistência dos solos devem,
sempre que possível, ser determinados por meio dos ensaios de resistência descritos no
Módulo 2.
O intercepto coesivo depende da tensão de pré-adensamento do solo e do nível de tensões,
sendo este tão maior quanto maior a tensão de pré-adensamento. Segundo Pinto (2006),
valores usuais de c’ são da ordem de 5 a 50kPa. É importante relembrar que esse parâmetro
não é uma coesão característica do solo no sentido de resistência, mas apenas uma
consequência do ajuste linear dos Círculos de Mohr.
RESISTÊNCIA DE SOLOS NÃO IDEAIS
A interpretação da resistência ao cisalhamento até aqui apresentada, tanto para areias quanto
para argilas, foram tomadas para solos ditos como ideais, sem cimentação. A essas
interpretações diz-se que são modelos de comportamento da Mecânica dos Solos Clássica.
Mas em campo os solos ocorrem em misturas, com percentuais variáveis de areia, silte e
argila, influenciados pelo seu processo de deposição milenar e outros fatores.
Em solos estruturados e cimentados, devido a processos químicos, os grãos podem estar
ligados uns aos outros por uma substância cimentante, fazendo com que apresentem coesão
verdadeira. Ao serem submetidos a um cisalhamento, primeiramente essas ligações deverão
ser superadas, para só depois apresentarem os comportamentos discutidos anteriormente. À
tensão correspondente ao processo de quebra da cimentação é dada o nome de tensão de
cedência. Observa-se que:
Para tensões confinantes menores que a tensão de cedência, a tensão desviadora máxima
ocorre para pequena deformação e se estabiliza em nível mais baixo.
Quando a tensão confinante se encontra próxima da tensão de cedência, a curva tensão x
deformação apresenta mudança de comportamento quando a cimentação é destruída, e a
resistência final ocorre com desviadora maior.
Para tensões confinantes maiores que a tensão de cedência, o comportamento é típico de
solos não cimentados, pois a cimentação é destruída ainda no confinamento.
Solos residuais são heterogêneos, especialmente os mais jovens e saprólitos que carregam
as características da rocha mãe. Dessa maneira, a obtenção da resistência ao cisalhamento
desses solos nem sempre é acurada por meio de ensaios de laboratório, visto que a amostra
retirada pode não ser representativa para caracterizar o maciço. Pinto (2006) cita que outra
característica desses solos é a anisotropia, e que dificilmente é possível obter o coeficiente de
empuxo no repouso para realizar ensaios de modo que se reestabeleça o nível exato de
tensões que a amostra tinha em campo.
Solos não saturados são trifásicos, formados por grãos, água e ar. Esse último sofre
compressãoquando se aplica um carregamento, diminuindo o índice de vazios do solo e
aumentando a tensão efetiva. Embora isso pareça ser uma vantagem, além da poro-pressão,
tem-se a pressão de ar − a diferença entre essas duas grandezas é chamada de pressão de
sucção. O cálculo para conhecimento da tensão efetiva, portanto, torna-se mais complexo,
devendo ser adotadas teorias que expandem o Princípio das Tensões Efetivas de Terzaghi.
Solos colapsíveis são solos não saturados que colapsam (apresentam compressão rápida)
quando aumentam de umidade, enquanto solos expansivos são solos não saturados que
apresentam expansão quando têm seu teor de umidade aumentado. Esses comportamentos
ocorrem devido à estrutura do mineral argílico.
MÃO NA MASSA
1. PARA SABER SE O COMPORTAMENTO DA ARGILA NA RUPTURA É
CONTRÁTIL OU DILATANTE, PODE-SE OBSERVAR SEU(SUA):
A) Índice de vazios inicial
B) Coeficiente de compressão
C) Tensão de pré-adensamento
D) Tensão confinante
E) A razão de sobreadensamento
2. PARA QUE UM SOLO APRESENTE O COMPORTAMENTO CONTRÁTIL E
DILATANTE INDICADO PELO ÍNDICE DE VAZIOS OU PELA RAZÃO DE
SOBREADENSAMENTO CRÍTICA, É IMPORTANTE QUE ELE:
A) Seja expansível.
B) Não tenha cimentação.
C) Seja compactado.
D) Seja anisotrópico.
E) Seja colapsível.
