III. ( ) f(g(h(x))) tem derivada igual a −6sen(2sen(3x))cos(3x)* cos(cos(2sen(3x))). IV. ( ) f’’(x) = -f(x). F, F, V, F. V, V, F, F. Resposta coF, F, V, V. V, V, F, V. V, F, V, V.
Saber calcular o valor de uma derivada é fundamental para o estudo de cálculo integral, já que este valor possui um significado prático para análise da curva do gráfico de uma determinada função que indica uma taxa de variação instantânea. Isso pode significar encontrar uma taxa de variação referente a outra função ou algo similar, o que implica na possibilidade de se aplicar a operação reversa à derivada.
Considerando essas informações e o conteúdo estudado sobre integral indefinida, pode-se afirmar que aplicar a operação inve derivada é relevante porque:
a) vale para qualquer tipo de função e intervalo. b) tem uma interpretação geométrica diferente da derivada. c) elimina indeterminações em que a regra de L’Hospital falha. d) passa a ser possível derivar outros tipos de funções. e) permite determinar a função primitiva de uma derivada, ou seja, a função que a gerou.
O estudo do cálculo é importante em diversas áreas do conhecimento. Por exemplo, em física, é utilizado para descrever as equações horárias de movimento, que são funções polinomiais. Essas funções polinomiais podem ser integradas e derivadas conforme o estudo de cálculo integral para, a partir daí, obter outros conhecimentos.
Considere que a integral da equação horária da aceleração a(t) é igual à equação horária da velocidade v(t), e a integral desta igual à equação horária do movimento S(t). Considerando essas informações e o conteúdo estudado sobre derivação, analise a afirmativas a seguir.
I. Em movimentos em que a(t) é uma função constante e não nula, S(t) é uma função do primeiro grau. II. Para a função horária S(t) = cos(x), a aceleração a(t) também é a(t) = cos(x). III. Se a velocidade de um corpo é de 4 m/s e constante, pode-se afirmar que S(t) é uma função do primeiro grau. IV. Dada a equação horária da posição S(t) = x² + 2x − 3, tem-se que v(2) = 6m/s e que a aceleração é constante e vale 2m/s². a) I, II e IV. b) I, II, III. c) III e IV. d) II, III. e) II e IV.
Quando derivamos diversas vezes uma função circular como seno e cosseno, vimos que as derivadas alternam entre senos e cossenos, seguindo um padrão interminável. Um exemplo disso é derivar uma função cosseno duas vezes, onde na primeira ve se torna uma função seno e, na segunda, novamente uma função cosseno. Entender esse padrão permite o cálculo das deriva de maneira mais rápida e simples.
Considerando as funções f(x) = sen(x), g(x) = cos(2x), h(x) = sen(3x), e com base nos seus conhecimentos acerca da regra da cadeia e da interpretação geométrica dos conceitos estudados em cálculo diferencial e integral, analise as afirmativas a seguir assinale V para a(s) verdadeira(s) e F para a(s) falsa(s).
I. ( ) A derivada
A regra de L’Hospital é uma ferramenta matemática muito importante para a resolução de inúmeros limites. Ela permite a elimin de certos tipos de indeterminações, apenas derivando o numerador e o denominador de uma função que é escrita em forma de razão. Considerando as funções f(x) = sen(5x), g(x) = tg(x), h(x) = x, i(x) = 2x², e com base nos seus conhecimentos acerca da regra d limite fundamental trigonométrico e da regra de L’Hospital, analise as afirmativas a seguir e assinale V para a(s) verdadeira(s) e para a(s) falsa(s). I. ( ) O limite de f(x)/h(x), quando x tende a 0, é igual a 5. II. ( ) O limite de i(x)/h(x), quando x tende a 0, é igual a 2. III. ( ) O limite de g(x)/h(x), quando x tende a 0, é igual a 1. IV. ( ) O limite de h(x)/i(x), quando x tende a mais infinito, é igual a 0. Agora, assinale a alternativa que apresenta a sequência correta:
I. ( ) O limite de f(x)/h(x), quando x tende a 0, é igual a 5. II. ( ) O limite de i(x)/h(x), quando x tende a 0, é igual a 2. III. ( ) O limite de g(x)/h(x), quando x tende a 0, é igual a 1. IV. ( ) O limite de h(x)/i(x), quando x tende a mais infinito, é igual a 0. F, F, V, V. Resposta coV, F, V, V. V, F, V, F. V, F, F, V. F, V, F, F.