3. NO ENSAIO DE ADENSAMENTO DE UM SOLO, IDENTIFICOU-SE QUE A
TENSÃO DE PRÉ-ADENSAMENTO ERA DE 200KPA. SABENDO QUE ESSE
SOLO DEPOIS FOI LEVADO À RUPTURA SOB UMA TENSÃO
CONFINANTE DE 250KPA E AXIAL DE 350KPA, PODE-SE AFIRMAR QUE
O COMPORTAMENTO DESSE SOLO NA RUPTURA E A TENSÃO
DESVIADORA SÃO, RESPECTIVAMENTE, DE:
A) Expansão e 100kPa.
B) Expansão e 350kPa.
C) Compressão e 100kPa.
D) Compressão e 250kPa.
E) Volume constante e 100kPa.
4. UM ENSAIO TRIAXIAL NÃO ADENSADO NÃO DRENADO FOI
REALIZADO EM UMA ARGILA PARA A TENSÃO CONFINANTE DE
100KPA, NO QUAL SE OBSERVOU UMA RESISTÊNCIA NÃO DRENADA
DE 75KPA. A TENSÃO CONFINANTE E A RESISTÊNCIA NÃO DRENADA
CASO A TENSÃO NA CÂMERA SEJA AUMENTADA EM 50% SERÁ,
RESPECTIVAMENTE, EM KPA:
A) 50 e 75.
B) 150 e 75.
C) 150 e 100.
D) 50 e 112,5.
E) 100 e 150.
5. UMA ARGILA FOI ENSAIADA NO APARELHO TRIAXIAL E
APRESENTOU COMPRESSÃO DURANTE O CISALHAMENTO. SE A
TENSÃO DESVIADORA FOI DE 100KPA E A AXIAL FOI DE 180KPA, PODE-
SE AFIRMAR QUE A CONFINANTE E A TENSÃO DE PRÉ-ADENSAMENTO
ERAM, RESPECTIVAMENTE:
A) 80kPa e maior que 80kPa.
B) 80kPa e menor que 80kPa.
C) 100kPa e maior que 80kPa.
D) 100kPa e menor que 80kPa.
E) 100kPa e igual a 80kPa.
6. UMA ARGILA FOI ENSAIADA SOB TENSÃO CONFINANTE SUPERIOR À
SUA TENSÃO DE PRÉ-ADENSAMENTO. SE A TENSÃO AXIAL E A
CONFINANTE FORAM DE 200KPA E 130KPA, RESPECTIVAMENTE, A
TENSÃO DESVIADORA É, EM KPA:
A) 70kPa, correspondente ao pico devido ao imbricamento dos grãos.
B) 70kPa, correspondente ao pós-pico.
C) 70kPa, correspondente à deformação infinita.
D) 130kPa, correspondendo ao pós-pico.
E) 130kPa, correspondente à deformação infinita.
GABARITO
1. Para saber se o comportamento da argila na ruptura é contrátil ou dilatante, pode-se
observar seu(sua):
A alternativa "E " está correta.
Para saber o comportamento da argila na ruptura, é preciso saber se ela está sobreadensada
ou normalmente adensada. Logo, deve-se observar a razão de sobreadensamento desse solo.
2. Para que um solo apresente o comportamento contrátil e dilatante indicado pelo
índice de vazios ou pela razão de sobreadensamento crítica, é importante que ele:
A alternativa "B " está correta.
Para que um solo apresente comportamento conforme os modelos clássicos da Mecânica dos
Solos, ele não deve apresentar cimentação (solo ideal).
3. No ensaio de adensamento de um solo, identificou-se que a tensão de pré-
adensamento era de 200kPa. Sabendo que esse solo depois foi levado à ruptura sob
uma tensão confinante de 250kPa e axial de 350kPa, pode-se afirmar que o
comportamento desse solo na ruptura e a tensão desviadora são, respectivamente, de:
A alternativa "C " está correta.
Como a tensão confinante é superior à tensão de pré-adensamento, a argila foi cisalhada em
condição normalmente adensada. Até a ruptura, apresentará compressão. A tensão desviadora
é dada por:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
σd = σ1 − σ3 = 350 − 250 = 100 kPa
4. Um ensaio triaxial não adensado não drenado foi realizado em uma argila para a
tensão confinante de 100kPa, no qual se observou uma resistência não drenada de
75kPa. A tensão confinante e a resistência não drenada caso a tensão na câmera seja
aumentada em 50% será, respectivamente, em kPa:
A alternativa "B " está correta.
Para ensaios UU, a envoltória é horizontal. Logo, a resistência não drenada observada será
igual à do ensaio anterior, de 75kPa. Como a tensão confinante é aumentada em 50%:
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
5. Uma argila foi ensaiada no aparelho triaxial e apresentou compressão durante o
cisalhamento. Se a tensão desviadora foi de 100kPa e a axial foi de 180kPa, pode-se
afirmar que a confinante e a tensão de pré-adensamento eram, respectivamente:
A alternativa "B " está correta.
COMPORTAMENTO DAS ARGILAS SOB
CISALHAMENTO
6. Uma argila foi ensaiada sob tensão confinante superior à sua tensão de pré-
adensamento. Se a tensão axial e a confinante foram de 200kPa e 130kPa,
respectivamente, a tensão desviadora é, em kPa:
A alternativa "C " está correta.
Se a argila foi ensaiada com tensão confinante superior à de pré-adensamento, ela é
normalmente adensada, não apresentando pico. A tensão desviadora é correspondente à
deformação infinita:
σ3 = 1,5 σ3,inicial = 1,5 .  100 = 150 kPa
σd = σ1 − σ3 = 200 − 130 = 70 kPa
 Atenção! Para visualização completa da equação utilize a rolagem horizontal
GABARITO
TEORIA NA PRÁTICA
Uma argila foi ensaiada no aparelho triaxial e foram obtidos os resultados a seguir. Sabendo
em campo que sobre esse solo será construído um edifício, responda:
a) Que tipo de ensaio foi realizado?
b) Qual a sua envoltória de resistência?
c) O ensaio realizado é adequado para a situação de campo?
σ3 (kPa) τmáx (kPa)
50 70
100 70
200 70
Elaborada por Mirella Dalvi dos Santos
 Atenção! Para visualização completa da tabela utilize a rolagem horizontal
RESOLUÇÃO
ARGILA COMO SOLO COESIVO
VERIFICANDO O APRENDIZADO
1. O ÂNGULO DE ATRITO INTERNO DE UMA ARGILA FOI OBTIDO PARA A
CONDIÇÃO SOBREADENSADA E NORMALMENTE ADENSADA, E OS
VALORES OBTIDOS FORAM DE 30° E 26°, RESPECTIVAMENTE. PODE-SE
AFIRMAR QUE:
A) No pico, o ângulo de atrito é de 26°.
B) No pós-pico, o ângulo de atrito é de 30°.
C) Na condição residual, o ângulo de atrito é de 30°.
D) A envoltória da condição pós-pico e de pico possuem uma diferença de 4°.
E) A envoltória da normalmente adensada tem inclinação de 30°.
2. A RESISTÊNCIA NÃO DRENADA DE UMA ARGILA FOI ESTIMADA EM
ENSAIO UU COMO 23KPA PARA A TENSÃO CONFINANTE DE 100KPA.
CASO A TENSÃO CONFINANTE SEJA DIMINUÍDA EM 50%, A
RESISTÊNCIA E O ÂNGULO DE ATRITO SERÃO, RESPECTIVAMENTE, DE:
A) 23kPa e 0.
B) 23kPa e 25°.
C) 11,5kPa e 0.
D) 11,5kPa e 25°.
E) 34,5kPa e 25°.
GABARITO
1. O ângulo de atrito interno de uma argila foi obtido para a condição sobreadensada e
normalmente adensada, e os valores obtidos foram de 30° e 26°, respectivamente. Pode-
se afirmar que:
A alternativa "D " está correta.
 
O pós-pico se aproxima da condição normalmente adensada. Logo, traçando as duas
envoltórias, elas possuem a diferença de 4°.
2. A resistência não drenada de uma argila foi estimada em ensaio UU como 23kPa para
a tensão confinante de 100kPa. Caso a tensão confinante seja diminuída em 50%, a
resistência e o ângulo de atrito serão, respectivamente, de:
A alternativa "A " está correta.
 
O ensaio UU independe da tensão confinante, logo a resistência é a mesma e a envoltória é
horizontal .
CONCLUSÃO
CONSIDERAÇÕES FINAIS
Neste conteúdo, você aprendeu sobre a resistência ao cisalhamento dos solos: como
representá-la matematicamente, como obtê-la por meio de ensaios,

Outros materiais